

Expressive Power of Combinatory Categorial Grammars

Combinatory Categorial Grammar How does a CCG work? • widely used in **computational linguistics** of categories • mildly context-sensitive grammar formalism efficiently parsable can be combined • constituency-based structures rooted in an **initial category Application Example** beled sets of derivation trees Mary likes musicals NP V Example for aⁿbⁿ NP VP • input alphabet $\Sigma = \{a, b\}$ • atomic categories $A = \{C, D\}$ • set of initial categories $I = \{C\}$ S • lexicon *L* with $L(a) = \{C/D, C/D/C\}$

Lena Katharina Schiffer

GRK 1763 Quantitative Logics and Automata

• **lexicon** associates each input symbol with a set

• rule system describes how adjoining categories

• derivation is sucessful if the derivation tree is

• accepted tree languages of a CCG are the rela-

• derivation trees are always **binary trees**

 $L(b) = \{D\}$

C/DC/D/CC/D

Rule System

Forward Rule

 $\frac{D/C/E/D \quad D/E\backslash C}{D/C/E/E\backslash C}$

What classes of tree languages can CCG accept?

Why is this question important?

For parsing natural languages, you want as much power as necessary to model linguistic structures but not more to limit parsing complexity.

Future Work

tree language expressivity of • CCG with **substitution rules** • weighted CCG

UNIVERSITÄT LEIPZIG

Backward Rule

 $\frac{C/D/E}{D\backslash C/E\backslash C}$

• 0-CCG \subseteq regular tree languages • 1-CCG = regular tree languages • k-CCG = tree adjoining languages