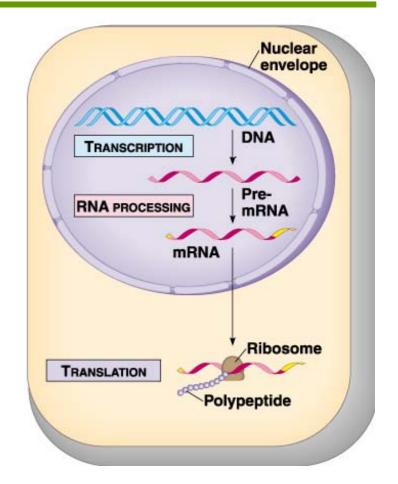
Comparative evaluation of microarray-based gene expression databases

Hong-Hai Do, Toralf Kirsten, Erhard Rahm

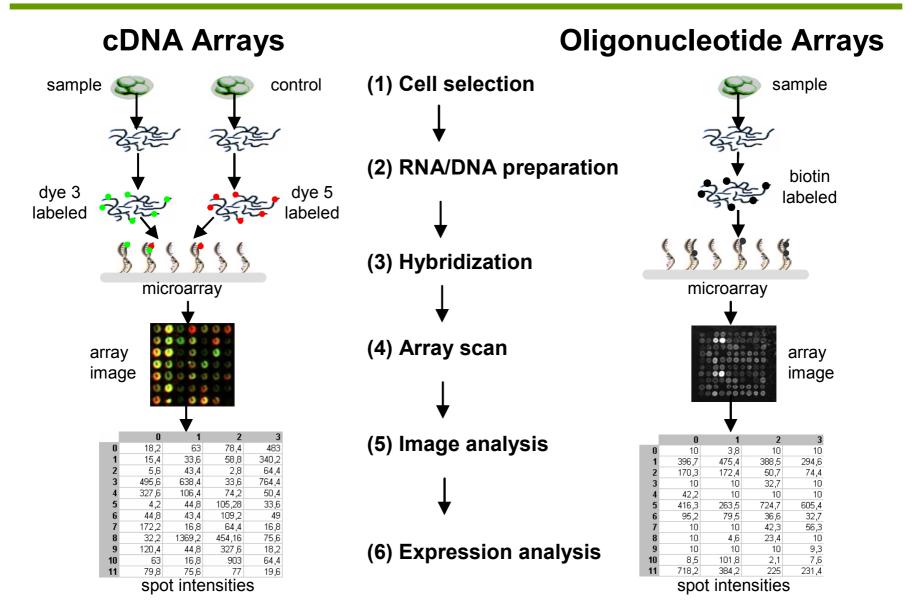
University of Leipzig, Germany www.izbi.de, dbs.uni-leipzig.de


Gene expression analysis

- Microarray database requirements
- Evaluation of 8 database solutions
- The GeWare project in Leipzig
- Conclusions

Gene Expression Analysis

Goal: Characterization of functions of genes and their mutual influence in the regulatory network


Measuring mRNA amount in cells under different conditions

Microarrays

- Measuring expression of thousands of genes simultaneously
- Large amounts of data with every experiment

Microarray Experiment

Local Situation

In Leipzig: ~15 different user groups:

- Comparative primate genomics (human vs. chimpanzee)
- Change detection in signal transduction in thyroid pathologies
- Gene expression profiling of brain tumors

Affymetrix oligonucleotide microarrays

About 300-500 experiment series / year (trend **⊅**)

Current data management and analysis:

- Handling of flat files produced by Affymetrix software
- Data analysis using Affymetrix tools, MS Excel
- Manual search for annotations in public sources

- Storage of different types of data
- Data integration
- Annotation management
- Data normalization
- Data analysis
- Tool integration

Data Characteristics

Various kinds of data with different characteristics and requirements

Data		Source	Туре	Characteristics	Usage
Image Data		Array scan	binary	large files	Generation of expression data
Expression Data		Image analysis	number	fast growing volume	Visualization, statistical and cluster analysis
Annotation Data	Gene	External public sources	text	regularly updated	Interpreting / Relating / Inferring gene functions
	Experiment	User input		user-specified, often free text	

Annotation Integration

- Various public sources with gene annotations:
 - LocusLink and RefSeq: GO annotations, homology, organism, reference sequence
 - UniGene, GeneCards, GeneLynx, Tigr, ...
 - Vendor-specific sources: NetAffx
 - However, often different gene identifiers !!!
- Manual specification of experiment annotations
 - Free text to be limited/avoided for better analysis support
- Standard support necessary, e.g., MIAME, MAGE-ML, GeneOntology, ...

