Implementing Default and Autoepistemic Logics via the Logic of GK

Jianmin Ji
School of Computer Science and Technology
University of Science and Technology of China
Hefei, China

Hannes Strass
Computer Science Institute
Leipzig University
Leipzig, Germany

Abstract
The logic of knowledge and justified assumptions, also known as the logic of grounded knowledge (GK), was proposed by Lin and Shoham as a general logic for nonmonotonic reasoning. To date, it has been used to embed in it default logic (propositional case), autoepistemic logic, Turner’s logic of universal causation, and general logic programming under stable model semantics. Besides showing the generality of GK as a logic for nonmonotonic reasoning, these embeddings shed light on the relationships among these other logics. In this paper, for the first time, we show how the logic of GK can be embedded into disjunctive logic programming in a polynomial but non-modular translation with new variables. The result can then be used to compute the extension/expansion semantics of default logic, autoepistemic logic and Turner’s logic of universal causation by disjunctive ASP solvers such as GNT, cmodels, DLV, and claspD(-2).

Introduction
Lin and Shoham [1992] proposed a logic with two modal operators K and A, standing for knowledge and assumption, respectively. The idea is that one starts with a set of assumptions (those true under the modal operator A), computes the minimal knowledge under this set of assumptions, and then checks to see if the assumptions were justified in that they agree with the resulting minimal knowledge. For instance, consider the GK formula $A p \supset K p$. If we assume p, then we can conclude that we know p, thus the assumption that p holds is justified, and we get a GK model where both $A p$ and $K p$ are true. (There is another GK model where we do not assume p and hence do not know p.) However, there is no GK model of $\neg A p \supset K p$: if we do not assume p, we are forced to conclude $K p$, but then knowledge and assumptions do not coincide; if we do assume p, we cannot conclude that we know p and thus assuming p was not justified.

To date, there have been embeddings from default logic [Reiter, 1980] and autoepistemic logic [Moore, 1985] to the logic of GK [Lin and Shoham, 1992], from Turner’s logic of universal causation [Turner, 1999] to the logic of GK [Ji and Lin, 2012], as well as from general logic programs [Ferraris, 2005] to the logic of GK [Lin and Zhou, 2011]. Among other things, these embeddings shed new light on nonmonotonic reasoning, and have led to an interesting characterization of strong equivalence in logic programming [Lin, 2002; Lin and Zhou, 2011], and helped relate logic programming to circumscription [Lin and Shoham, 1992] as the semantics of GK is just a minimization (of knowledge) together with an identity check (of assumptions and knowledge) after the minimization.

In this paper, for the first time, we consider computing models of GK theories by disjunctive logic programs. We shall propose a polynomial translation from a (pure) GK theory to a disjunctive logic program such that there is a one-to-one correspondence between GK models of the GK theory and answer sets of the resulting disjunctive logic program. The result can then be used to compute the extension/expansion semantics of default logic, autoepistemic logic and Turner’s logic of universal causation by disjunctive ASP solvers such as GNT [Janhunen and Niemelä, 2004], cmodels [Giunchiglia, Lierler, and Maratea, 2006], DLV [Leone et al., 2006], claspD [Drescher et al., 2008] and claspD-2 [Gebser, Kaufmann, and Schaub, 2013]. In particular, the recent advances in disjunctive answer set solving [Gebser, Kaufmann, and Schaub, 2013] open up promising research avenues towards applications of expressive nonmonotonic knowledge representation languages.

To substantiate this claim, we have implemented the translation and report on some preliminary experiments that we conducted on the special case of computing extensions for Reiter’s default logic [Reiter, 1980]. The implementation, called $gk2dlp$, is available for download from the second author’s home page.1

Providing implementations for theoretical formalisms has a long tradition in nonmonotonic reasoning, for an overview see [Dix, Furbach, and Niemelä, 2001]. In fact, nonmonotonic reasoning itself originated from a desire to more accurately model the way humans reason, and was since its conception driven by applications in commonsense reasoning [McCarthy, 1980, 1986]. Today, thanks to extensive research efforts, we know how closely interrelated the different formalisms for nonmonotonic reasoning are, and can use this knowledge to improve the scope of implementations.

This paper is organized as follows. Section 2 reviews logic programs, the logic of GK and default and autoepistemic logics. Section 3 presents our main result, the map-

1http://informatik.uni-leipzig.de/~strass/gk2dlp/
ping from GK to disjunctive logic programming. Section 4 presents our prototypical implementation, several experiments we conducted to analyze the translation, possible applications for it, and a comparison with previous and related work. Section 5 concludes with ideas for future work.

Preliminaries

We assume a propositional language with two zero-place logical connectives \top for tautology and \bot for contradiction. We denote by Atom the set of atoms, the signature of our language, and Lit the set of literals: $\text{Lit} = \text{Atom} \cup \{\neg p \mid p \in \text{Atom}\}$. A set I of literals is called complete if for each atom p, exactly one of $\{p, \neg p\}$ is in I.

In this paper, we identify an interpretation with a complete set of literals. If I is a complete set of literals, we use it as an interpretation when we say that it is a model of a formula, and we use it as a set of literals when we say that it entails a formula. In particular, we denote by $\text{Th}(I)$ the logical closure of I (considered to be a set of literals).

Logic Programming

A nested expression is built from literals using the 0-place connectives \top and \bot, the unary connective “\neg” and the binary connectives “\land” and “\lor” for conjunction and disjunction. A logic program with nested expressions is a finite set of rules of the form $F \leftarrow G$, where F and G are nested expressions. The answer set of a logic program with nested expressions is defined as in [Lifschitz, Tang, and Turner, 1999]. Given a nested expression F and a set S of literals, we define when S satisfies F, written $S \models F$ below, recursively as follows (l is a literal):

- $S \models l$ if $l \in S$,
- $S \models \top$ and $S \not\models \bot$,
- $S \models \neg F$ if $S \not\models F$,
- $S \models F; G$ if $S \models F$ and $S \models G$, and
- $S \models F; G$ if $S \models F$ or $S \models G$.

S satisfies a rule $F \leftarrow G$ if $S \models F$ whenever $S \models G$. S satisfies a logic program P, written $S \models P$, if S satisfies all rules in P.

