
Chapter 1
Reverse Engineering for Biologically-Inspired
Cognitive Architectures: A Critical Analysis

Andreas Schierwagen

Abstract Research initiatives on both sides of the Atlantic try to utilize the opera-
tional principles of organisms and brains to develop biologically inspired, artificial
cognitive systems. This paper describes the standard way bio-inspiration is gained,
i.e. decompositional analysis or reverse engineering. Theindisputable complexity
of brain and mind raise the issue of whether they can be understood by applying the
standard method. Using Robert Rosen’s modeling relation, the scientific analysis
method itself is made a subject of discussion. It is concluded that the fundamental
assumption of cognitive science, i.e. complex cognitive systems are decomposable,
must be abandoned. Implications for investigations of organisms and behavior as
well as for engineering artificial cognitive systems are discussed.

1.1 Introduction

Wer will was Lebendig’s erkennen und beschreiben,
Sucht erst den Geist heraus zu treiben,
Dann hat er die Teile in seiner Hand,
Fehlt, leider! nur das geistige Band.

J.W. GOETHE, Faust, Erster Teila

For some time past, computer science and engineering devoteclose attention to
the functioning of the brain. It has been argued that recent advances in cognitive
science and neuroscience have enabled a rich scientific understanding of how cog-
nition works in the human brain. Thus, research programs have been initiated by
leading research organizations on both sides of the Atlantic to develop new cogni-
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tive architectures and computational models of human cognition [1, 2, 3, 4, 5, 6]
(see also [7], and references therein).

Two points are emphasized in the research programs: First, there is impressing
abundance of available experimental brain data, and second, we have the computing
power to meet the enormous requirements to simulate a complex system like the
brain. Given the improved scientific understanding of the operational principles of
the brain as a complexly organized system, it should then be possible to build an
operational, quantitative model of the brain. Tuning the model could be achieved
using the deluge of empirical data.

The main method used in empirical research to integrate the data derived from
the different levels of the brain organization isreverse engineering. Originally a
concept in engineering and computer science, reverse engineering involves as first
step the process of detailed examination of a functional system and its dissecting at
the physical level into component parts, i.e.decompositional analysis. In a second
step, the (re–)construction of the system is attempted, see below. This principle is
usually not much discussed with respect to its assumptions,conditions and range1

but see [10, 11, 12].
Together, according to the prevailing judgement there is nothing in principle that

we do not understand about brain organization. All the knowledge about its ’build-
ing blocks’ and connectivity is present (or can be derived),and needs only to be
put into the model. This view is widely taken; it represents the belief in the power
of the reverse engineering method. As I am going to show in this paper, there is,
however, substantial evidence to question this belief. It turns out that this method in
fact ignores something fundamental, namely that biological and engineered systems
are basically different in nature.

The paper is organized as follows. Section 1.2 presents the fundamental assump-
tion employed in the cognitive and brain sciences, i.e. the assumption that both brain
and mind are decomposable. In Section 1.3, the concepts of decompositional analy-
sis, reverse engineering and localization are reviewed. The following Section 1.4 is
devoted to modularization and its relation to the superposition principle of system
theory. Then, Section 1.5 shortly touches on Blue Brain and SyNAPSE, two lead-
ing reverse-engineering projects. Both projects are basedon the hypothesis of the
columnar organization of the cortex. The rationale underlying reverse engineering in
neurocomputing or computational neuroscience is outlined. New findings are men-
tioned indicating that the concept of the basic uniformity of the cortex is untenable.
Section 1.6 ponders about the claim that non-decomposability is not an intrinsic
property of complex systems but is only in our eyes, due to insufficient mathemat-
ical techniques. For this, Rosen’s modeling relation is explained which enables us
to make the scientific analysis method itself a subject of discussion. It is concluded
that the fundamental assumption of cognitive science must be abandoned. We end

1 Only recently, differences between proponents of reverse engineering on how it is appropri-
ately to be accomplished became public. The prominent headsof two reverse engineering projects,
Markram [2] and Modha [8], disputed publicly as to what granularity of the modeling is needed to
reach a valid simulation of the brain. Markram questioned the authenticity of Modha’s respective
claims [9].
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the paper by some conclusions about the relevance of Rosen’s[13, 14, 15] work for
the study of organisms and behavior as well as for engineering artificial cognitive
systems.

