Chapter 1
Reverse Engineering for Biologically-1nspired
Cognitive Architectures: A Critical Analysis

Andreas Schierwagen

Abstract Research initiatives on both sides of the Atlantic try tdizgithe opera-
tional principles of organisms and brains to develop bimally inspired, artificial
cognitive systems. This paper describes the standard vean$piration is gained,
i.e. decompositional analysis or reverse engineering.ifitisputable complexity
of brain and mind raise the issue of whether they can be utudet by applying the
standard method. Using Robert Rosen’s modeling relatlos stientific analysis
method itself is made a subject of discussion. It is conautiat the fundamental
assumption of cognitive science, i.e. complex cognitivitesys are decomposable,
must be abandoned. Implications for investigations of vigfas and behavior as
well as for engineering artificial cognitive systems aredssed.

1.1 Introduction

Wer will was Lebendig’s erkennen und beschreiben,
Sucht erst den Geist heraus zu treiben,

Dann hat er die Teile in seiner Hand,

Fehlt, leider! nur das geistige Band.

J.W. GOETHE, Faust, Erster Tell

For some time past, computer science and engineering delaxe attention to
the functioning of the brain. It has been argued that recdwarces in cognitive
science and neuroscience have enabled a rich scientificstadding of how cog-
nition works in the human brain. Thus, research programs h&en initiated by
leading research organizations on both sides of the Atddatdevelop new cogni-

Institute for Computer Science, Intelligent Systems Depant
University of Leipzig

Leipzig, Germany

e-mail: schierwa@informatik.uni-leipzig.de
http://www.informatik.uni-leipzig.de/"schierwa



2 A. Schierwagen

tive architectures and computational models of human ¢imgnjl, 2, 3, 4, 5, 6]
(see also [7], and references therein).

Two points are emphasized in the research programs: Hiest is impressing
abundance of available experimental brain data, and seaanidave the computing
power to meet the enormous requirements to simulate a carsptem like the
brain. Given the improved scientific understanding of theraponal principles of
the brain as a complexly organized system, it should thenossiple to build an
operational, quantitative model of the brain. Tuning thedelacould be achieved
using the deluge of empirical data.

The main method used in empirical research to integrate dkee d@erived from
the different levels of the brain organizationreverse engineeringOriginally a
concept in engineering and computer science, reverse egniig involves as first
step the process of detailed examination of a functionaésysind its dissecting at
the physical level into component parts, idecompositional analysi$n a second
step, the e-)construction of the system is attempted, see below. Thiipte is
usually not much discussed with respect to its assumptamgjitions and rande
but see [10, 11, 12].

Together, according to the prevailing judgement there fhingin principle that
we do not understand about brain organization. All the kedgé about its 'build-
ing blocks’ and connectivity is present (or can be derivedid needs only to be
put into the model. This view is widely taken; it represeihits belief in the power
of the reverse engineering method. As | am going to show & plaper, there is,
however, substantial evidence to question this beliefirtig out that this method in
factignores something fundamental, namely that bioldgind engineered systems
are basically different in nature.

The paper is organized as follows. Section 1.2 presentsititainental assump-
tion employed in the cognitive and brain sciences, i.e. fisemption that both brain
and mind are decomposable. In Section 1.3, the conceptsofgmsitional analy-
sis, reverse engineering and localization are reviewed .féfowing Section 1.4 is
devoted to modularization and its relation to the supetjwwsprinciple of system
theory. Then, Section 1.5 shortly touches on Blue Brain ay’dAPSE, two lead-
ing reverse-engineering projects. Both projects are basetie hypothesis of the
columnar organization of the cortex. The rationale undegyeverse engineeringin
neurocomputing or computational neuroscience is outliheslv findings are men-
tioned indicating that the concept of the basic uniformityh@ cortex is untenable.
Section 1.6 ponders about the claim that non-decomposailsilnot an intrinsic
property of complex systems but is only in our eyes, due toffitsent mathemat-
ical techniques. For this, Rosen’s modeling relation isl&xed which enables us
to make the scientific analysis method itself a subject afudision. It is concluded
that the fundamental assumption of cognitive science maisttiandoned. We end

1 Only recently, differences between proponents of reverggneering on how it is appropri-

ately to be accomplished became public. The prominent hefad® reverse engineering projects,
Markram [2] and Modha [8], disputed publicly as to what granity of the modeling is needed to
reach a valid simulation of the brain. Markram questionedatthenticity of Modha'’s respective
claims [9].
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the paper by some conclusions about the relevance of Rq4&n'$4, 15] work for
the study of organisms and behavior as well as for engingeuitificial cognitive
systems.

