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Abstract. Manifold initiatives try to utilize the operational principles of
organisms and brains to develop alternative, biologically inspired comput-
ing paradigms. This paper reviews key features of the standard method
applied to complexity in the cognitive and brain sciences, i.e. decompo-
sitional analysis. Projects investigating the nature of computations by
cortical columns are discussed which exemplify the application of this
standard method. New findings are mentioned indicating that the con-
cept of the basic uniformity of the cortex is untenable. The claim is dis-
cussed that non-decomposability is not an intrinsic property of complex,
integrated systems but is only in our eyes, due to insufficient mathemat-
ical techniques. Using Rosen’s modeling relation, the scientific analysis
method itself is made a subject of discussion. It is concluded that the
fundamental assumption of cognitive science, i.e., cognitive and other
complex systems are decomposable, must be abandoned.

1 Introduction

During the last decade, the idea has gained popularity that time is ripe to build
new computing systems based on information processing principles derived from
the working of the brain. Thus, corresponding research programs have been
initiated by leading research organizations (see [1], and references therein).

Obviously, these research initiatives take for granted that the operational
principles of the brain as a complexly organized system are sufficiently known
to us, and that at least a qualitative concept is available which only needs to
be implemented into an operational, quantitative model. Tuning the model then
could be achieved since lots of empirical data are available, due to the ever-
improving experimental techniques of neuroscience.

Trying to put this idea into practice, however, has generally produced dis-
enchantment after high initial hopes and hype. If one rhetorically ask “What
is going wrong?”, possible answers are: (1) The parameters of our models are
wrong; (2) We are below some complexity threshold; (3) We lack computing
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power; (4) We are missing something fundamental and unimagined (see [2] for
related problems in robotics). In most cases, only answers (1)-(3) are considered
by computer engineers and allied neuroscientists, and appropriate conclusions
are drawn. If answer (1) is considered true, still better experimental methodolo-
gies are demanded to gather the right data, preferably at the molecular genetic
level [3]. Answers (2) and (3) often induce claims for concerted, intensified efforts
relating phenomena and data at many levels of brain organization [4].

Together, any of answers (1)-(3) would mean that there is nothing in principle
that we do not understand about brain organization. All the concepts and com-
ponents are present, and need only to be put into the model. This view is widely
taken; it represents the belief in the efficiency of the scientific method, and it
leads one to assume that our understanding of the brain will major advance as
soon as the ’obstacles’ are cleared away.

As I will show in this paper, there is, however, substantial evidence in favour of
answer (4). I will argue that, by following the standard scientific method, we are
in fact ignoring something fundamental, namely that biological and engineered
systems are basically different in nature.

2 The Standard Approach to Brain Complexity

There is general agreement that brains, even those of simple animals, are enor-
mously complex structures. At the first moment, it seems almost impossible
to cope with this complexity. Which methods and approaches should be used?
Brains are said to have fortunately - miraculously? - a property that allows us to
study them scientifically: they are organized in such a way that the specific tasks
they perform are largely constrained to different sub-regions. These regions can
be further subdivided in areas that perform sub-tasks [4,5,6,7].

A well-known exponent of this concept is Marr [8] who formulated much
of these ideas. In order to explain the human capacity of vision, he discussed
detection of contours, edges, surface textures and contrasts as sub-tasks. Their
results, he suggested, are combined to synthesize images, 2 1/2-D sketches and
the representation of form. This kind of approach has been also employed in other
areas of cognition such as language and motor control. Common assumption is
that human behavior and cognition can be partitioned into different functions,
each of which can be understood independently and with algorithms specific to
the area of study. Obviously, this strategy illustrates the standard method used
in science for explaining the properties and capacities of complex systems. It
consists in applying a decompositional analysis, i.e. an analysis of the system in
terms of its components or subsystems.

Since Simon’s The Sciences of the Artificial [9], decomposability of cognitive
and other complex systems has been accepted as fundamental for the Cogni-
tive and Computational Neuroscience (CCN). We call this the fundamental as-
sumption for CCN, for short: FACC. Simon [9], Wimsatt [10] and Bechtel and
Richardson [11] have spent much work to elaborate this concept. They consider
decomposability a continously varying system property, and state, roughly, that
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systems fall on a continuum from aggregate (full decomposable) to integrated
(non-decomposable). The FACCN states that real systems are non-ideal aggre-
gate systems; the capacities of the components are internally realized (strong
intra-component interactions), and interactions between components do not ap-
preciably contribute to the capacities; they are much weaker than the intra-
component interactions. Hence, the description of the complex system as a set
of weakly interacting components seems to be a good approximation. This prop-
erty of complex systems, which should have evolved through natural selection,
was called near-decomposability [9]. Simon characterizes near-decomposability as
follows: “(1) In a nearly decomposable system, the short-run behaviour of each
of the component subsystems is approximately independent of the short-run be-
haviour of the other components; (2) in the long run the behaviour of any one
of the components depends in only an aggregate way on the behaviour of the
other components” [9, p.100].