1.2 Conceptual Foundations of Cognitive and Brain Sciences

Brains, even those of simple animals, are enormously complex structures, and it
is a very ambitious goal to cope with this complexity. The scientific disciplines
involved in cognition and brain research (Fig. 1.1) are committed to a common
method to explain the properties and capacities of complex systems. This method is
decompositional analysis, i.e. analysis of the system in terms of its components or
subsystems.

Fig. 1.1 The Cognitive Hexagon (as of 1978 [16]). Cognitive science comprised six disciplines,
all committed to decompositional analysis as the basic research method.

Since Simon’s influential book “The Sciences of the Artificial” [17], (near-) de-
composability of complex systems has been accepted as fundamental for the cog-
nitive and brain sciences (CBS). We call this thefundamental assumptionfor the
cognitive and brain sciences. Simon [17], Wimsatt [18] and Bechtel and Richardson
[19], among others, have further elaborated this concept. They consider decompos-
ability a continously varying system property, and state, roughly, that systems fall on
a continuum from aggregate (full decomposable) to integrated (non-decomposable).
The fundamental assumptionstates that cognitive and brain systems are non-ideal
aggregate systems; the capacities of the components are internally realized (strong
intra-component interactions), and interactions betweencomponents do not appre-
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ciably contribute to the capacities, they are much weaker than the intra-component
interactions. Hence, the description of the complex systemas a set of weakly in-
teracting components seems to be a good approximation. Thisproperty of com-
plex systems, which should have evolved through natural selection, was called near-
decomposability and characterized as follows [17]:

Near-decomposability.

1. In a nearly decomposable system, the short-run behavior of each of the compo-
nent subsystems is approximately independent of the short-run behavior of the
other components;

2. in the long run the behavior of any one of the components depends in only an
aggregate way on the behavior of the other components [17, p.100].

Thus, if the capacities of a near-decomposable system are tobe explained, to
some approximation its components can be studied in isolation, and based on their
known interactions, their capacities eventually combinedto generate the systems
behavior. In other words, the aforementionedfundamental assumptionrepresents
the conceptual basis for reverse engineering the brain and mind.

Let us summarize this assumption because it is of central importance in the fol-
lowing:

Fundamental assumption for cognitive and brain sciences.

Cognitive and brain systems are non-ideal aggregate systems. The capaci-
ties of the components are internally realized (strong intra-component inter-
actions) while interactions between components are negligible with respect
to capacities. Any capacity of the whole system then resultsfrom superposi-
tion of the capacities of its subsystems. This property of cognitive and brain
systems should have evolved through natural selection and is called near-
decomposability.

1.3 Decompositional Analysis, Localization and Reverse
Engineering

The primary goal of cognitive science and its subdisciplines is to understand cogni-
tive capacities like vision, language, memory, planning etc. Capacities are consid-
ered as dispositional properties which can be explained viadecompositional analy-
sis, see Fig. 1.2. In CBS, two types of decompositional analysis are differentiated,
i.e. functional analysis and structural analysis [20, 21, 22]. Functional analysisis
the type of decompositional analysis that proceeds withoutreference to the material
composition of the system. It is concerned with the sub-functions of some hypoth-
esized components of the whole system which enable this whole system to have
certain capacities and properties and to realize corresponding functions.



Title Suppressed Due to Excessive Length 5

Structural analysisinvolves to attempt to identify the structural, material compo-
nents of the system. Thus, the material systemS can be decomposed into context-
independent componentsSj , i.e. their individual properties are independent of the
decomposition process itself and ofS’s environment.

Functional analysis and structural analysis must be clearly differentiated, al-
though in practice, there is a close interplay between them (as indicated by the
double arrow in Fig. 1.2). This is obvious in thelocalization approachwhich com-
bines both analysis types, i.e. a specific component function is linked with a specific
structural component. Functional analysis should also be differentiated from capac-
ity analysis. The former is concerned with the functions performed by components
of the whole system which enable this whole system to have certain capacities and
properties. The latter is concerned with the dispositions or abilities of the whole
system, whereas functional and structural analysis is concerned with the functional
and structural bases of those dispositions or abilities.

