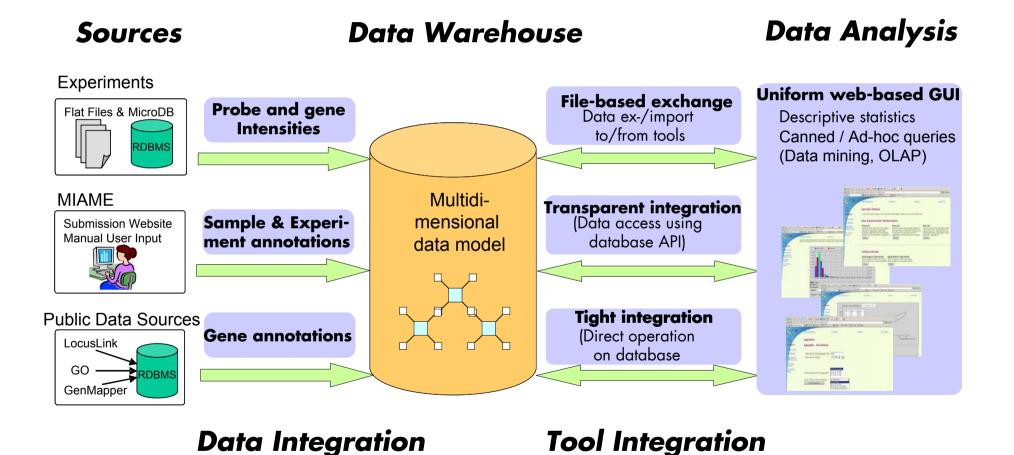
GeWare: A data warehouse for gene expression analysis

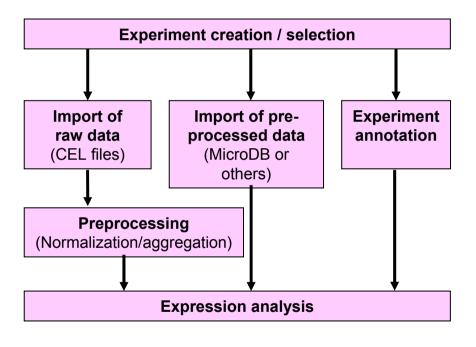
T. Kirsten, H.-H. Do, E. Rahm WG 1, IZBI, University of Leipzig

www.izbi.de, dbs.uni-leipzig.de

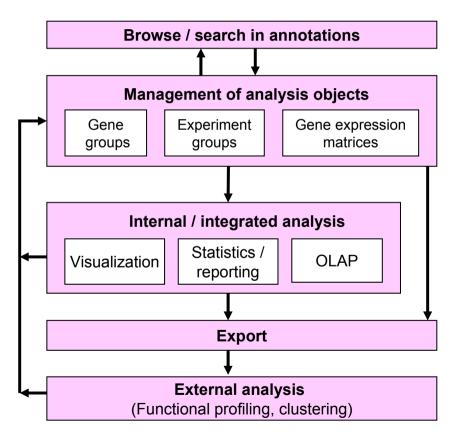

Outline

- Motivation
- GeWare Architecture
- Annotation Integration
- Expression Analysis
- Conclusion and Future Work

Motivation

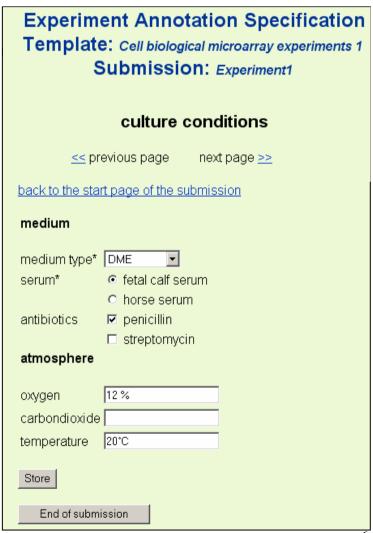

- Microarrays to measure expression of thousands of genes at the same time
- Various kinds of data with different characteristics and requirements
- Central data management and analysis platform
- Data Warehouse approach
 - Expression data import, e.g. from Affymetrix system
 - Fact tables to store both raw and derived data
 - Uniform specification of experiment annotations
 - Integration of gene annotations from public sources
 - Integration of analysis and data mining algorithms/tools

System Architecture



System Workflows

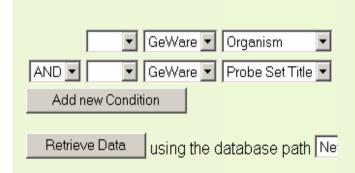
Import workflow



Expression analysis workflow

Experiment Annotation

- Uniform and consistent annotation
- Controlled annotation vocabularies
- Annotation templates as collections of annotation categories for which the annotation values has to be captured
 - Hierarchical arrangement of categories
 - Definition of MIAME compliant templates by biologists
- MAGE-ML export (data exchange)


Experiment and Gene Groups

- Collections of objects with common patterns
- Input for reporting and further analysis
- Definition by
 - User selection
 - Search in annotation
 - Result of reporting and advanced analysis