The reduct P^S of P related to S is the result of replacing every maximal subexpression of P that has the form not F with \top, and with \bot otherwise. For a logic program P without not, the answer set of P is any minimal consistent subset S of Lit that satisfies P. We use $\Gamma_P(S)$ to denote the set of answer sets of P^S. Now a consistent set of literals is an answer set of P iff $S \in \Gamma_P(S)$. Every logic program with nested expressions can be equivalently translated to disjunctive logic programs with disjunctive rules of the form

$$l_1; \cdots; l_k \leftarrow l_{k+1}, \ldots, l_t, \text{not } l_{t+1}, \ldots, \text{not } l_m, \text{not } l_{m+1}, \ldots, \text{not } l_n,$$

where $n \geq m \geq t \geq k \geq 0$ and l_1, \ldots, l_n are propositional literals.

Default Logic

Default logic [Reiter, 1980] is for making and withdrawing assumptions in the light of incomplete knowledge. This is done by defaults, that allow to express rules of thumb such as “birds usually fly” and “tools usually work.” For a given logical language, a default is any expression of the form $\phi : \psi_1, \ldots, \psi_n / \varphi$ where $\phi, \psi_1, \ldots, \psi_n, \varphi$ are formulas of the underlying language. A default theory is a pair (W, D), where W is a set of formulas and D is a set of defaults. The meaning of default theories is given through the notion of extensions. An extension of a default theory (W, D) is “interpreted as an acceptable set of beliefs that one may hold about the incompletely specified world W” [Reiter, 1980].

For a default theory (W, D) and any set S of formulas let $\Gamma(S)$ be the smallest set satisfying

1. $W \subseteq \Gamma(S)$,
2. $\text{Th}(\Gamma(S)) = \Gamma(S)$,
3. If $\phi : \psi_1, \ldots, \psi_n / \varphi \in D, \phi \in \Gamma(S)$ and $\neg \psi_1, \ldots, \neg \psi_n \not\in S$, then $\varphi \in \Gamma(S)$.

A set E of formulas is called an extension for (W, D) iff $\Gamma(E) = E$.

Autoepistemic Logic

Moore [1985] strives to formalize an ideally rational agent reasoning about its own beliefs. He uses a belief modality L to explicitly refer to the agent’s belief within the language. Given a set A of formulas (the initial beliefs), a set T is an expansion of A if it coincides with the deductive closure of the set $A \cup \{L\varphi \mid \varphi \in T\} \cup \{\neg L\varphi \mid \varphi \not\in T\}$. In words, T is an expansion if it equals what can be derived using the initial beliefs A and positive and negative introspection with respect to T itself. It was later discovered that this definition of expansions allows unfounded, self-justifying beliefs. Such beliefs are however not always desirable when representing the knowledge of agents.

The Logic of GK

The language of GK proposed by Lin and Shoham [1992] is a modal propositional language with two modal operators, K, for knowledge, and A, for assumption. GK formulas φ are propositional formulas with K and A, that is,

$$\varphi ::= \bot \mid p \mid \neg \varphi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid K \varphi \mid A \varphi,$$

where p is an atom. A GK theory is a set of GK formulas.

GK is a nonmonotonic logic, and its semantics is defined using the standard Kripke possible world interpretations. Informally speaking, a GK model is a Kripke interpretation where what is true under K is minimal and exactly the same as what is true under A. The intuition here is that given a GK formula, one first makes some assumptions (those true under A), then one minimizes the knowledge thus entailed, and finally checks to make sure that the initial assumption is justified in the sense that the minimal knowledge is the same as the initial assumption.

Formally, a Kripke interpretation M is a tuple (W, π, R_K, R_A, s), where W is a nonempty set of possible worlds, π a function that maps a possible world to an interpretation, R_K and R_A binary relations over W representing the accessibility relations for K and A, respectively, and $s \in W$, called the actual world of M. The satisfaction relation \models between a Kripke interpretation
A propositional default theory $\Delta = (W, D)$ (under extension semantics) is translated into pure GK formulas in the following way: (1) Translate each $\phi \in W$ to $K\phi$; (2) translate each $(\phi : \psi_1, \ldots, \psi_n)/\phi \in D$ to $K\phi \land \neg\psi_1 \land \cdots \land \neg\psi_n \supset K\phi$. For strong expansion semantics, it becomes $K\phi \land \neg\psi_1 \land \cdots \land \neg\psi_n \supset K\phi$.

Autoepistemic logic

An L-sentence of autoepistemic logic that is in normal form [Konolige, 1988], that is, a disjunction of the form $\neg L\phi \lor L\psi_1 \lor \cdots \lor L\psi_n \lor \varphi$, is (under expansion semantics) expressed as $A\phi \land \neg\psi_1 \land \cdots \land \neg\psi_n \supset K\phi$. For strong expansion semantics, it becomes $K\phi \land \neg\psi_1 \land \cdots \land \neg\psi_n \supset K\phi$.

Logic of universal causation

The logic of universal causation is a nonmonotonic propositional modal logic with one modality C [Turner, 1999]. A formula of this logic is translated to the pure logic of GK by replacing every occurrence of C by K, adding A before each atom which is not in the range of C in it, and adding $Ap \lor \neg\psi$ for each atom p. For example, if a UCL formula is $(p \land \neg q) \supset C(p \land \neg q)$ and $Atom = \{p, q\}$, then the corresponding pure GK formula is $((Ap \land \neg\psi) \supset (K(p \land \neg q)) \land (Ap \land \neg\psi) \land (Ap \lor \neg q)).$

Disjunctive logic programs

A disjunctive LP rule

$p_1 \lor \cdots \lor p_k \leftarrow p_{k+1}, \ldots, p_n, not p_{n+1}, \ldots, not p_m,$

where p_i's are atoms, corresponds to the pure GK formula:

$Kp_{k+1} \land \cdots \land Kp_n \land \neg Ap_{n+1} \land \cdots \land \neg Ap_m \supset Kp_1 \lor \cdots \lor Kp_k$

Main Result: From Pure GK to Disjunctive ASP

Before presenting the translation, we introduce some notations. Let F be a pure GK formula, we use $tr_p(F)$ to denote the propositional formula obtained from F by replacing each occurrence of a K-atom $K\phi$ by k_ϕ and each occurrence of an A-atom $A\phi$ by a_ϕ, where k_ϕ and a_ϕ are new atoms with respect to ϕ and ψ respectively. For a pure GK theory T, we define $tr_p(T) = \bigwedge_{F \in T} tr_p(F)$.