1.2 Conceptual Foundations of Cognitive and Brain Sciences

Brains, even those of simple animals, are enormously congitectures, and it
is a very ambitious goal to cope with this complexity. Theestific disciplines
involved in cognition and brain research (Fig. 1.1) are cdtteth to a common
method to explain the properties and capacities of compistems. This method is
decompositional analysis, i.e. analysis of the systemrimgeof its components or
subsystems.

Philosophy

Psychology Lingulstlcs

Artificial

Intelligence Anthropology

Neurosclence

Fig. 1.1 The Cognitive Hexagon (as of 1978 [16]). Cognitive scienomprised six disciplines,
all committed to decompositional analysis as the basiarekemethod.

Since Simon'’s influential book “The Sciences of the Artifit[d7], (near-) de-
composability of complex systems has been accepted asrhardal for the cog-
nitive and brain sciences (CBS). We call this faedamental assumptidior the
cognitive and brain sciences. Simon [17], Wimsatt [18] aedt&el and Richardson
[19], among others, have further elaborated this concdpy Tonsider decompos-
ability a continously varying system property, and stataghly, that systems fall on
a continuum from aggregate (full decomposable) to integréton-decomposable).
The fundamental assumpticstates that cognitive and brain systems are non-ideal
aggregate systems; the capacities of the components arpatiy realized (strong
intra-component interactions), and interactions betwaemponents do not appre-
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ciably contribute to the capacities, they are much wealar the intra-component
interactions. Hence, the description of the complex sysism set of weakly in-
teracting components seems to be a good approximation.prajserty of com-
plex systems, which should have evolved through naturattieh, was called near-
decomposability and characterized as follows [17]:

Near-decomposability.

1. In a nearly decomposable system, the short-run behakeaah of the compo-
nent subsystems is approximately independent of the shorbehavior of the
other components;

2. in the long run the behavior of any one of the componentggpin only an
aggregate way on the behavior of the other components [1@0p.

Thus, if the capacities of a near-decomposable system dre txplained, to
some approximation its components can be studied in isolaéind based on their
known interactions, their capacities eventually combitegenerate the systems
behavior. In other words, the aforementiorfaddamental assumptiarepresents
the conceptual basis for reverse engineering the brain amdl m

Let us summarize this assumption because it is of centraditapce in the fol-
lowing:

Fundamental assumption for cognitive and brain sciences.

Cognitive and brain systems are non-ideal aggregate sgst€he capaci-
ties of the components are internally realized (strongiemponent inter-
actions) while interactions between components are ribtgigvith respect
to capacities. Any capacity of the whole system then restdta superposi-
tion of the capacities of its subsystems. This property gidtive and brain
systems should have evolved through natural selection sdlied near-
decomposability.

1.3 Decompositional Analysis, L ocalization and Reverse
Engineering

The primary goal of cognitive science and its subdiscigiiseo understand cogni-
tive capacities like vision, language, memory, planning €apacities are consid-
ered as dispositional properties which can be explainedet@mpositional analy-
sis, see Fig. 1.2. In CBS, two types of decompositional aislgre differentiated,
i.e. functional analysis and structural analysis [20, 24, Eunctional analysiss
the type of decompositional analysis that proceeds withefatence to the material
composition of the system. It is concerned with the sub-fions of some hypoth-
esized components of the whole system which enable thisendyaitem to have
certain capacities and properties and to realize correipgrfiunctions.
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Structural analysisnvolves to attempt to identify the structural, materiatgm-
nents of the system. Thus, the material sysg&oan be decomposed into context-
independent componenss, i.e. their individual properties are independent of the
decomposition process itself and®$ environment.

