

Data integration for analyzing gene expression data

UNIVERSITÄT LEIPZIG

Hong-Hai Do¹, Toralf Kirsten¹, Erhard Rahm^{1,2}

¹Interdisciplinary Centre for Bioinformatics ²Department of Computer Science http://www.izbi.de http://dbs.uni-leipzia.de

1. Motivation

- Microarrays: High-throughput method to monitor the expression of thousands of genes in a
 - Promising, however high requirements to a supporting data management and analysis solution
- Various user groups at University of Leipzig with different research focus, requiring gene expression analysis
- Comparative genomics for different primates
- Change detection in signal transduction in thyroid pathologies
- Gene expression profiling of brain tumors
- Current capacity: about 300-500 experiments per year using Affymetrix microarrays

Gene Expression Warehousing: Goals and Objectives

- Data warehouse: Central data management and analysis platform supporting special local requirements
- Integration of annotation data with expression data
- Experiment annotations: documenting the specific biological focus of an experiment and the technical process of conducting it

 Gene annotations: describing all known aspects about the gene sequences on the microarray chips; to be
- exploited from public sourc
- ♦ Integration of existing software and tools with the database for flexible data analysis

3. Project Context: A Chronology

4. Evaluation of Existing Solutions [2]

- Comparison of 8 published microarray databases:
 - ArrayDB (NHGRI), ExpressDB (Harvard Univ.), GeneX (NCGR), GIMS (Univ. Manchester), M-CHIPS (DKZF), RAD2 (Univ. Pennsylvania), SMD (Stanford Univ.), YMD (Yale Univ.)
- Major evaluation criteria
 - Data storage and management: Image and expression data, annotation data
 - Data integration: Integration of annotation data, especially gene annotations, with expression data
 - Tool integration: Integration of tools/algorithms for interactive and iterative data analysis
- - Sample and experiment annotations: Mostly free-text fields, no controlled vocabularies used
 - Gene annotations: Mostly not locally integrated but linked through web links, not sufficient for analysis
 - Data analysis and tool integration: Large variety of data mining approaches available, however advanced analysis outside of database by means of stand-alone tools

5. GeWare Data Model

6. GeWare Overall Architecture

7. Contributing/Built-upon Projects

Integrating gene annotations with GeneMapper

- Various public sources with different annotations. however related to different gene representations, i.e.
 - Public sources: LocusLink (NCBI), Human Genome Browser (UCSC) and Ensembl (EBI-Sanger), UniGene, Tigr, GeneCards,
 - Vendor-based sources, e.g. NetAffx (Affymetrix): annotations of proprietary genes, i.e. probesets
- Project goals: Providing gene-oriented views on annotations by means of matching between different gene representations

Dept. of CS-DI (F. Naumann)

Human-Chimpanzee Comparison Platform (in cooperation with MPI-EVA)

- Recent availability of draft versions of the human and chimpanzee genomes: first example of two closely related mammalian genomes
- Project goals: Design and implementation of an integrated platform for comparative analysis between humans and chimpanzees [3]
 - Genome-wide comparisons at both sequence and expression levels
- Determining genes with expression drastically changed during human evolution: Identification of traits specific to humans
- Collecting data at the MPI-EVA in cooperation with Charite Berlin
 - Application of various techniques: Microarray, mass spectrometry, gel electrophoresis
 High volume of data expected: currently ca. 3TB data available stored in flat files associated with ca. 800

8. Cooperation Partners

International / National partners **Local partners** □ University of Leipzig ■ Medical Department (F. Horn) ■ Dept. of CS (E. Rahm/P. Richter) ■ Carl-Ludwig-Institute (W. Briest/A. Deten) □ EBI Cambridge, UK (A. Brazma/U. Sarkans) IZBI ☐ Lion BioScience, UK (T. Etzold) WG 1 ☐ Humboldt Uni. Berlin Dept. of CS-DB (J.-C. Freytag/S. Heymann) Dept. of CS-KM (U. Leser) ■ MPI-EVA Leipzig (Svante Pääbo's Lab) □ IZKF Leipzig (K. Krohn/M. Eszlinger)

WG 3

9. References

- Brazma, A. et al.: Minimum Information about a Microarray Experiment (MIAME) Toward Standards for Microarray Data. Nature Genetics 29, 2001
- Do, H.-H., Kirsten, T., Rahm, E.: Comparative Evaluation of Microarray-based Gene Expression Databases. Proc. 10. Conf. Database Systems for Business, Technology and Web (BTW), Leipzig, Feb. 2003
- 3. Enard, W. et al.: Intra- and Interspecific Variation in Primate Gene Expression Patterns. Science 296, 2002
- Kirsten, T., Do, H.-H., Rahm, E.: GeWare: A Data Warehouse for Integrated Gene Expression Analysis, Work in progress, 2003