Example 1 (Normal Reiter default)

Consider the pure GK theory $\{F\}$ with $F = \neg Ap \supset Kp$ corresponding to the default $T = p/p$, and another pure GK theory $\{F, G\}$ with $G = \neg Ap$ corresponding to the default $T = \bot/\neg p$. Then $tr_p(\{F\}) = \neg Ap \supset Kp$ and $tr_p(\{F, G\}) = (\neg Ap \supset k_p) \land k_p$, where a_ϕ and k_ϕ are new atoms. Here we introduce a set of new atoms k_ϕ and a_ϕ for each formula $\phi \in Atom(T)$ and $\psi \in Atom(A(T))$. Intuitively, the new atom k_ϕ (resp. a_ϕ) will be used to encode containment of the formula ϕ in $K(M)$ (resp. $A(M)$) of a GK model M for T.

Given a propositional formula ϕ and an atom a, we use ϕ^a to denote the propositional formula obtained from ϕ by replacing each occurrence of an atom p with a new atom p^a with respect to a. These formulas and new atoms will later be used in our main translation to perform the minimality check of the logic of GK's semantics.

We now stepwise work our way towards the main result. We start out with a result that relates a pure GK theory to
a propositional formula that will later reappear in our main translation.

Proposition 1 Let T be a pure GK theory. A Kripke interpretation M is a model of T if and only if there exists a model I^* of the propositional formula Φ_T where

$$\Phi_T = t^p(T) \land \Phi_{snd} \land \Phi^K_{\text{wit}} \land \Phi^A_{\text{wit}}$$

with

$$\Phi_{snd} = \bigwedge_{\phi \in \text{Atom}_K(T)} (k_{\phi} \supset \phi^k) \land \bigwedge_{\phi \in \text{Atom}_A(T)} (a_{\phi} \supset \phi^a)$$

$$\Phi^K_{\text{wit}} = \bigwedge_{\psi \in \text{Atom}_K(T)} (\neg k_{\psi} \supset \Phi^K_{\psi})$$

$$\Phi^A_{\text{wit}} = \bigwedge_{\psi \in \text{Atom}_A(T)} (\neg a_{\psi} \supset \Phi^A_{\psi})$$

$$\Phi^K_{\psi} = \neg \psi^{k^{k_{\psi}}} \land \bigwedge_{\phi \in \text{Atom}_K(T)} (k_{\phi} \supset \phi^{k_{\phi}})$$

$$\Phi^A_{\psi} = \neg \psi^{a_{\psi}} \land \bigwedge_{\phi \in \text{Atom}_A(T)} (a_{\phi} \supset \phi^{a_{\phi}})$$

such that

- $K(M) \cap \text{Atom}_K(T) = \{ \phi \mid \phi \in \text{Atom}_K(T), I^* \models k_{\phi} \}$;
- $A(M) \cap \text{Atom}_A(T) = \{ \phi \mid \phi \in \text{Atom}_A(T), I^* \models a_{\phi} \}$.

The proposition examines the relationship between models of a pure GK theory and particular models of the propositional formula Φ_T. The first conjunct $t^p(T)$ of the formula Φ_T indicates that the k-atoms and a-atoms in I^* can be interpreted in accordance with $K(M)$ and $A(M)$ such that $I^* \models t^p(T)$ iff M is a model of T. The soundness formula Φ_{snd} achieves the sets $\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_{\phi} \}$ and $\{ \phi \mid \phi \in \text{Atom}_A(T) \text{ and } I^* \models a_{\phi} \}$ are consistent. The witness formulas $\Phi^K_{\text{wit}}, \Phi^A_{\text{wit}}$ indicate that, if $I^* \models \neg k_{\phi}$ for some $\psi \in \text{Atom}_K(T)$ (resp. $\psi \in \text{Atom}_A(T)$) then there exists a model I' of $K(M)$ (resp. $A(M)$) such that $I' \models \neg \psi$, where I' is explicitly indicated by newly introduced $p^{k_{\phi}}$ (resp. $p^{a_{\phi}}$) atoms. So intuitively, if a formula is not known (or not assumed), then there must be a witness for this. The condition is necessary: for instance, the set $\{k_p, k_q, k_{p \land q}\}$ satisfies the formula $(k_{p \land q} \supset k_p) \land (k_{p \land q} \supset k_q)$, however, since $K(M)$ is a theory there does not exist a Kripke interpretation M such that $p \in K(M), q \in K(M)$ and $p \land q \notin K(M).

Example 1 (Continued) Formula $\Phi_{\{F\}}$ is given by:

$$t^p(\{F\}) = \neg \psi \supset k_p$$

$$\Phi_{snd}(\{F\}) = (k_p \supset \psi^k) \land (a_{\psi} \supset \neg \psi^a)$$

$$\Phi^K_{\text{wit}}(\{F\}) = \neg k_p \supset (\neg \psi \supset \neg \psi^k)$$

$$\Phi^A_{\text{wit}}(\{F\}) = \neg a_{\psi} \supset (\neg \psi \supset \neg \psi^a)$$

Formula $\Phi_{\{F,G\}}$ is given by:

$$t^p(\{F,G\}) = (\neg a_{\psi} \supset k_p) \land k_{p \supset \neg p^g}$$

$$\Phi_{snd}(\{F,G\}) = \Phi_{snd}(\{F\}) \land (k_{p \supset \neg p^g})$$

$$\Phi^K_{\text{wit}}(\{F,G\}) = (\neg k_p \supset \Phi^K_{\psi}) \land (\neg k_p \supset \Phi^K_p)$$

$$\Phi^A_{\text{wit}}(\{F,G\}) = \Phi^A_{\text{wit}}(\{F\})$$

$$\Phi^K_p = \neg \psi \supset \psi^k \land (k_p \supset \psi^k) \land (k_{p \supset \neg p^g})$$

$$\Phi^K_{p \supset} = \neg \psi \supset \psi^k \land (k_p \supset \psi^k) \land (k_{p \supset \neg p^g})$$

where $p^k, p^a, p^{k_{\psi}}, p^{a_{\psi}}$, and $p^{k_{p \supset}}$ are new atoms. Note that formula $\Phi_{snd}(\{F,G\})$ prevents a model that satisfies both k_p and $k_{p \supset}$.

While Proposition 1 aligns Kripke models and propositional models of the translation, there is yet no mention of GK's typical minimization step. This is the task of the next result, which extends the above relationship to GK models.

