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Abstract—Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we
introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm
unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute
particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for
each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents
and discuss the discrepancies.
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1 INTRODUCTION

Vector fields are traditional objects of major interest for visualization.
The significance of these objects is due to their key role in description
of many notions in physics and engineering sciences. This is espe-
cially true for fluid mechanics, vehicle and aircraft design, and weather
predictions. From the theoretical point of view, vector fields have re-
ceived much attention from mathematicians, leading to a precise and
rigorous framework that greatly facilitates their practical study.
In particular, separation and attachment features are of essential inter-
est in many practical studies due to their adverse effects on the object
motion and their implication in vortex genesis. These structures are
used to gain insights about essential flow properties for particular ap-
plications.
Analysis and visualization of the topology poses several challenges.
The phases from generating data (PIV-measurements and CFD-
simulations) to processing (interpolation and numerical approxima-
tion) are affected by inherent errors. According to [11], the visual-
ization of these errors has often been underrepresented in the past.
Many visualization algorithms rely on the extraction of individual
streamlines of the flow associated with a vector field, which are sensi-
tive to a given initial value.
Due to the fact that the streamlines associated with a vector field are
dense, it is impossible to deeply study each single representative. As
a remedy, one can assign a state to each particle that is not determined
by its position but the cell that contains the particle. The movement
between those cells, having been successfully integrated in different
combinatorial models [22, 2], can also be seen as stochastic process,
i.e., the state of a particle changes after a certain time passes. This
leads to the theory of time-discrete Markov processes, which are a
well explored domain of probabilistic theory and provide answers to a
central question one can pose: How likely is it, that multiple particles
that are placed at the same region in the flow came from and will end
up in the same limit set?
The mathematical foundations for this purpose are found in section 3
and 4, our proposed algorithm in 5 and 6.
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2 RELATED WORK

Since Helman and Hesselink [8] introduced the visualization of topo-
logical skeletons of flow fields, much research has been done in this
area. A significant amount of this research was and still is the ex-
traction of invariants and separating structures in steady and unsteady
vector fields.
The original method in [8] was based on a linearization of the flow in a
neighborhood of special singularities, called saddle-points. The parti-
cle traces started from the stable and unstable manifolds of the saddle-
points, called separatrices, divide the domain into classes of equivalent
flow behaviour. Their method was later extended by Wischgoll et al.
[31], who created an algorithm to find closed streamlines in planar
vector fields by searching for cells that get repeatedly crossed by par-
ticles. The complexity of the latter method benefits strongly from the
Poincaré-Bendixson-Theorem, which ensures that a closed streamline
in a 2D vector field must contain at least one singularity.
Scheuermann et al. [24] included the boundary of the domain to gen-
erate more separating streamlines and eventually a finer topology. For
this method it is necessary that one computes all points on the bound-
ary where the vector field is tangential and traces additional particles
from there.
Kenwright et al. [14] used a parallel vector operator [20] to extract
local separation lines in piecewise linear flows. The parallel vector
operator detects whether the velocity is parallel to an eigenvector of
the Jacobian on the boundary of a triangle cell and links these points
to separation and attachment lines. Due to fact that the Jacobian in
piecewise linear vector fields is not continuous, the resulting struc-
tures are not necessarily connected.
Many techniques that visualize Lagrangian coherent structures, such
as [6, 5, 23, 1, 13], are based on the Finite-Time-Lyapunov-Exponents
(FTLE) [7]. They use a linear approximation, called finite time Jaco-
bian, of a map that is generated by the integration of neighboring initial
points for a finite time. The finite time Jacobian is then multiplied with
its transposed to eliminate the rotational movement. The resulting ma-
trix is called the Cauchy-Green-deformation-tensor, which describes
the deformation of a small volume by the flow. The largest eigenvalue
of the Cauchy-Green-deformation-tensor is the visualized parameter
here. The method is applicable to steady and time-dependent vector
field data.
Reininghaus and Hotz developed a purely combinatorial approach to
extract the topological skeleton of 2D vector fields [22]. They con-
struct a simplicial graph from a vector field on a triangular mesh by
linking the simplices with nearby simplices of lower dimension, i.e.,
edges and points. The theoretical basis is given by Forman’s work on
discrete Morse theory [4].
Another combinatorial approach was made by Chen et al. [2]. Their
technique of encoding the vector field into a graph is to compute in-
tegration images of triangular cells. The graph is then processed by
computing strongly connected components and the vector field invari-