Functional analysis and structural analysis must be gledifferentiated, al-
though in practice, there is a close interplay between thasnir{dicated by the
double arrow in Fig. 1.2). This is obvious in thecalization approactwhich com-
bines both analysis types, i.e. a specific component fum@ibinked with a specific
structural component. Functional analysis should alsafferentiated from capac-
ity analysis. The former is concerned with the functiondgened by components
of the whole system which enable this whole system to havaioetapacities and
properties. The latter is concerned with the dispositionakilities of the whole
system, whereas functional and structural analysis isexored with the functional
and structural bases of those dispositions or abilities.

Understating the case, the localization approach is samestdescribed as a hy-
pothetical identification which is to serve as researchiktes [19]. In fact, how-
ever, the majority of cognitive scientists considers it@asdfamental and indispens-
able (e.g. [29]).

Obviously, decompositional analysis and reverse engimgeare closely related.
Reverse engineering is a two-step method: It has the decsitigmal analysis of
the original system as the first, basic step, while the sest@miconsists in creating
duplicates of the original system, including computer nisde

Analysis of System Capacity
Behavior / Organism

Decompositional
Analysis
Cognition / Brain

Structural Analysis

Functional Analysis ! e
Brain areas, layers, circuits

Cognitions

Fig. 1.2 View on decompositional analysis of brain and cognitiore &t for details.

It should be noticed that there is no reason to assume thetidmal and struc-
tural components match up one-to-one! Of course, it mighthkecase that some
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functional components map properly onto individual stusat components - the
dream of any cognitive scientist working as ‘reverse engjindt is rather probable,
however, for a certain functional component to be implereérity non-localized,
spatially distributed material components. Conversefjiyan structural component
may implement more than one distinct function. Accordinennett [24, p. 273]:
“In a system as complex as the brain, there is likely to be muncltiple, superim-
posed functionality’.” With other words, we cannot expgeeaific functions to be
mapped to structurally bounded neuronal structures, acglwarsa. It is now well
known that Dennett's caveat has been proved as justified[ghl). Thus the value
of the localization approach as ‘research heuristics’ seetier dubious [26, 27].

1.4 Complex Systems and Modularization

In CBS and in other fields of science, the components of neepmposable systems
are called modules. This term originates from engineeitragnotes the process of
decomposing a product into building blocks - modules - wjghdfied interfaces,
driven by the designer’s interests and intended functidrikeo product. Modular-
ized systems are linear in the sense that they obey an anfatbg superposition
principle of linear system theory in engineering [29]. Thehavior of a decom-
posable system results from the linear combination of thewier of the system
modules. In some respects, this principle represents aalarnderpinning of the
constructive step in reverse engineefifgge Sections 1.1, 1.3, 1.5). The terms ‘lin-
ear’ and ‘nonlinear’ are often used in this way: ‘Linear’ ®ms are decomposable
into independent modules with linear, proportional intéins while ‘nonlinear’
systems are nd{29, 30].

Applying this concept to the systems at the other end of tmepdexity scale,
the integrated systems are basically not decomposablépdhe strong, nonlinear
interactions involved. Thus, past or present states corebf any or most subsys-
tems always affect the state or action of any or most othesyaibms. In practice,
analyses of integrated systems nevertheless try to applyntithodology for de-
composable systems, in particular if there is some hopetligainteractions can
be linearized. Such linearizable systems have been abowgetbas nearly decom-
posable. However, in the case of strong nonlinear inteyastiwe must accept that
decompositional analysis is not applicable.

Already decades ago this insight was stressed. For exatglis [31, p.76
ff.] proposed a classification of systems into aggregatepmsed and evolved sys-
tems. While the aggregate and the composed would not catisesproblems for
scientific analyses, Levins emphasized the special claaratevolved systems:

2 A corresponding class of models in mathematics is chaiaetbby a theorem stating that for
homogeneous linear differential equations, the sum of awoysblutions is itself a solution.

3 We must differentiate between the natural, complex systethits description using modeling
techniques from linear system theory or nonlinear mathiesiat
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A third kind of system no longer permits this kind of analydikis is a sys-

tem in which the component subsystems have evolved togethérare not
even obviously separable; in which it may be conceptuaffjcdit to decide

what are the really relevant component subsystems.... @bandposition of a
complex system into subsystems can be done in many wayis.natlonger

obvious what the proper subsystems are, but these may begses; or phys-
ical subsets, or entities of a different kind.