Proposition 2 Let T be a pure GK theory. A Kripke interpretation M is a GK model of T if and only if there exists a model I^* of the propositional formula Φ_T such that

- $K(M) = A(M) = \text{Th}(\{ \phi \mid \phi \in \text{Atom}_K(T), I^* \models k_{\phi} \})$;
- for each $\psi \in \text{Atom}_A(T)$,

$$I^* = a_{\psi} \iff \psi \in \text{Th}(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_{\phi} \})$$

- there does not exist another model I^* such that

$$I^* \cap \{a_{\psi} \mid \phi \in \text{Atom}_A(T) \} = I^* \cap \{a_{\psi} \mid \phi \in \text{Atom}_A(T) \} \subseteq I^* \cap \{k_{\phi} \mid \phi \in \text{Atom}_A(T) \}$$

Example 1 (Continued) Clearly the intended reading of our running example $\{F\}$ is that there is no reason to assume that p is false, and the default lets us conclude that we know p. This is testified by the partial interpretation $I^* = \{ \neg a_{p, \neg p}, k_p, p^{k_{\psi}}, \neg p^a, \neg p^\psi \}$ (the remaining atoms are not relevant). It is easy to see that I^* is a model for $\Phi_{\{F\}}$, and there is no model I^* with the properties above. Now $k_p \in I^*$ shows that p is known in the corresponding GK model.

Similarly, G provides a reason to assume that p is false and $\{F,G\}$ concludes that we know $\neg p$. Consider the partial interpretation $I^* = \{ \neg a_{p, \neg p}, k_p, \neg p^a, \neg p^\psi, \neg p^{k_{\psi}} \}$, it specifies a model for $\Phi_{\{F,G\}}$ and there is no model I^* with the properties above. In particular, $k_{p \supset} \in I^*$ shows that $\neg p$ is known in the corresponding GK model.

In Proposition 2, we only need to consider a Kripke interpretation M such that $A(M) \cup K(M)$ is consistent. This means that formula Φ_T can be modified to Ψ_T where

$$\Psi_T = t^p(T) \land \Psi_{snd} \land \Psi^K_{\text{wit}} \land \Psi^A_{\text{wit}}$$

with

$$\Psi_{snd} = \bigwedge_{\phi \in \text{Atom}_K(T)} (k_{\phi} \supset \phi) \land \bigwedge_{\phi \in \text{Atom}_A(T)} (a_{\phi} \supset \phi)$$

$$\Psi^K_{\text{wit}} = \bigwedge_{\psi \in \text{Atom}_K(T)} (\neg k_{\psi} \supset \Psi^K_{\psi})$$

$$\Psi^A_{\text{wit}} = \bigwedge_{\psi \in \text{Atom}_A(T)} (\neg a_{\psi} \supset \Psi^A_{\psi})$$

$$\Psi^K_{\psi} = \neg \psi^{k_{\psi}} \land \bigwedge_{\phi \in \text{Atom}_K(T)} (k_{\phi} \supset \phi^{k_{\phi}}) \land \bigwedge_{\phi \in \text{Atom}_A(T)} (a_{\phi} \supset \phi^{a_{\phi}})$$

$$\Psi^A_{\psi} = \neg \psi^{a_{\psi}} \land \bigwedge_{\phi \in \text{Atom}_K(T)} (k_{\phi} \supset \phi^{k_{\phi}}) \land \bigwedge_{\phi \in \text{Atom}_A(T)} (a_{\phi} \supset \phi^{a_{\phi}})$$
So the soundness formula Ψ_{and} actually becomes easier, since soundness of knowledge and assumptions is enforced for one and the same vocabulary (the one from the original theory). The witness formulas become somewhat more complicated, as the witnesses have to respect both the knowledge as well as the assumptions of the theory. This is best explained by consulting our running example again.

Example 1 (Continued) While F’s propositionalization $tr_p(\{F\})$ stays the same, the soundness and witness formulas change in the step from formula $\Phi_{|F|}$ to formula $\Psi_{|F|}$.

We only show the first conjunct of the witness formula Ψ_{wit}, which is given by

$$\neg k_p \supset (\neg p^k \land (k_p \lor p^k) \land (a \land \neg p^k))$$

Intuitively, the formula expresses that whenever p is not known, then there must be a witness, that is, an interpretation where p is false. Since the witnessing interpretations could in principle be distinct for each K-atom, they have to be indexed by the respective K-atom they refer to, as in p^k. Of course, the witnesses have to obey all that is known and assumed, which is guaranteed in the last two conjuncts.

Using this new formula, the result of Proposition 2 can be restated.

Proposition 3 Let T be a pure GK theory. A Kripke interpretation M is a GK model of T if and only if there exists a model I^* of the propositional formula $\Psi_{T'}$ such that

- $K(M) = A(M) = Th(\{\phi | \phi \in Atom_K(T), I^* \models k_\phi\})$;
- for each $v \in Atom_A(T)$, we have that $I^* \models a_\phi$ implies $\psi \in Th(\{\phi | \phi \in Atom_K(T) \land I^* \models k_\phi\})$
- there does not exist another model I'^* of $\Psi_{T'}$ such that $I'^* \cap \{a_\phi | \phi \in Atom_A(T)\} = I^* \cap \{a_\phi | \phi \in Atom_A(T)\}$ $I'^* \cap \{k_\phi | \phi \in Atom_K(T)\} \subseteq I^* \cap \{k_\phi | \phi \in Atom_K(T)\}$

We are now ready for our main result, translating a pure GK theory to a disjunctive logic program. First, we introduce some notations. Let T be a pure GK theory, we use $tr_{\text{nk}}(T)$ to denote the nested expression obtained from $\Psi_{T'}$ by first converting it to negation normal form,

\[
I'^* \cap \{a_\phi | \phi \in Atom_A(T)\} = I^* \cap \{a_\phi | \phi \in Atom_A(T)\}
\]

We use $\text{tr}_c(\phi)$ to denote the set of rules

\[
p_1 \land \ldots \land p_n \rightarrow q_1 \land \ldots \land q_m
\]

We use $\hat{\phi}$ to denote the propositional formula obtained from ϕ by replacing each occurrence of an atom p by a new atom $p^\hat{\phi}$.

We use T^* to denote the propositional formula obtained from the formula $\Phi_{T'}$ by replacing each occurrence of an atom p (except atoms in $\{a_\phi | \phi \in Atom_A(T)\}$) by a new atom $p^\hat{\phi}$. Intuitively, each atom that is not an a-atom is replaced by a new atom.