Understating the case, the localization approach is sometimes described as a hy-
pothetical identification which is to serve as research heuristics [19]. In fact, how-
ever, the majority of cognitive scientists considers it as fundamental and indispens-
able (e.g. [28]).

Obviously, decompositional analysis and reverse engineering are closely related.
Reverse engineering is a two-step method: It has the decompositional analysis of
the original system as the first, basic step, while the secondstep consists in creating
duplicates of the original system, including computer models.

Fig. 1.2 View on decompositional analysis of brain and cognition. See text for details.

It should be noticed that there is no reason to assume that functional and struc-
tural components match up one-to-one! Of course, it might bethe case that some
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functional components map properly onto individual structural components - the
dream of any cognitive scientist working as ‘reverse engineer’. It is rather probable,
however, for a certain functional component to be implemented by non-localized,
spatially distributed material components. Conversely, agiven structural component
may implement more than one distinct function. According toDennett [24, p. 273]:
“In a system as complex as the brain, there is likely to be much‘multiple, superim-
posed functionality’.” With other words, we cannot expect specific functions to be
mapped to structurally bounded neuronal structures, and vice versa. It is now well
known that Dennett’s caveat has been proved as justified (e.g. [25]). Thus the value
of the localization approach as ‘research heuristics’ seems rather dubious [26, 27].

1.4 Complex Systems and Modularization

In CBS and in other fields of science, the components of near-decomposable systems
are called modules. This term originates from engineering;it denotes the process of
decomposing a product into building blocks - modules - with specified interfaces,
driven by the designer’s interests and intended functions of the product. Modular-
ized systems are linear in the sense that they obey an analog of the superposition
principle of linear system theory in engineering [29]. The behavior of a decom-
posable system results from the linear combination of the behavior of the system
modules. In some respects, this principle represents a formal underpinning of the
constructive step in reverse engineering2 (see Sections 1.1, 1.3, 1.5). The terms ‘lin-
ear’ and ‘nonlinear’ are often used in this way: ‘Linear’ systems are decomposable
into independent modules with linear, proportional interactions while ‘nonlinear’
systems are not3 [29, 30].

Applying this concept to the systems at the other end of the complexity scale,
the integrated systems are basically not decomposable, dueto the strong, nonlinear
interactions involved. Thus, past or present states or actions of any or most subsys-
tems always affect the state or action of any or most other subsystems. In practice,
analyses of integrated systems nevertheless try to apply the methodology for de-
composable systems, in particular if there is some hope thatthe interactions can
be linearized. Such linearizable systems have been above denoted as nearly decom-
posable. However, in the case of strong nonlinear interactions, we must accept that
decompositional analysis is not applicable.

Already decades ago this insight was stressed. For example,Levins [31, p.76
ff.] proposed a classification of systems into aggregate, composed and evolved sys-
tems. While the aggregate and the composed would not cause serious problems for
scientific analyses, Levins emphasized the special character of evolved systems:

2 A corresponding class of models in mathematics is characterized by a theorem stating that for
homogeneous linear differential equations, the sum of any two solutions is itself a solution.
3 We must differentiate between the natural, complex system and its description using modeling
techniques from linear system theory or nonlinear mathematics.
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A third kind of system no longer permits this kind of analysis. This is a sys-
tem in which the component subsystems have evolved together, and are not
even obviously separable; in which it may be conceptually difficult to decide
what are the really relevant component subsystems.... The decomposition of a
complex system into subsystems can be done in many ways... itis no longer
obvious what the proper subsystems are, but these may be processes, or phys-
ical subsets, or entities of a different kind.

The question then arises: Should we care about integrated systems, given thefun-
damental assumptionthat all relevant systems are nearly decomposable? Non–
decomposability then would be only in our eyes, and not an intrinsic property of
strongly nonlinear systems, and – as many cognitive and computer scientists be-
lieve – scientific progress will provide us with the new mathematical techniques
required to deal with nonlinear systems. We will return to this problem in Section
1.6.