Save

Example: p53 tumor

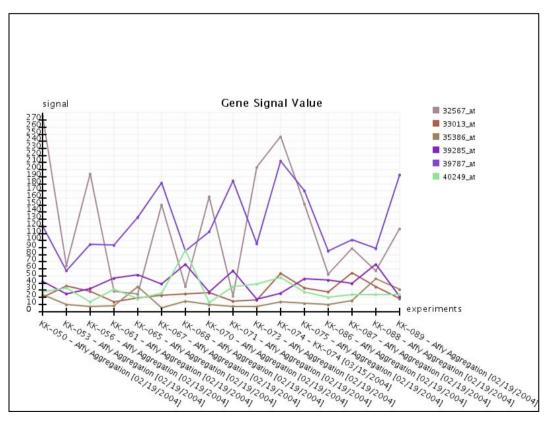
Gene Annotation Browsing

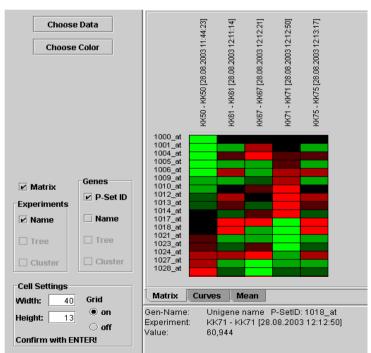
e as gene grou	Tumor Protein	p53 S	ave
Select?			_
Selecti			
V	1711_at	Homo sapiens	tumor protein p53 binding protein, 1
V	1859_s_at	Homo sapiens	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)
~	1860_at	Homo sapiens	tumor protein p53 binding protein, 2
~	1880_at	Homo sapiens	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)
V	1935_at	Homo sapiens	Mdm4, transformed 3T3 cell double minute 4, p53 binding protein (mouse)
✓	1974_s_at	Homo sapiens	tumor protein p53 (Li-Fraumeni syndrome)
✓	2008_s_at	Homo sapiens	Mdm2, transformed 3T3 cell double minute 2, p53 binding protein (mouse)
✓	201746_at	Homo sapiens	tumor protein p53 (Li-Fraumeni syndrome)

Preprocessing

- Preprocessing
 - Generation of expression values on gene level
 - Several predefined algorithms (Mas5, Rma, Li/Wong)
 - P. by user defined methods for normalization, etc.

Probe Intensity Preprocessing External Transformation - ArrayAnalyzer / R BioConductor List of available aggregations This function provides the possibility to summarize raw probe intensity values into gene signal values by using different methods which also includes background subtraction and normalization. Following methods can be used: MAS5, developed by Affymetrix RMA, introduced by Terry Speed's group at UCSC LWF, Li/Wong's described model 1. Step Please input an unique name for the calculation: Speed Aggregation 2. Step Please select an aggregation method: Speeds RMA Transformation (R) □ Advanced Affv MAS5 Transformation (R) Speeds RMA Transformation (R) Proceed Full Li/Wong Transformation (R) Reduced Li/Wong Transformation (R) A detailed comparison between the MAS 5.0 values that are computed by affy and by Affymetrix's software can be found at http://stat-www.berkelev.edu/~bolstad/MAS5diff/Mas5difference.html


Expression Analysis


- Several statistical reports used for analysis entry and outlier detection
 - Descriptive statistics (mean, sd, se ...)

Statistical Reports												
Standard Reports -	andard Reports - Gene Group Name:		Save as gene group		Unselect all							
Please specify the filter criteri	To download the results please use this <u>link</u>											
In addition, annotation can be viewed for the selected probe sets. View annotation												
1. Step:Select gene annota	Select?	Probe Set Name	Gene Symbol	Map Location	LocusLink	maximal Signal	Avg (Signal)	StdDev (Signal)				
	V	35083_at	FTL	19q13.3- q13.4	2512	22246.889	7126.647	1634.848				
2. Step: Choose a defined	V	36130_f_at	MT2A	16q13	4502	20413.998	10935.716	2837.217				
3. Step Choose a defined (V	35928_at	TPO	2p25	7173	10014.709	5040.232	1104.781				
3. Step Choose a defined	✓	609_f_at				8410.894	4051.537	1203.097				
	V	36455_at	COL9A3	20q13.3	1299	7092.540	220.447	197.615				
4. Step: Mark the deviation	V	870_f_at				7089.801	2501.577	637.314				
	✓	37039_at	HLA-DRA	6p21.3	3122	6823.413	1876.503	535.567				
5. Step: Specify z, if Range	✓	41206_r_at	COX6A1	12q24.2	1337	6819.760	4022.020	576.162				
	□ □	1/120 c at	FIEAAO	3478	107/1	6702 021	37/11 70/	625 255				
Process												

Visualization

 Different kinds of visualization of gene expression values (line, bar charts, heat maps)

Conclusions / Future Work

GeWare

- Management of a high volume of expression data
- Flexible and uniform experiment annotation
- Storing experiment and gene groups, expression matrices
- Different kinds of analysis, export
- Web-Interface: http://www.izbi.de/izbi/AG1/GeWare.html

Future work

- Coupling with advanced analysis/ data mining routines
- Visualization extension