Notice that $tr_{\text{nk}}(T)$ is obtained from $\Psi_{T'}$ while T^* is obtained from $\Psi_{T'}$. Intuitively, by Proposition 3, $tr_{\text{nk}}(T)$ is used to restrict interpretations for introduced k-atoms and a-atoms so that these interpretations serve as candidates for GK models, and by Proposition 1, T^* constructs possible models of the GK theory which are later used to test whether these models prevent the candidate to be a GK model.

Inspired by the linear translation from parallel circumscriptio into disjunctive logic programs by Janhunen and Oikarinen [2004], we have the following theorem.

Theorem 1 Let T be a pure GK theory. A Kripke interpretation M is a GK model of T if and only if there exists an answer set S of the logic program $tr_{\text{lp}}(T)$ in Figure 1 with

\[
K(M) = A(M) = Th(\{\phi | \phi \in Atom_K(T) \land k_\phi \in S\})
\]

The intuition behind the construction is as follows:

- (1) and (2): I^* is a model of the formula $\Psi_{T'}$.
- (3–8): if there exists a model I'^* of the formula $\Psi_{T'}$ with $I'^* \cap \{a_\phi | \phi \in Atom_A(T)\} = I^* \cap \{a_\phi | \phi \in Atom_A(T)\}$ $I'^* \cap \{k_\phi | \phi \in Atom_K(T)\} \subseteq I^* \cap \{k_\phi | \phi \in Atom_K(T)\}$, then there exists a subset S' constructed from new atoms in $tr_c(T^*)$ (which is a copy of the formula $\Psi_{T'}$ with same a_ϕ for each $\phi \in Atom_A(T)$) and c_ϕ for some $\phi \in Atom_K(T)$ such that S' satisfies rules (3) to (8) and $u \notin S'$.
- (9) and (10): if there is such a set S' then it is the least set containing u, all $p^\hat{\phi}$’s and c-atoms.
- (11): such a set S' should not exist. (See item 3 in Proposition 3.)
- (12) and (13): if there exists a model of the formula $\land_{\phi \in Atom_K(T)}(k_\phi \lor \hat{\phi}) \land \land_{\phi \in Atom_A(T)}(a_\phi \lor \hat{\phi})$, then v should not occur in the minimal model of the program.
- (14): $\land_{\phi \in Atom_K(T)}(k_\phi \lor \hat{\phi}) \land \land_{\phi \in Atom_A(T)}(a_\phi \lor \hat{\phi})$ should not be consistent. (This is necessary by item 2 in Proposition 3.)

Given a model S of the logic program $tr_{\text{lp}}(T)$, the new atom u is used to indicate that the model I^*_u of $\Psi_{T'}$ w.r.t. S (specified by (1) and (2)) satisfies item 3 in Proposition 3. Specifically, if I^* does not satisfy item 3, then there exists a subset S^* of $p^\hat{\phi}$’s and c-atoms that satisfies (3) to (8). If in addition $u \notin S^*$, then there exists a subset of S that satisfies all rules in $tr_{\text{lp}}(T)$ except (11), thus S cannot be an answer set of $tr_{\text{lp}}(T)$. Similarly, v is used to indicate that I^* satisfies item 2 in Proposition 3. Specifically, if $I^* \land \land_{\phi \in Atom_K(T)}(k_\phi \lor \hat{\phi}) \land \land_{\phi \in Atom_A(T)}(a_\phi \lor \hat{\phi})$ is satisfiable, thus there exists a subset S of \hat{p}’s that satisfies (12). If in addition $v \notin \hat{S}$, then there exists a subset of S that satisfies all rules in $tr_{\text{lp}}(T)$ except (14), thus S cannot be an answer set of $tr_{\text{lp}}(T)$.
Example 1 (Continued) For our running example theory \(F \) with \(F = \neg A \lor \neg B \lor C \), we find that the logic program translation \(tr_{lp}(\{F\}) \) has a single answer set \(S \) with \(k_1 \in S \). Thus by Theorem 1 we can conclude that the GK theory \(\{F\} \) has a single GK model \(M \) in which \(K(M) = Th(\{p\}) \). Likewise, the logic program \(tr_{lp}(\{F,G\}) \) has a single answer set \(S' \) with \(k_{p} \in S' \), whence \(\{F,G\} \) has a single GK model \(M' \) in which \(K(M') = Th(\{p,G\}) \).

Computational complexity We have seen in the preliminaries section that disjunctive logic programs can be modularly and equivalently translated into pure formulas of the logic of GK. Conversely, Theorem 1 shows that pure GK formulas can be equivalently translated into disjunctive logic programs. Eiter and Gottlob showed that the problem of deciding whether a disjunctive logic program has an answer set is \(\Sigma^p_2 \)-complete [Eiter and Gottlob, 1995]. In combination, these results yield the following straightforward complexity result for the satisfiability of pure GK.

Proposition 4 Let \(T \) be a pure GK theory. The problem of deciding whether \(T \) has a GK model is \(\Sigma^p_2 \)-complete.

We remark that the hardness of disjunctive logic programs stems from so-called head cycles (at least two atoms that mutually depend on each other and occur jointly in some rule head). It is straightforwardly checked that our encoding creates such head cycles, for example the head of rule (8) contains the cycle induced by rules (7) and (10).

Implementation

We have implemented the translation of Theorem 1 into a working prototype gk2dlp. The program is written in Prolog and uses the disjunctive ASP solver claspD-2 [Gebser, Kaufmann, and Schaub, 2013], which was ranked first place in the 2013 ASP competition.3

Our prototype is the first implementation of the (pure) logic of GK to date. The restriction to pure formulas seems harmless since all known applications of the logic of GK use only pure formulas. We remark that gk2dlp implements default and autoepistemic logics such that input and target language are of the same complexity.

Evaluation To have a scalable problem domain and inspired by dl2asp [Chen et al., 2010], we chose the fair division problem [Bouveret and Lang, 2008] for experimental evaluation. An instance of the fair division problem consists of a set of agents, a set of goods, and for each agent a set of constraints that intuitively express which sets of goods the agent is willing to accept. A solution is then an assignment of goods to agents that is a partition of all goods and satisfies all agents’ constraints. Bouveret and Lang [2008] showed that the problem is \(\Sigma^p_2 \)-complete, and can be naturally encoded in default logic.