Data Integration Mechanisms

Virtual integration

- Web linkage based on accession keys
 - Navigational access
 - > Annotation data not queryable
 - > Little integration effort

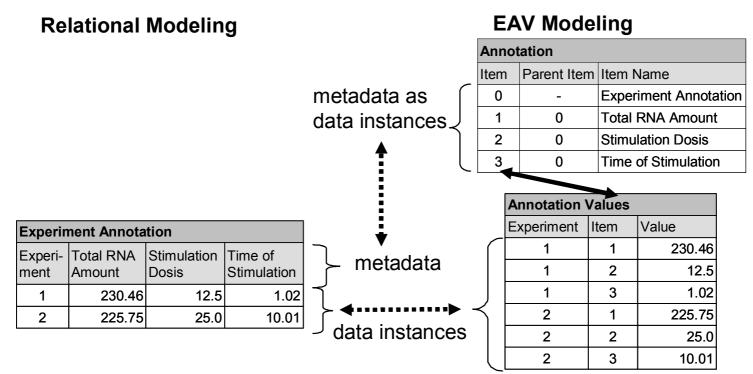
Federated systems (Mediator-based)

- > Schema integration
- > On-the-fly data integration: transformation, cleaning, merging
- > Performance/Availability/Rudimentary query capabilities of public sources

Materialized integration (Data warehousing)

- All relevant annotation data + expression data locally stored
- Advantages for data analysis: all data directly queryable, performance
- High integration and update effort

Hybrid approaches, e.g. SRS


Management of Annotation Data

Flexible management required

Coping with attribute changes / fast-evolving schemas and vocabularies

Database representation:

Relational vs. EAV (Entity-Attribute-Value)

Necessary for expression data due to

- Fluctuations in technical experiment process
- Comparison between multiple experiments

Normalization for 1 experiment

- Division by average intensity of all spots on array
- Of control genes (housekeeping or spiked genes)

Normalization for multiple experiments (series)
 Normalization against a control experiment

Storage of raw data for re-normalization

Data Analysis

Navigation/Querying/Reporting

Online analytical processing

Multidimensionality of expression data

Statistics and data mining

- Descriptive statistics: mean, standard deviation, ...
- Probability calculation: distributions, regression, correlation, ...
- Inductive statistics: random sampling, estimation, tests, ...
- Clustering: Hierarchical, K-mean, Self-Organizing Maps, ...
- Classification: Support Vector Machines, Decision trees, ...

Visualization

- Display of statistical and clustering results
- Scatter plots, dendrograms, charts, graphs, ...

Tool Integration

File exchange

- Export from database, import in tool for analysis (tabdelimited ASCII format, XML etc.)
- No integration effort, but restricted / static information

API access to DBS by tools

- Use of DBS is transparent to user
- Access to current data using query language

Tight integration: Direct analysis in database systems

- Analysis / data mining approaches implemented by DBMS or as stored procedures
- Potential for high performance
- High implementation effort

Evaluation of 8 database solutions

Database	Organization		
ArrayDB	National Human Genome Research Institute – NHGRI <i>http://genome.nggri.nih.gov/arraydb</i>		
ExpressDB	Harvard University http://arep.med.harvard.edu/ExpressDB		
GeneX	National Center for Genome Resources – NCGR http://genebox.ncgr.org/genex		
GIMS	University of Manchester http://www.cs.man.ac.uk/~norm/gims		
M-CHIPS	German Cancer Research Center http://www.mchips.de		
RAD2	University of Pennsylvania http://www.cbil.upenn.edu/RAD2		
SMD	Stanford University http://genome-www4.stanford.edu/MicroArray/SMD		
YMD	Yale University http://info.med.yale.edu/microarray		

Results: Data Management

Supported types of data

- Often no images stored
- Expression data from different techniques (microarray-based and non-microarray)

Gene annotations

not locally integrated/available in most cases

Experiment annotations

- Different content and varying degree of detail between the databases
- Mostly free-text fields, no controlled vocabularies