The question then arises: Should we care about integrastdmy, given théun-
damental assumptiothat all relevant systems are nearly decomposable? Non—
decomposability then would be only in our eyes, and not arnsit property of
strongly nonlinear systems, and — as many cognitive and atengcientists be-
lieve — scientific progress will provide us with the new matia¢ical techniques
required to deal with nonlinear systems. We will return tis firoblem in Section
1.6.

1.5 Reverse Engineering the Brain and Neurocomputing

1.5.1 The Column Concept

A guiding idea about the composition of the brain is the hiapsts of the colum-
nar organization of the cerebral cortex. It was developethinéy Mountcastle,
Hubel and Wiesel, and Szenthagothai (e.g. [32, 33, 34Fhanspirit of the highly
influential paper “The basic uniformity in structure of theatortex” published in
1980 [37]. According to this hypothesis (which has beennakere or less as fact
by many experimental as well as theoretical neuroscisitite neocortex is com-
posed of ‘building blocks’ of repetitive structures, theliemns’ or neocortical mi-
crocircuits, and it is characterized by a basic canonictbpaof connectivity. In
this scheme all areas of neocortex would perform identicaimilar computational
operations with their inputs.

Referring to and based on these works, several projectedtagcently, among
them theBlue Brain Projec{2] and theSyNAPSE Projedb]. They are considered
to be “attempts to reverse-engineer the mammalian braiorder to understand
brain function and dysfunction through detailed simulasig2] or, more pompous,
“to engineer the mind”[5]. The central role in these progaafay cortical microcir-
cuits or columns. As Maas and Markram [35] formulate, it iseanfpting hypothesis
regarding the computational role of cortical microcirsuit that there exist geneti-
cally programmed stereotypical microcircuits that conepeértain basis function.”
Their paper well illustrates the modular approach fosteeagl by [36, 38, 39, 12].
Invoking the localization concept, the tenet is that thedist6fundamental corre-
spondences among the anatomical structure of neuronabrietwtheir functions,
and the dynamic patterning of their active states. Stapwigt is the ‘uniform cor-
tex’ with the cortical microcircuit or column as the structlicomponent. The ques-
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tion for the functional component is answered by assumiattttere is a one-to-one
relationship between the structural and the functionalpoment (see Section 1.3).
Together, the modularity hypothesis of the brain is corrgidéo be both structurally
and functionally well justified. As quoted above, the godbiexamine the hypothe-
sis that there exist genetically programmed stereotypiéalocircuits that compute
certain basis function.

1.5.2 Neocortical Microcircuits and Basis Functions

The general approach to cognitive capacities takes fortggdatinat “cognition is
computation”, i.e. the brain produces the cognitive capecby computing func-
tions*. According to the scheme formulated in Section 1.3, reverggneering of
the cortex (or some subsystem) as based on the column carmkperformed from
a neurocomputational perspective then proceeds as follows

Rever se engineering the cortex.

1. Capacity analysis: A specific cognitive capacity is idfeed which is assumed to
be produced through the brain by computing a specific functio
2. Decompositional analysis:

a. Functional (computational) analysis: From mathembdicalysis and approx-
imation theory it is well-known that a broad class of praatlicrelevant func-
tions f can be approximated by composition or superposition of Soasts
function. If we assume that some basis functions can beif@htthey pro-
vided the components of a hypothetical functional decoritipos

b. Structural analysis: Provide evidence that corticatatizcuits are the anatom-
ical components of the cortex.

3. Localization: The next step consisted in linking the comgnt functions with
the component parts by suggesting that the basis functmo@nputed by the
structural components (columns or cortical microcirquits

4. Synthesis/Superposition: The specific cognitive capacifunction under study
now can be explained by combining the basis functions détewmiin step 2.a.
The composition rules were implicitly contained in the netennection pattern
of the circuits, thus enabling the brain system under stadyeherate the specific
cognitive capacity.

The question now is, however - Are the assumptions and hgsethmade ap-
propriate, or must they considered as too unrealistic?dh faost of the underlying
hypotheses have been challenged only recently. To stdrthétassumptions about
the structural and functional composition of the cortex, tiotion of a basic uni-
formity in the cortex with respect to the density and typesi@firons per column

4 See [7] for discussion of the computational approachesugiing the neurocomputational one)
to brain function, and their shortcomings.
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for all species turned out to be untenable (e.g. [40, 41, 42fas been impossible
to find the cortical microcircuit that computes specific basinction [43]. No ge-
netic mechanism has been deciphered that designates hongtyuct a column. It
seems that the column structures encountered in many sgcienot in all) rep-
resent spandrels (structures that arise non-adaptivelyas an epiphenomenon) in
various stages of evolution [44].