We created random instances of the fair division problem with increasing numbers of agents and goods. We then applied the translation of [Bouveret and Lang, 2008], furthermore the translation from default logic into the logic of GK, then invoked gk2dlp to produce logic programs and finally used gringo 3.0.3 and claspD version 2 (revision 6814) to compute all answer sets of these programs, thus all extensions of the original default theory corresponding to all solutions of the problem instance. The experiments were conducted on a Lenovo laptop with an Intel Core i3 processor with 4 cores and 4GB of RAM running Ubuntu 12.04. We recorded the size of the default theory, the size of the translated logic program, the translation time and the solving time, as well as the number of solutions obtained. We started out with 2 agents and 2 goods, and stepwise increased these numbers towards 6. For each combination in \((a, g) \in \{2, \ldots, 6\} \times \{2, \ldots, 6\}\), we tested 20 randomly generated instances. Random generation here means that we create agents’ preferences by iteratively drawing random subsets of goods to add to an agent’s acceptable subsets with probability \(P\), where \(P\) is initialized with 1 and discounted by the factor \(\frac{1}{2^{a-1}}\) for each subset that has been drawn.

In accordance with our theoretical predictions, we observed that the increase in size from GK formula to logic program is indeed polynomial (albeit with a low exponent). The plot on the right (Figure 2) shows the solving time in relation to the size of the default theory, where the time axis is logarithmic. We can see that the runtime behavior of gk2dlp is satisfactory. We acknowledge however that the runtimes we measured are not competitive with those reported by Chen et al. [2010] for dl2asp. However, a direct comparison of the two systems is problematic for a number of reasons. First of all, the system dl2asp is not publicly available to the best of our knowledge. Furthermore, Chen et al. [2010] do not describe how they create random instances of the fair division problem, so we cannot compare the runtimes they report and the ones we measured. Finally, dl2asp is especially engineered for default logic, and it is not clear how their approach can be generalized to other languages, for example Turner’s logic of universal causation. In general, the approaches to translation that are followed by dl2asp and gk2dlp are completely different: dl2asp translates a \(\Sigma^P_2\)-complete problem to an NP-complete problem using a translation in \(\Delta^P_2\). Our system gk2dlp translates a \(\Sigma^P_2\)-complete problem into another \(\Sigma^P_2\)-complete problem using a translation that can be computed in polynomial time.

Applications We see immediate applicability of the translation of the present paper to several areas. Reiter [1987] provided a theory of diagnosis from first principles, and showed how default logic can be used as an implementation device. Cadoli, Eiter, and Gottlob [1994] proposed to use default logic as an expressive query language on top of relational databases, and gave an example of achieving strategic behavior in an economic setting. In reasoning about actions, Thielescher [1996] used default logic to solve the qualification problem of dealing with unexpected action failures. Martin and Thielescher [2001] later provided an implementation of that approach where extensions are enumerated.

\[\text{Figure 2: Solving time (log scale) with respect to default theory size.} \]

Related work The translation presented in this paper is a generalization of the one presented for Turner’s logic of universal causation by Ji and Lin [2013]. We chose the logic of GK as general nonmonotonic language, we could also have chosen the logic of minimal belief and negation as failure [Lifschitz, 1994], the logic of here-and-there [Heyting, 1930] or the nonmonotonic modal logic S4F [Schwarz and Truszczyński, 1994]. In terms of implementations, there are few approaches that treat as broad a range of propositional nonmonotonic knowledge representation languages as gk2dlp. Notable exceptions are the works of Junker and Konolige [1990], who implemented both autoepistemic and default logics by translating them to truth maintenance systems; Niemelä [1995], who provides a decision procedure for autoepistemic logic which also incorporates extension semantics for default logics; and Rosati [1999], who provides algorithms for Lifschitz’ logic of minimal belief and negation as failure [1994]. Other approaches are restricted to specific languages, where default logic seems to be most popular. The recent system dl2asp [Chen et al., 2010] translates default theories to normal (non-disjunctive) logic programs; the translation figures out all implication relations between formulas occurring in the default theory, just as Junker and Konolige [1990] did. The authors of dl2asp [Chen et al., 2010] already observed that default logic and disjunctive logic programs are of the same complexity; they even stated the search for a polynomial translation from the former to the latter (that we achieved in this paper) as future work. Gadel [Nicolas, Saubion, and Stéphan, 2010] presented a method for default reasoning in action theories, that is, an approach to the question what normally holds in a dynamic domain. Our translation yields an implementation of their approach, something that they stated as future work and later achieved to a limited extent (for a restricted sublanguage of their framework [Strass, 2012]). In a similar vein, Pagnucco et al. [2013] looked at belief change in the situation calculus and proposed an implementation based on default logic with preferences [Brewka, 1994; Delgrande and Schaub, 2000].

Discussion

We have presented the first translation of pure formulas of the logic of GK to disjunctive answer set programming. Among other things, this directly leads to implementations of Turner’s logic of universal causation as well as implementations of default and autoepistemic logics under different semantics. We have prototyped this translation and experimentally analysed its performance, which we found to be satisfactory given the system’s generality.

In the future, we plan to integrate further nonmonotonic reasoning formalisms. This is more or less straightforward due to the generality of this work: to implement a language, it suffices to provide a translation into pure formulas of GK, then Theorem 1 of this paper does the rest. Particular formalism we want to look at are default logics with preferences [Brewka, 1994; Delgrande and Schaub, 2000] and the logic of only-knowing [Lakemeyer and Levesque, 2005]. It also seems worthwhile to check whether our translation can be adapted to the nonmonotonic modal logic S4F [Schwarz and Truszczynski, 1994; Truszczynski, 2007], that has only one modality instead of two. We finally plan to study the approaches mentioned as applications in the previous section to try out our translation and implementation on agent-oriented AI problems.

References

Strass, H. 2012. The draculaps system: Default reasoning about actions and change using logic and answer set programming. In *NMR*.

Appendix

Proof of Proposition 1:

\[\Rightarrow:\] Let \(M \) be a model of \(T \), \(I_1 \subseteq \text{Lit} \) a model of \(K(M) \), and \(I_2 \subseteq \text{Lit} \) a model of \(A(M) \). Clearly, for each \(\phi \in \text{Atom}_K(T) \), if \(\phi \in K(M) \) then \(I_1 \models \phi \); if \(\phi \notin K(M) \) then there exists a model \(I' \) of \(K(M) \) such that \(I' \models \neg \phi \). Same results are established for each \(\phi \in \text{Atom}_A(T) \).