1.5 Reverse Engineering the Brain and Neurocomputing

1.5.1 The Column Concept

A guiding idea about the composition of the brain is the hypothesis of the colum-
nar organization of the cerebral cortex. It was developed mainly by Mountcastle,
Hubel and Wiesel, and Szenthágothai (e.g. [32, 33, 34]), inthe spirit of the highly
influential paper “The basic uniformity in structure of the neocortex” published in
1980 [37]. According to this hypothesis (which has been taken more or less as fact
by many experimental as well as theoretical neuroscientists), the neocortex is com-
posed of ‘building blocks’ of repetitive structures, the ‘columns’ or neocortical mi-
crocircuits, and it is characterized by a basic canonical pattern of connectivity. In
this scheme all areas of neocortex would perform identical or similar computational
operations with their inputs.

Referring to and based on these works, several projects started recently, among
them theBlue Brain Project[2] and theSyNAPSE Project[5]. They are considered
to be “attempts to reverse-engineer the mammalian brain, inorder to understand
brain function and dysfunction through detailed simulations”[2] or, more pompous,
“to engineer the mind”[5]. The central role in these projects play cortical microcir-
cuits or columns. As Maas and Markram [35] formulate, it is a “tempting hypothesis
regarding the computational role of cortical microcircuits ... that there exist geneti-
cally programmed stereotypical microcircuits that compute certain basis function.”
Their paper well illustrates the modular approach fostered, e.g. by [36, 38, 39, 12].
Invoking the localization concept, the tenet is that there exist fundamental corre-
spondences among the anatomical structure of neuronal networks, their functions,
and the dynamic patterning of their active states. Startingpoint is the ‘uniform cor-
tex’ with the cortical microcircuit or column as the structural component. The ques-
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tion for the functional component is answered by assuming that there is a one-to-one
relationship between the structural and the functional component (see Section 1.3).
Together, the modularity hypothesis of the brain is considered to be both structurally
and functionally well justified. As quoted above, the goal isto examine the hypothe-
sis that there exist genetically programmed stereotypicalmicrocircuits that compute
certain basis function.

1.5.2 Neocortical Microcircuits and Basis Functions

The general approach to cognitive capacities takes for granted that “cognition is
computation”, i.e. the brain produces the cognitive capacities by computing func-
tions4. According to the scheme formulated in Section 1.3, reverseengineering of
the cortex (or some subsystem) as based on the column conceptand performed from
a neurocomputational perspective then proceeds as follows.

Reverse engineering the cortex.

1. Capacity analysis: A specific cognitive capacity is identified which is assumed to
be produced through the brain by computing a specific function.

2. Decompositional analysis:

a. Functional (computational) analysis: From mathematical analysis and approx-
imation theory it is well-known that a broad class of practically relevant func-
tions f can be approximated by composition or superposition of somebasis
function. If we assume that some basis functions can be identified, they pro-
vided the components of a hypothetical functional decomposition.

b. Structural analysis: Provide evidence that cortical microcircuits are the anatom-
ical components of the cortex.

3. Localization: The next step consisted in linking the component functions with
the component parts by suggesting that the basis function are computed by the
structural components (columns or cortical microcircuits).

4. Synthesis/Superposition: The specific cognitive capacity or function under study
now can be explained by combining the basis functions determined in step 2.a.
The composition rules were implicitly contained in the interconnection pattern
of the circuits, thus enabling the brain system under study to generate the specific
cognitive capacity.

The question now is, however - Are the assumptions and hypotheses made ap-
propriate, or must they considered as too unrealistic? In fact, most of the underlying
hypotheses have been challenged only recently. To start with the assumptions about
the structural and functional composition of the cortex, the notion of a basic uni-
formity in the cortex with respect to the density and types ofneurons per column

4 See [7] for discussion of the computational approaches (including the neurocomputational one)
to brain function, and their shortcomings.
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for all species turned out to be untenable (e.g. [40, 41, 42]). It has been impossible
to find the cortical microcircuit that computes specific basis function [43]. No ge-
netic mechanism has been deciphered that designates how to construct a column. It
seems that the column structures encountered in many species (but not in all) rep-
resent spandrels (structures that arise non-adaptively, i.e. as an epiphenomenon) in
various stages of evolution [44].