If we evaluate the column concept of the cortex employed @oties of brain
organization, it is obvious that — employing the localiaaticoncept mentioned
in Section 1.3 — hypothesized structural components @artiolumns) have been
identified with alike hypothetical functional componertiagis function).

There is evidence, however, for a certain functional coneporio be imple-
mented by spatially distributed networks and, vice verseafgiven structural com-
ponent to implement more than one distinct function. Witheotwords, it is not
feasible for specific functions to be mapped to structuttadiynded neuronal struc-
tures [25, 40, 41, 42].

This means, although the column concept is an attractivaehdéh from neurobi-
ological and computational point of view, it cannot be usedm unifying principle
for understanding cortical function. Thus, it has been tuded that the concept of
the cortex as a ‘large network of identical units’ should bplaced with the idea
that the cortex consists of ‘large networks of diverse elasiavhose cellular and
synaptic diversity is important for computation [45, 46].47

It is worth to notice that the reported claims for changesefresearch concept
completely remain within the framework of reverse engiireerA more fundamen-
tal point of criticism concerns the methods of decomposél@nalysis and reverse
engineering themselves and will be discussed in the netibgsec

1.6 Complex Systems and Rosen’s M odeling Relation

In Section 1.4, we concluded that integrated systems aretigsion-decomposable,
thus resisting the standard analysis method. We raisedubstiqn: Should we at
all care about integrated systems, givenftirelamental assumptidhat all relevant
systems are nearly decomposable?

According to the prevalent viewpoint in CCN, non-decomjigist is not an
intrinsic property of complex, integrated systems but isyan our eyes, due to
insufficient mathematical techniques (e.qg. [48, 49, 50).Bdchtel and Richardson,
instead, warn that the assumption according to which nasudecomposable and
hierarchical might be false [19, p. 27]: “There are cleaidks in assuming complex
natural systems are hierarchical and decomposable.”

Rosen [14, 15] has argued that understanding complex,rated systems re-
quires making the scientific analysis method itself a sufgjediscussion. A power-
ful method of understanding and exploring the nature of thenific method, and
in particular, reverse engineering, provides his modai@igtion. It is this relation
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by which scientists bring “entailment structures into carance” [14, p. 152]. This
can be explained as follows.

The modeling relation is the set of mappings shown in FiguBe[13, 52]. It
relates two systems, a natural systinand a formal systerk, by a set of arrows
depicting processes or mappings. The assumption is tisadidmgram represents the
various processes which we are carrying out when we pertleévevorld.N is a
part of the physical world that we wish to understand (in asec organism, brain),
in which things happen according to rules of causality (arig. On the rightF
represents symbolically the parts of the natural systeragialables) which we are
interested in, along with formal rules of inference (arrovitgat essentially consti-
tute our working hypotheses about the way things worllji.e. the way in which
we manipulate the formal system to try to mimic causal evebhserved or hypoth-
esized in the natural system on the left. Arrow 2 represéetencoding of the parts
of N under study into the formal systel i.e. a mapping that establishes the cor-
respondence between observableN aihd symbols defined iR. Predictions about
the behavior ir, according td='s rules of inference, are compared to observables
in N through a decoding represented by arrow 4. When the predgtnatch the
observations oN, we say thaF is a successful model fox.

DECODING
# =
il Natural Formal \ =
Z\ System System g
3, I"-. 0
= e

ENCODING

Fig. 1.3 Rosen’s Modeling Relation. A natural systéris modeled by a formal systef. Each
system has its own internal entailment structures (arroasdlL3), and the two systems are con-
nected by the encoding and decoding processes (arrows 2.drch http://www.panmere.com.

It is important to note that the encoding and decoding mayspame independent
of the formal and natural systems, respectively. In otherdsothere is no way to
arrive at them from within the formal system or natural sgst&hat is, the act of
modeling is really the act of relating two systems in a suidjeavay. That relation
is at the level of observables; specifically, observableghvhre selected by the
modeler as worthy of study or interest.