ants are classified by the relative homology of their isolating neighbor-
hood (Conley-Index).
Surveys covering more topics of flow visualization are, e.g., [30, 21].
There has also been a growing interest in developing methods to re-
search uncertainty in vector field topology over the past years. A fre-
quently used idea for these purposes is exploring particle distributions
instead of single particles. Otto et al. [17] formulated convergence
criteria for Gaussian distributed density functions by Euler-integration.
Their method also uses the uncertain Poincaré-Index to distinguish be-
tween critical distributions.
Schneider et al. [25] considered numerical integration inflicted by
bounded uniformly distributed errors and replaced the Finite-Time-
Lyapunov-Exponent by a principal component analysis of particle des-
tinations, named finite time variance analysis (FTVA). In contrast to
our approach, which is based on uncertain cell mappings, both tech-
niques use an uncertain integration scheme. Furthermore, our consid-
erations will not be restricted to a finite time like in [25].
Readers interested in detecting and tracking more features of flow data
are also referred to [29].
While there is a comprehensive selection of tools to visualize uncer-
tain data [19], we will use the classic dual color map.
Stochastic processes, in particular random walks, are not only useful
to describe the flow of uncertain particles, but they have also been used
to smooth and denoise vector field data [18].

3 VECTOR FIELDS, INVARIANTS, AND LYAPUNOV EXPONENTS

Let X ′ = F(X) be a differential equation defined on R2, then the asso-
ciated flow is a continuous function Φ : R×R2→ R2, satisfying

Φ(0,x) = x,

Φ(t1,Φ(t2,x)) = Φ(t1 + t2,x).

We have

d
dt

Φ(t,x)|x0
= F(x0).

A set S ⊂ R2 is an invariant set if Φ(t,S) = S for all t ∈ R. For
example, the streamline of any point x ∈ R2 is an invariant set.
A set S is an isolated invariant set if there exists an neighborhood, so
that S is the maximal invariant set contained in the neighborhood.
Hyperbolic fixed points and periodic orbits are examples of isolated
invariant sets, but also the space of their connecting streamlines, e.g.
saddle connectors. While fixed points can be found by interpolation,
an algorithm for extracting invariants of more complicated behaviour
can be found in [2] and [3].
The alpha- and omega limit sets of x ∈ R2 are

α(x) =
⋂

t∈]−∞,0[

Φ(t,x)

ω(x) =
⋂

t∈]0,∞[

Φ(t,x)

where the overline denotes the closure of a set. Equivalence classes
generated by the limit sets of each x induce a topology in R2.
In mathematics the Lyapunov exponent of a dynamical system is
a quantify that characterizes the rate of separation of infinitesimally
close streamlines Φ1 and Φ2:

γ(x) = lim
t→∞

lim
x1→x2

ln
||Φ1(x1, t)−Φ2(x2, t)||

||x1− x2||
.

To determine the expansion rate for particles advected by the flow for
a finite time t, the Finite-Time-Lyapunov-Exponent is a established
method:

FT LEt
x0
(x) =

1
|t|

ln
√

λmax(∆(x, t, t0)),

where
∆(x, t, t0) = (∆Φ

t0+t
t0 x)T (∆Φ

t0+t
t0 x)

is the so-called Cauchy-Green deformation tensor, the finite time Ja-
cobian multiplied with its transposed. λmax denotes the largest eigen-
value of the matrix. It can be interpreted as the square of the largest
rate, that an object of small volume will be stretched by integration
time t. The eigenvector to the largest eigenvalue λmax points in the
direction of largest stretch.
Further explanations can be found in and [7] and [10].