If we evaluate the column concept of the cortex employed in theories of brain
organization, it is obvious that – employing the localization concept mentioned
in Section 1.3 – hypothesized structural components (cortical columns) have been
identified with alike hypothetical functional components (basis function).

There is evidence, however, for a certain functional component to be imple-
mented by spatially distributed networks and, vice versa, for a given structural com-
ponent to implement more than one distinct function. With other words, it is not
feasible for specific functions to be mapped to structurallybounded neuronal struc-
tures [25, 40, 41, 42].

This means, although the column concept is an attractive idea both from neurobi-
ological and computational point of view, it cannot be used as an unifying principle
for understanding cortical function. Thus, it has been concluded that the concept of
the cortex as a ‘large network of identical units’ should be replaced with the idea
that the cortex consists of ‘large networks of diverse elements’ whose cellular and
synaptic diversity is important for computation [45, 46, 47].

It is worth to notice that the reported claims for changes of the research concept
completely remain within the framework of reverse engineering. A more fundamen-
tal point of criticism concerns the methods of decompositional analysis and reverse
engineering themselves and will be discussed in the next section.

1.6 Complex Systems and Rosen’s Modeling Relation

In Section 1.4, we concluded that integrated systems are basically non-decomposable,
thus resisting the standard analysis method. We raised the question: Should we at
all care about integrated systems, given thefundamental assumptionthat all relevant
systems are nearly decomposable?

According to the prevalent viewpoint in CCN, non-decomposability is not an
intrinsic property of complex, integrated systems but is only in our eyes, due to
insufficient mathematical techniques (e.g. [48, 49, 50, 51]). Bechtel and Richardson,
instead, warn that the assumption according to which natureis decomposable and
hierarchical might be false [19, p. 27]: “There are clearly risks in assuming complex
natural systems are hierarchical and decomposable.”

Rosen [14, 15] has argued that understanding complex, integrated systems re-
quires making the scientific analysis method itself a subject of discussion. A power-
ful method of understanding and exploring the nature of the scientific method, and
in particular, reverse engineering, provides his modelingrelation. It is this relation
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by which scientists bring “entailment structures into congruence” [14, p. 152]. This
can be explained as follows.

The modeling relation is the set of mappings shown in Figure 1.3 [13, 52]. It
relates two systems, a natural systemN and a formal systemF, by a set of arrows
depicting processes or mappings. The assumption is that this diagram represents the
various processes which we are carrying out when we perceivethe world.N is a
part of the physical world that we wish to understand (in our case: organism, brain),
in which things happen according to rules of causality (arrow 1). On the right,F
represents symbolically the parts of the natural system (observables) which we are
interested in, along with formal rules of inference (arrow 3) that essentially consti-
tute our working hypotheses about the way things work inN, i.e. the way in which
we manipulate the formal system to try to mimic causal eventsobserved or hypoth-
esized in the natural system on the left. Arrow 2 represents the encoding of the parts
of N under study into the formal systemF , i.e. a mapping that establishes the cor-
respondence between observables ofN and symbols defined inF . Predictions about
the behavior inF , according toF ’s rules of inference, are compared to observables
in N through a decoding represented by arrow 4. When the predictions match the
observations onN, we say thatF is a successful model forN.

Fig. 1.3 Rosen’s Modeling Relation. A natural systemN is modeled by a formal systemF . Each
system has its own internal entailment structures (arrows 1and 3), and the two systems are con-
nected by the encoding and decoding processes (arrows 2 and 4). From http://www.panmere.com.

It is important to note that the encoding and decoding mappings are independent
of the formal and natural systems, respectively. In other words, there is no way to
arrive at them from within the formal system or natural system. That is, the act of
modeling is really the act of relating two systems in a subjective way. That relation
is at the level of observables; specifically, observables which are selected by the
modeler as worthy of study or interest.