Thus, if the capacities of a near-decomposable system are to be explained, to
some approximation its components can be studied in isolation, and based on
their known interactions, their capacities eventually combined to generate the
system’s behavior. In CCN (and in other areas of science), the components of
near-decomposable systems are called modules. This term originates from Engi-
neering; it points at the assembly of a product from a set of building blocks with
standardized interfaces. Thus, modularization denotes the process of decompos-
ing a product into building blocks (modules) with specified interfaces, driven
by the designers interests and intended functions of the product. Modularized
systems are linear in the sense that they obey an analog of the superposition
principle of Linear System Theory in Engineering [13]. This principle represents
the counterpart of the decomposition analysis method which therefore is of-
ten denoted as reverse engineering method. A corresponding class of systems is
characterized in Mathematics by a theorem stating that for homogeneous linear
differential equations, the sum of any two solutions is itself a solution. The terms
linear and nonlinear are often used in this sense: linear systems are decomposable
into independent modules with negligible interactions while nonlinear systems
are not [13,14].

Applying this concept to the systems at the other end of the complexity
scale, the integrated systems are basically non-decomposable, due to the nonlin-
ear interactions involved. Thus, past or present states or actions of any or most
subsystems always affect the state or action of any or most other subsystems. In
practice, analyses of integrated systems nevertheless try to apply the method-
ology for decomposable systems, in particular if there is some hope that the
interactions can be linearized. Such linearizable systems were denoted above as
nearly decomposable. However, in the case of strong nonlinear interactions, we
must accept that decompositional analysis is not applicable to integrated sys-
tems. Their capacities depend in non-negligible way on the interaction between
components, and it is not possible to identify component functions contribut-
ing to the system capacity under study. The question then arises, should we
care about integrated systems, given the FACCN that all relevant systems are
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Fig. 1. View on decompositional analysis of brain and behavior. See text for details.

nearly decomposable? Non-decomposability then would be only in our eyes, and
not an intrinsic property of strongly nonlinear systems, and - as many cognitive
and computer scientists believe - scientific progress will provide us with the new
mathematical techniques required to deal with nonlinear systems. We will return
to this problem in Section 4.

In CCN, two types of componential analysis must be differentiated, i.e. func-
tional and structural decomposition (see [12] for a clear, intelligible exposition of
these matters). If one attempts to identify a set of functions performed by some
(as yet unspecified) structural components of the system, a functional analysis
is undertaken. Structural analysis involves to attempt to identify the structural,
material components of the system. Functional analysis and structural analysis
must be clearly differentiated, although in practice, there is a close interplay be-
tween them (as indicated by the arrows in Figure 1). Functional analysis should
also be differentiated from capacity analysis. The former is concerned with the
functions performed by components of the whole system which enable this whole
system to have certain capacities and properties. The latter is concerned with
the dispositions or abilities of the whole system, whereas functional and struc-
tural analysis is concerned with the functional and structural bases of those
dispositions or abilities.

Especially important in the present context is this caveat: There is no reason
to assume that functional and structural components match up one-to-one! Of
course, it might be the case that some functional components map properly onto
individual structural components - the dream of any cognitive scientist working
as reverse engineer. It is rather probable, however, for a certain functional com-
ponent to be implemented by non-localized, spatially distributed material com-
ponents. Conversely, a given structural component may implement more than
one distinct function. According to Dennett [15, p. 273]: “In a system as complex
as the brain, there is likely to be much ‘multiple, superimposed functionality’ ”.
With other words, we cannot expect specific functions to be mapped to struc-
turally bounded neuronal structures, and vice versa.
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3 Decompositional Brain Analysis

A guiding idea about the organization of the brain is the hypothesis of the colum-
nar organization of the cerebral cortex. It was developed mainly by Mountcastle,
Hubel and Wiesel, and Szenthágothai (e.g. [16,17,18]), in the spirit of the highly
influential paper “ The basic uniformity in structure of the neocortex” published
in 1980 by Rockel, Hiorns, and Powell [19]. According to this hypothesis (which
has been taken more or less as fact by many experimental as well as theoretical
neuroscientists), the neocortex is composed of building blocks of repetitive struc-
tures, the columns or neocortical microcircuits, and it is characterized by a basic
canonical pattern of connectivity. In this scheme all areas of neocortex would
perform identical or similar computational operations with their inputs.