Then, we can create an interpretation \(I^* \) such that

\[
I^* = \{ k| I \in I_1 \} \cup \{ \mu| I \in I_2 \} \]

\[\cup \{ k | \phi \in \text{Atom}_K(T) \cap K(M) \}\]

\[\cup \{ a | \phi \in \text{Atom}_A(T) \cap A(M) \}\]

\[\cup \{ \neg k | \phi \in \text{Atom}_K(T) \text{ and } \phi \notin K(M) \}\]

\[\cup \{ \neg a | \phi \in \text{Atom}_A(T) \text{ and } \phi \notin A(M) \}\]

\[\cup \{ \mu | \phi \in \text{Atom}_A(T) \text{ and } \phi \notin A(M) \}\]

\[\cup \{ \mu | I \in I' \text{, } I' \text{ is a model of } K(M) \text{ and } \neg \psi \} \]

\[\cup \{ \mu | I \in I', I' \text{ is a model of } A(M) \text{ and } \neg \psi \} \]

It is easy to verify that \(I^* \) is a model of \(\Phi_T \) and

- \(K(M) \cap \text{Atom}_K(T) = \{ \phi \mid \phi \in \text{Atom}_K(T), I^* \models k_0 \} \)
- \(A(M) \cap \text{Atom}_A(T) = \{ \phi \mid \phi \in \text{Atom}_A(T), I^* \models a_0 \} \).

\[\Leftarrow:\] Let \(I^* \) be a model of \(\Phi_T \). We can create a Kripke interpretation \(M \) such that

- \(K(M) = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_0 \}) \)
- \(A(M) = Th(\{ \phi \mid \phi \in \text{Atom}_A(T) \text{ and } I^* \models a_0 \}) \).

Note that, \(\{ l \in \text{Lit} \mid I^* \models l \} \) is a model of \(K(M) \) and \(\{ l \in \text{Lit} \mid I^* \models l^* \} \) is a model of \(A(M) \), then both \(K(M) \) and \(A(M) \) are consistent.

For each \(\phi \in \text{Atom}_K(T) \), if \(I^* \models k_0 \) then \(\phi \in K(M) \); if \(I^* \models \neg k_0 \) then there exists a model \(I' = \{ l \in \text{Lit} \mid I^* \models l^* \} \) such that \(I' \) is a model of \(K(M) \) and \(I' \models \neg \phi \), thus \(\phi \notin K(M) \). So \(I^* \models k_0 \) iff \(\phi \in K(M) \).

The same result is established for each \(\phi \in \text{Atom}_A(T) \).

Note that, \(I^* \models tr_p(T) \) then \(M \) is a model of \(T \).

Proof of Proposition 2:

\[\Rightarrow:\] Let \(M \) be a GK model of \(T \). From the proof of Proposition 1, we can create a model \(I^* \) of \(\Phi_T \). Now we want to prove that \(I^* \) satisfies all conditions in the proposition.

From Theorem 3.5 in [Lin and Shoham, 1992], \(K(M) = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \cap K(M) \}) \), \(K(M') = A(M') = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_0 \}) \).

Assume that there exists another model \(I'^* \) of \(\Phi_T \) with

\[I'^* \cap \{ a_0 | \phi \in \text{Atom}_A(T) \} = I^* \cap \{ a_0 | \phi \in \text{Atom}_A(T) \}\]

\[I'^* \cap \{ k_0 | \phi \in \text{Atom}_K(T) \} \subseteq I^* \cap \{ k_0 | \phi \in \text{Atom}_K(T) \}\]

Then, from Proposition 1, there exists a Kripke interpretation \(M' \) such that \(K(M') = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I'^* \models k_0 \}) \), \(A(M') = A(M) \), and \(M' \) is a model of \(T \). Note that, for each \(\phi \in \text{Atom}_K(T) \), \(I'^* \models \neg \phi \) implies \(K(M') \models \neg \phi \), then \(K(M') \subseteq K(M) \). From the definition of GK models, there does not exist such a model \(M' \), which conflicts to the assumption, then there does not exist such a model \(I'^* \).

From the construction of \(I^* \), for each \(\psi \in \text{Atom}_A(T) \), \(I^* \models a_0 \) iff \(\psi \in \text{Atom}_A(T) \). Note that, \(K(M) = A(M) = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_0 \}) \), then \(I^* \models a_0 \) iff \(\psi \in Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_0 \}) \).

So \(I^* \) is a model of \(\Phi_T \) which satisfies all conditions in the proposition.

\[\Leftarrow:\] Let \(I^* \) be a model of \(\Phi_T \) which satisfies corresponding conditions in the proposition. We can create a Kripke interpretation \(M \) such that \(K(M) = A(M) = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_0 \}) \).

From the third condition in the proposition, \(I^* \models a_0 \) iff \(\phi \in K(M) \) for each \(\phi \in \text{Atom}_A(T) \). Then \(A(M) \cap \text{Atom}_A(T) = \{ \phi | \phi \in \text{Atom}_A(T) \text{ and } I^* \models a_0 \} \). From the proof of Proposition 1, \(M \) is a model of \(T \) and \(I^* \models k_0 \) (resp. \(I^* \models a_0 \) iff \(\phi \in K(M) \) for each \(\phi \in \text{Atom}_K(T) \) (resp. \(\phi \in \text{Atom}_A(T) \)). Now we want to prove that \(M \) is a GK model of \(T \).

Assume that there exists another model \(M' \) of \(T \) such that \(A(M') = A(M) \) and \(K(M') \subseteq K(M) \). Note that \(K(M) = Th(\{ \phi \mid \phi \in \text{Atom}_K(T) \text{ and } I^* \models k_0 \}) \), then \(K(M') \cap \text{Atom}_K(T) \subseteq K(M) \cap \text{Atom}_K(T) \).
Let $I = I^* \cap \{ l \in \text{Lit} \}$, clearly, I is a model of $K(M), A(M),$ and $K(M')$. We can construct another model I''' of Φ_T as

$$I''' = \{ l \in I \} \cup \{ l' \mid l \in I \}$$

$$\cup \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(M') \}$$

$$\cup \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(M) \}$$

$$\cup \{ -k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(M) \}$$

$$\cup \{ -a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(M) \}$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(K(T))} \{ k_{c_{\psi}} \mid l \in I \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(A(T))} \{ a_{c_{\psi}} \mid l \in I \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(K(T))} \{ l \mid l \in I' \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(A(T))} \{ l' \mid l \in I' \} \right)$$