Given the modeling relation and the detailed structural correspondence between
our percepts and the formal systems into which we encode them, it is possible to
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make a dichotomous classification of systems into those thataresimpleor pred-
icativeand those that arecomplexor impredicative. This classification can refer to
formal inferential systems such as mathematics or logic, aswell as to physical sys-
tems. As Rosen showed [13], a simple system is one that is definable completely
by algorithmic method: All the models of such a system are Turing-computable or
simulable. When a single dynamical description is capable of successfully modeling
a system, then the behaviors of that system will, by definition, always be correctly
predicted. Hence, such a system will bepredicativein the sense that there will exist
no unexpected or unanticipated behavior.

A complex system is by exclusion not a member of the syntactic, algorithmic
class of systems. Its main characteristics are as follows. Acomplex system possesses
non-computable models; it has inherent impredicative loops in it. This means, it
requires multiple partial dynamical descriptions - no one of which, or combination
of which, suffices to successfully describe the system.

It is not a purely syntactic system, it necessarily includessemantic elements, and
is not formalizable. Complex systems also differ from simple ones in that com-
plex systems are not simply summations of parts - they are non-decomposable. This
means, when a complex system is decomposed, its essential nature is broken by
breaking its impredicative loops.

This has important effects. Decompositional analysis is inherently destructive
to what makes the system complex - such a system is not decomposable without
losing the essential nature of the complexity of the original system! In addition, by
being not decomposable, complex systems no longer have analysis and synthesis as
simple inverses of each other. Building a complex system is therefore not simply the
inverse of any analytic process of decomposition into parts. In other words, reverse
engineering the brain – a complex, integrated and thus non-decomposable system –
must necessarily fail and will not provide the envisaged understanding!

It should be stressed that simple and complex systems after Rosen’s definition
cannot be directly related to those sensu Simon (Sections 1.2, 1.4). While Rosen’s
approach yields adescriptivedefinition of complexity, Simon’s isinteractional, see
[53]. It seems clear, however, that Rosen’s ‘simple systems’ comprise Simon’s full-
and near-decomposable systems, and Rosen’s ‘complex systems’ correspond to Si-
mon’s non-decomposable, integrated systems. No matter which definition is applied,
the conclusion about the brain’s non–decomposability remains valid.

1.7 Conclusions

If one attempts to understand a complex system like the brainit is of crucial impor-
tance if general operation principles can be formulated. Traditionally, approaches to
reveal such principles follow the line of decompositional analysis as expressed in the
fundamental assumptionof cognitive and computational neuroscience, i.e. cognitive
systems like other, truly complex systems are decomposable. Correspondingly, re-
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verse engineering has been considered the appropriate methodology to understand
the brain and to engineer artificial cognitive systems.

The claim was discussed that non-decomposability is not an intrinsic property of
complex, integrated systems but is only in our eyes, due to insufficient mathematical
techniques. For this, the scientific analysis method itselfwas considered. Referring
to results from mathematics and system theory, I have presented arguments for the
position that the dominant complexity concept of cognitiveand computational neu-
roscience underlying reverse engineering needs revision.The updated, revised con-
cept must comprise results from the nonlinear science of complexity, and insights
expressed, e.g., in Rosen’s work on life and cognition. It was concluded that the
decomposability assumption of cognitive science must be abandoned.

Organisms and brains are complex, integrated systems whichare non–decomposable.
This insight implies that there is no ‘natural’ way to decompose the brain, neither
structurally nor functionally. We must face the uncomfortable insight that in cogni-
tive science and neuroscience we have conceptually, theoretically, and empirically to
deal with complex, integrated systems which is much more difficult than with sim-
ple, decomposable systems of quasi–independent modules! Thus, we cannot avoid
(at least in the long run) subjecting research goals such as the creation of ‘brain-like
intelligence’ and the like to analyses which apprehend the very nature of natural
complex systems.

aTranslation of Goethe’s Verse by George Madison Priest

Who’ll know aught living and describe it well,
Seeks first the spirit to expel.
He then has the component parts in hand
But lacks, alas! the spirit’s band.

J.W. GOETHE, Faust, First Part
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