Referring to and based on these works, several projects started recently, among
them the Blue Brain Project. It is considered to be “the first comprehensive at-
tempt to reverse-engineer the mammalian brain, in order to understand brain
function and dysfunction through detailed simulations” [20]. The central role in
this project play cortical microcircuits. As Maas and Markram [21] formulate,
it is a “tempting hypothesis regarding the computational role of cortical micro-
circuits ... that there exist genetically programmed stereotypical microcircuits
that compute certain basis functions.” Their paper well illustrates the modular
approach fostered, e.g. by [4,22,23]. The tenet is that there exist fundamental
correspondences among the anatomical structure of neuronal networks, their
functions, and the dynamic patterning of their active states.

Starting point is the ’uniform cortex’ with the cortical microcircuit or col-
umn as the structural component. The question for the functional component
is answered by assuming that there exists a one-to-one relationship between
the structural and the functional component (see Section 2). Experimental re-
sults confirming these assumptions are cited, but also some with contrary evi-
dence. Altogether the modularity hypothesis of the brain is considered to be both
structurally and functionally well justified. As quoted above, the goal is to sub-
stantiate the hypothesis ”that there exist genetically programmed stereotypical
microcircuits that compute certain basis functions”.

Let us consider the general structure of the decompositional analysis of the
cortex performed from computational point of view. In the modular approach,
the problem of the capacity to be analyzed often is not discussed explicitly.
Founding assumption of Cognitive Science is that “cognition is computation”,
i.e. the brain produces the cognitive capacities by computing functions. We know
from mathematical analysis and approximation theory that a continuous func-
tion f : R → R can be expressed by composition or superposition of basis
functions. This leads to the functional decomposition as follows: The basic func-
tions are computed by the structural components (cortical microcircuits), and
the composition rules are contained implicitly in the interconnection pattern of
the circuits.

Obviously, this type of approach simplifies the analysis very much. The ques-
tion is, however, Are the assumptions and hypotheses made appropriate, or must
they considered as too unrealistic?
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In fact, most of the underlying hypotheses have been questioned only recently.
To start with the assumptions about the structural and functional components
of the cortex, the notion of a basic uniformity in the cortex, with respect to
the density and types of neurons per column for all species, turned out to be
untenable (e.g. [24,25,26]). It has been impossible to find the cortical micro-
circuit that computes specific basis functions. No genetic mechanism has been
deciphered that designates how to construct a column. It seems that the col-
umn structures encountered in many species (but not in all) represent spandrels
(structures that arise non adaptively, i.e. as an epiphenomenon) in various stages
of evolution.

If we evaluate the modular approach as discussed above, it is obvious that
the caveat expressed in Section 2 has been largely ignored. There is evidence,
however, for a certain functional component to be implemented by spatially dis-
tributed networks and, vice versa, for a given structural component to implement
more than one distinct function. With other words, it is not feasible for specific
functions to be mapped to structurally bounded neuronal structures [24,25,26].
This means, although the column is an attractive idea both from neurobiological
and computational point of view, it cannot be used as an unifying principle for
understanding cortical function. Thus, it has been concluded that the concept
of the cortex as a large network of identical units should be replaced with the
idea that the cortex consists of large networks of diverse elements whose cellular
and synaptic diversity are important for computation [27,28,29]. It is worth to
notice that the reported claims for changes of the research concept belong to the
category of answers (1)-(3) to the question “What is going wrong?” (Section 1).
A more fundamental point of criticism is formulated in the spirit of answer (4);
it concerns the method of decompositional analysis itself and will be discussed
in the next section.

4 Salient Features of Complex, Integrated Systems

In Section 2, we concluded that integrated systems are basically not decompos-
able, thus resisting the standard analysis method. We raised the question, Should
we at all care about integrated systems, given the FACCN that all relevant sys-
tems are nearly decomposable? According to the prevalent viewpoint in CCN, non-
decomposability is not an intrinsic property of complex, integrated systems but is
only in our eyes, due to insufficient mathematical techniques (e.g. [5,30] ). Bechtel
and Richardson, instead, warn that the assumption according to which nature is
decomposable and hierarchical might be false: “There are clearly risks in assuming
complex natural systems are hierarchical and decomposable” [11, p. 27].

Rosen [31,32] has argued that understanding complex, integrated systems
requires that the scientific analysis method itself is made a subject of discussion.
A powerful method of understanding and exploring the nature of the scientific
method provides Rosen’s modeling relation. It is this relation by which scientists
bring “entailment structures into congruence” [31, p. 152]. What does this mean?