From the proof of Proposition 1, I''' is a model of Φ_T and

$$I''' = \{ l \in I' \} \cup \{ l' \mid l \in I' \}$$

$$\cup \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(M') \}$$

$$\cup \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(M) \}$$

$$\cup \{ -k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(M) \}$$

$$\cup \{ -a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(M) \}$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(K(T))} \{ k_{c_{\psi}} \mid l \in I \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(A(T))} \{ a_{c_{\psi}} \mid l \in I \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(K(T))} \{ l \mid l \in I' \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(A(T))} \{ l' \mid l \in I' \} \right)$$

This conflicts to the second condition in the proposition, then the assumption is not valid. So there does not exist another model M' of T such that $A(M') = A(M)$ and $K(M') \subseteq K(M)$, thus M is a G.K model of T. ■

Proof of Theorem 1:

\Rightarrow: Let M be a G.K model of T. From Proposition 3, there exists a model I^* of Ψ_T such that $K(M) = A(M) = \text{Th}(\{ \phi \mid \phi \in \text{Atom}_{K(T)}(M) \} \cup \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(M) \})$. We can create a set S of literals as $S = I^* \cup \{ u, v \}$. Clearly, S satisfies each rule in $tr_{IP}(T)$. Now we want to prove that S is an answer set of the program.

Assume that S is not an answer set of $tr_{IP}(T)$, then there exists another set $S' \subseteq S$ such that S' satisfies each rule in the reduct $tr_{IP}(T)^S$. Note that, $I^* \subseteq S'$, u implies p^* for each new atom p^* occurring in $tr_{IP}(T^*)$ and v implies $\exists \phi \in \text{Atom}(T)$. Then there are only two possible cases: $u \notin S'$ or $v \notin S'$.

Case 1: $u \notin S'$, then there exists a set $T = S' \cap \{ \exists \phi \mid \phi \in \text{Atom}(T) \}$ such that T satisfies $tr_{IP}(T)$. For each $\phi \in \text{Atom}(T)$,

- by rules $u \leftarrow c_{\phi}, \text{not } k_{\phi}, I^* \leftarrow \text{not } k_{\phi}$ implies $c_{\phi} \notin S'$;
- by the rule $u \leftarrow k_{\phi}, \text{not } k_{\phi}, I^* \leftarrow \text{not } k_{\phi}$ implies $k_{\phi} \notin S'$;
- by rules $u \leftarrow c_{\phi}, k_{\phi}^*, \text{not } k_{\phi}$ and $u; \text{not } k_{\phi}, k_{\phi}^* \leftarrow \text{not } k_{\phi}.$

$I^* \leftarrow k_{\phi}$ implies either c_{ϕ} or k_{ϕ}^* is in S' but not both;

$\text{by the rule } u; c_{\phi^*} \cdots c_{\phi_m} \leftarrow T,$ there exists $c_{\psi} \in S'$ for some $\psi \in \text{Atom}_{K(T)}(T)$.

So there exists $\psi \in \text{Atom}_{K(T)}(T)$ such that $k_{\psi} \in S'$, $c_{\psi} \in S'$ and $k_{\psi}^* \notin S'$. Then we could create an interpretation I'' as

$$I'' = \{ p \mid p \in \text{Atom} \} \cup \{ \text{not } p \mid \text{not } p \in \text{Atom} \}$$

$$\cup \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(T) \}$$

$$\cup \{ -k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(T) \}$$

$$\cup \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(T) \}$$

$$\cup \{ -a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(T) \}$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(K(T))} \{ p_{\psi} \mid \psi \in S' \} \right)$$

$$\cup \left(\bigcup_{\psi \in \text{Atom}(A(T))} \{ p_{\psi} \mid \psi \in S' \} \right)$$

Clearly, I'' is a model of Ψ_T. From the above results,

- $I'' \cap \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(T) \} = I^* \cap \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(T) \}$, and
- $I'' \cap \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(T) \} \subseteq I^* \cap \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(T) \}$.

From Proposition 3, such I'' does not exist. This conflicts to the assumption, then Case 1 is impossible.

Case 2: $v \notin S'$, then there exists a set $U = S' \cap \{ \exists \phi \mid \phi \in \text{Atom}(T) \}$ such that U satisfies each rule in $tr_{IP}(T)$.

Then there exists $\psi \in \text{Atom}_{A(T)}(T)$ such that $I^* \leftarrow a_{\psi}$ and there exists an interpretation $I \subseteq \text{Lit}$ such that $I \models \text{Th}(\{ \phi \mid \phi \in \text{Atom}_{K(T)}(T) \} \cup \{ \phi \mid \phi \in \text{Atom}_{A(T)}(T) \})$.

\Leftarrow: Let S be an answer set of $tr_{IP}(T)$. We can create an interpretation I^* as the intersection of S with the set of atoms occurring in Ψ_T. Clearly, I^* is a model of Ψ_T.

Similar to the above proof: If there exists another model I''' of Ψ_T such that $I''' \cap \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(T) \} = I^* \cap \{ a_{\phi} \mid \phi \in \text{Atom}_{A(T)}(T) \}$

$$I''' \cap \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(T) \} \subseteq I^* \cap \{ k_{\phi} \mid \phi \in \text{Atom}_{K(T)}(T) \}$$

then there exists another set S'' such that S'' satisfies each rule in the reduct $tr_{IP}(T)^S$ and $u \notin S'$, $v \notin S''$. This conflicts to the precondition that S is an answer set, then such a model I''' does not exist.

If there exists $\psi \in \text{Atom}_{A(T)}(T)$ such that $I^* \models a_{\psi}$ and $\psi \notin \text{Th}(\{ \phi \mid \phi \in \text{Atom}_{K(T)}(T) \} \cup \{ \phi \mid \phi \in \text{Atom}_{A(T)}(T) \})$ then there exists another set S' such that S' satisfies each rule in the reduct $tr_{IP}(T)^S$ and $u \notin S'$, $v \notin S''$. This conflicts to the precondition that S is an answer set, then such ψ does not exist.

From Proposition 3, a Kripke interpretation M such that $K(M) = A(M) = \text{Th}(\{ \phi \mid \phi \in \text{Atom}_{K(T)}(T) \} \cup \{ \phi \mid \phi \in \text{Atom}_{A(T)}(T) \})$ is a G.K models of T. ■