Given the modeling relation and the detailed structuratespondence between
our percepts and the formal systems into which we encode, ttiésnpossible to
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make a dichotomous classification of systems into thoseategimpleor pred-
icativeand those that areomplexor impredicative This classification can refer to
formal inferential systems such as mathematics or logieyedksas to physical sys-
tems. As Rosen showed [13], a simple system is one that isadidéirompletely
by algorithmic method: All the models of such a system arernifgicomputable or
simulable. When a single dynamical description is capatseccessfully modeling
a system, then the behaviors of that system will, by definjtaddways be correctly
predicted. Hence, such a system willfiredicativein the sense that there will exist
no unexpected or unanticipated behavior.

A complex system is by exclusion not a member of the syntaatgorithmic
class of systems. Its main characteristics are as folloveemplex system possesses
non-computable models; it has inherent impredicative $oiopit. This means, it
requires multiple partial dynamical descriptions - no ohe/bich, or combination
of which, suffices to successfully describe the system.

Itis not a purely syntactic system, it necessarily inclusirmantic elements, and
is not formalizable. Complex systems also differ from sienphes in that com-
plex systems are not simply summations of parts - they aredesomposable. This
means, when a complex system is decomposed, its esseritia¢ s broken by
breaking its impredicative loops.

This has important effects. Decompositional analysis fermently destructive
to what makes the system complex - such a system is not desalgowithout
losing the essential nature of the complexity of the oribgyatem! In addition, by
being not decomposable, complex systems no longer havgsiahd synthesis as
simple inverses of each other. Building a complex systeimaeetfore not simply the
inverse of any analytic process of decomposition into pamtether words, reverse
engineering the brain — a complex, integrated and thus eoo+dposable system —
must necessarily fail and will not provide the envisagedarathnding!

It should be stressed that simple and complex systems afteers definition
cannot be directly related to those sensu Simon (Sectiédhd 14). While Rosen’s
approach yields descriptivedefinition of complexity, Simon'’s imteractional see
[53]. It seems clear, however, that Rosen’s ‘simple systenmaprise Simon’s full-
and near-decomposable systems, and Rosen’s ‘complexs/sterrespond to Si-
mon’s hon-decomposable, integrated systems. No mattehwvdeffinition is applied,
the conclusion about the brain’s non—decomposability resnzalid.

1.7 Conclusions

If one attempts to understand a complex system like the lir&iof crucial impor-
tance if general operation principles can be formulateddifionally, approaches to
reveal such principles follow the line of decompositionabysis as expressed in the
fundamental assumptiaf cognitive and computational neuroscience, i.e. cogmiti
systems like other, truly complex systems are decompos@bleespondingly, re-
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verse engineering has been considered the appropriat@dodtigy to understand
the brain and to engineer artificial cognitive systems.

The claim was discussed that non-decomposability is nattainsic property of
complex, integrated systems but is only in our eyes, duestafficient mathematical
techniques. For this, the scientific analysis method itsal considered. Referring
to results from mathematics and system theory, | have predemguments for the
position that the dominant complexity concept of cognitivel computational neu-
roscience underlying reverse engineering needs revistomupdated, revised con-
cept must comprise results from the nonlinear science ofptexity, and insights
expressed, e.g., in Rosen’s work on life and cognition. I$ wancluded that the
decomposability assumption of cognitive science must b@dbned.

Organisms and brains are complex, integrated systems whéaton—decomposable.
This insight implies that there is no ‘natural’ way to decarse the brain, neither
structurally nor functionally. We must face the uncomfblesinsight that in cogni-
tive science and neuroscience we have conceptually, tieahg and empirically to
deal with complex, integrated systems which is much moffecdif than with sim-
ple, decomposable systems of quasi—independent moduies! We cannot avoid
(at least in the long run) subjecting research goals sudmeasreation of ‘brain-like
intelligence’ and the like to analyses which apprehend @y wature of natural
complex systems.

aTrandation of Goethe's Verse by George Madison Priest

Who'll know aught living and describe it well,
Seeks first the spirit to expel.

He then has the component parts in hand
But lacks, alas! the spirit's band.

J.W. GOETHE, Faust, First Part
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