The modeling relation is the set of mappings shown in Figure 2 [33,34]. It
relates two systems, a natural system N and a formal system F , by a set of
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Fig. 2. Rosens Modeling Relation. A natural system N is modeled by a formal system
F . Each system has its own internal entailment structures (arrows 1 and 3), and the
two systems are connected by the encoding and decoding processes (arrows 2 and 4).
From .

arrows depicting processes and/or mappings. The assumption is that this dia-
gram represents the various processes which we are carrying out when we per-
ceive the world. N is a part of the physical world that we wish to understand (in
our case: organism, brain), in which things happen according to rules of causal-
ity (arrow 1). On the right, F represents symbolically the parts of the natural
system (observables) which we are interested in, along with formal rules of in-
ference (arrow 3) that essentially constitute our working hypotheses about the
way things work in N , i.e. the way in which we manipulate the formal system
to try to mimic causal events observed or hypothesized in the natural system
on the left. Arrow 2 represents the encoding of the parts of N under study into
the formal system F , i.e. a mapping that establishes the correspondence between
observables of N and symbols defined in F . Predictions about the behavior in F ,
according to F s rules of inference, are compared to observables in N through a
decoding represented by arrow 4. When the predictions match the observations
on N , we say that F is a successful model for N .

It is important to note that the encoding and decoding mappings are inde-
pendent of the formal and/or natural systems. In other words, there is no way to
arrive at them from within the formal system or natural system. That is, the act
of modeling is really the act of relating two systems in a subjective way. That re-
lation is at the level of observables; specifically, observables which are selected by
the modeler as worthy of study or interest. Given the modeling relation and the
detailed structural correspondence between our percepts and the formal systems
into which we encode them, it is possible to make a dichotomous classification
of systems into those that are simple or predicative and those that are com-
plex or impredicative. This classification can refer to formal inferential systems
such as mathematics or logic, as well as to physical systems. As Rosen showed
[33], a simple system is one that is definable completely by algorithmic method:
all the models of such a system are Turing-computable or simulable. When a
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single dynamical description is capable of successfully modeling a system, then
the behaviors of that system will, by definition, always be correctly predicted.
Hence, such a system will be predicative in the sense, that there will exist no
unexpected or unanticipated behavior. Simple systems are decomposable sensu
Simon [9](Section 2). This is the basis for the classical scientific method, the
compositional analysis.

A complex system is thus by exclusion not a member of the syntactic, al-
gorithmic class of systems. Its main characteristics are as follows. A complex
system possesses non-computable models; it has inherent impredicative loops in
it. This means, it requires multiple partial dynamical descriptions - no one of
which, or combination of which, suffices to successfully describe the system. It is
not a purely syntactic system, it necessarily includes semantic elements, and is
not formalizable. Complex systems also differ from simple ones in that complex
systems are not simply summations of parts - they are non-decomposable. This
means, when a complex system is decomposed, its essential nature is broken by
breaking its impredicative loops. This has several effects. Decompositional anal-
ysis is inherently destructive to what makes the system complex - such a system
is not decomposable without losing the essential nature of the complexity of the
original system! In addition, by being not decomposable, complex systems no
longer have analysis and synthesis as simple inverses of each other. How you
build a complex system is not simply the inverse of any analytic process of de-
composition into parts. In other words, reverse engineering a cognitive system
(which is a complex, integrative and thus non-decomposable system) will not
enable its full undertanding!

5 Conclusions

Given the characteristics of complex systems - being non-decomposable, non-
formalizable, non-computable - can such systems be studied by the scientific
method at all? Indeed, they can, provided we acknowledge the inherent limita-
tions of the compositional analysis if questions on the scale of the complex whole
are to be answered. In the present context, this means that the fundamental as-
sumption for CCN (cognitive and other complex systems are decomposable)
must be abandoned.

Instead, we must consider the set of simple, predicative models of the or-
ganism, its behavior and brain in the limit, i.e. the infinite set of models, each
providing partial dynamical descriptions. Thus, we cannot expect any ultimate
model but a multitude of models corresponding to the infinite possible aspects
of analysis.

In the case of complex biological systems, Rosen argued in favor of an ap-
proach oriented to study them at the level of the organizational structure of the
system. This approach of Relational Biology - originally created by Rashevsky
- involves composing descriptions of organisms at the functional level, thereby
retaining the impredicative complexity. Of course, this approach (as well as, e.g.,
the related concept of autopoietic systems [35]) is not compatible with the stan-
dard engineering approach which is oriented to gain control over systems, be it
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natural or artificial. We must learn, however, to take into account the impred-
icativities as essential characteristics of complex, integrative systems. This will
avoid exaggerated expectations und pitfalls in projects investigating the brain
in order to derive operational principles which can be used for unconventional
computing models.
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