Data exchange

- Tab-delimited used in many cases
- XML not yet supported

Results: Data and Analysis Integration

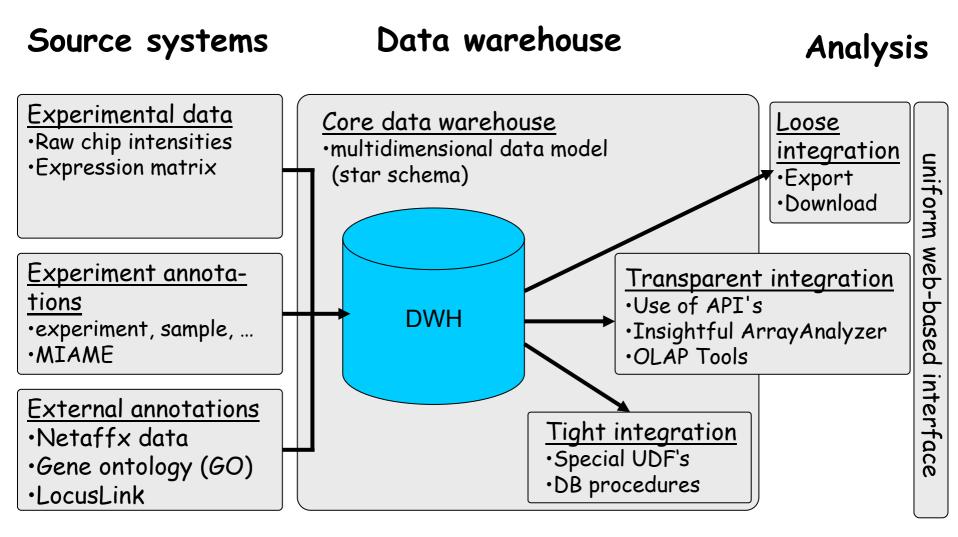
Data integration

- Web-link integration in most cases, but not sufficient for analysis
- Federated and materialized integration not yet fully exploited

Data analysis

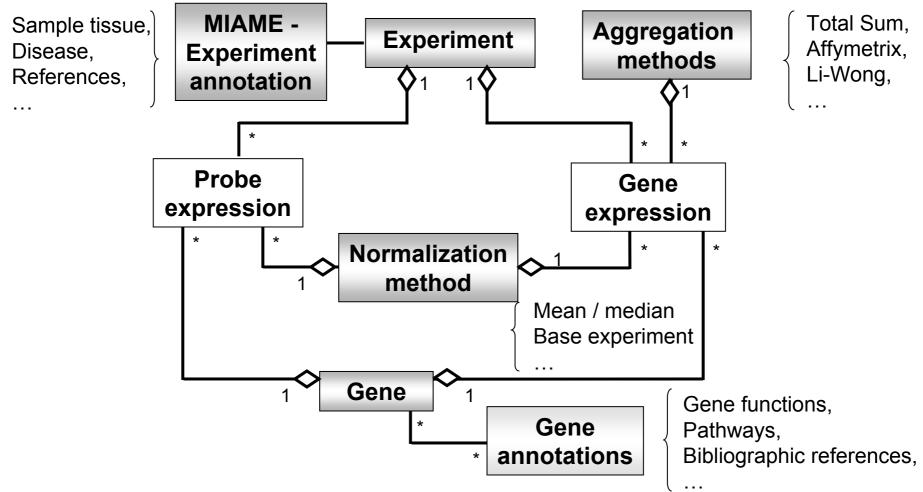
- Canned queries widely used
- OLAP not yet applied despite multidimensionality
- Large variety of data mining approaches

Tool integration


 Advanced analysis mostly outside of database by means of stand-alone tools

Specific local requirements

Central data management and analysis platform for local users


Data Warehouse approach

- Data import from Affymetrix system
- Fact tables to store both raw and derived data
- Uniform specification of experiment annotations
- Integration of gene annotations from public sources
- Integration of analysis and data mining algorithms/tools

Data Warehouse Model

Multidimensional data model (star schema)

Conclusions

- Microarray-based gene expression analysis
 - Promising technique for a variety of biological problems
 - High requirements for data management
- State of the art: insufficient database integration of
 - Annotations
 - Analysis approaches

GeWare