4 DISCRETE MARKOV CHAINS

Stochastic processes, e.g. Brownian motions or random walks, have
a far-reaching domain of applications in almost all scientific research
areas. For the sake of simplicity, we restrict our theoretical consid-
erations to a special state of stochastic processes, those which have
discrete states and discrete time steps. These models lead to time-
discrete Markov chains, which are random processes being consid-
ered memoryless, i.e., the next state of the system only depends on
the current state and not to the sequence of events before. Is the pro-
cess time-homogeneous, it can be expressed by a single matrix. For a
time-inhomogeneous process, the matrix might change from one step
to another.
The meaning of these matrices can be easily followed with basic
knowledge of linear algebra and probability theory. We give an ex-
ample.
Imagine two neighboring countries with the same amount of popula-
tion, i.e. the 2d probability distribution vector only contains entries
of 0.5. Each year 10 per cent of the population of country A migrate
to country B and 20 per cent of country B migrate to country A. The
resulting matrix, that encodes the process, is

T =

(
0.9 0.1
0.2 0.8

)
.

If we are interested in the population distribution after one year, one
has to apply the matrix once to the transposed of the probability distri-
bution vector from the right(

0.5
0.5

)T
·
(

0.9 0.1
0.2 0.8

)
=

(
0.55
0.45

)
,

so the population of A is, of course, growing, but how does the system
behave after a very large number of years? Applying the matrix T
many times results in the vector(

0.6
0.3

)
,

with any more multiplications having no effect, so we found a
(left-)eigenvector of T to the eigenvalue of 1, which is the station-
ary state of the population.
We now generalize the concept of transition matrices and state the
most important properties and theorems, for detailed proofs we refer
to [27]. However, there are a lot of books which explain the topic in
an adequate way.
A vector v is a probability distribution vector if all entries vi are greater
or equal to 0 and

∑
i

vi = 1.

A real matrix T is called (row-)stochastic if all entries ti j are greater
or equal to 0 and

∑
j

ti j = 1.

We will refer to it as transition matrix.
The entry ti j of the transition matrix describes the probability of the
system from going from state i to state j. A transition matrix is a
linear operator, that maps probability distribution vector to another
probability distribution vector. The exploration of the long time



Fig. 1. A drawing of strongly connected components. Different colors
describe pairwise disjoint sets of the graph’s nodes. In each set exists
a path from each node to all others.

behaviour of these vectors by repeated multiplication with T is of
particular interest in the theory of stochastic processes.
T is bounded in its norm by 1 and so so are its eigenvalues. Although
all entries of T are positive and real, negative and complex eigenvalues
are common.
We call a eigenvalue λ dominant if |λ | = 1. If a eigenvalue is not
dominant, its influence vanishes with each potentiation and all vectors
of the corresponding eigenspace will be mapped to zero after a very
large number of time steps.
Moreover, the existence of at least one eigenvalue λ = 1 is guaranteed
for every transition matrix T . Its eigenspace is called stationary
state of the system. A system may have many stationary states and
so λ = 1 may be a repeated eigenvalue. In this case, the stationary
distribution is depending on the initial distribution vector, that was
presumed. A condition that ensures a unique stationary distribution is
Theorem(Perron-Frobenius):
Let T be a transition matrix and all entries ti j are greater than 0.
Then there exists an eigenvalue λ = 1, that is of multiplicity 1 and
the corresponding eigenvector only has positive entries. Further,
all distribution vectors converge against the same unique stationary
distribution vector.

Even under weaker conditions one can assert a unique stationary
distribution. For this purpose we need another Definition:
A transition matrix T is called irreducible, when each state can be
reached from any other state. Else it is reducible.
The indices of a reducible matrix can be reordered, so that it is of the
block-form (

TMM TMN
0 TNN

)
.

Theorem:
Is a transition matrix T irreducible and all entries ti j are greater or
equal to 0, then the eigenvalue λ = 1 is of multiplicity 1.

This weaker formulation does not exclude the possibility, that there
might be other eigenvalues fulfilling |λ |= 1.
There is a relation between the matrix T and an directed Graph GT .
If GT has exactly n vertices, where n is the size of T , and there
is an edge from vertex i to vertex j precisely when ti j > 0. Then
T is irreducible if and only if GT is strongly connected. Strongly
connected components are an essential processing stage of the
Morse-decomposition of Chen et al. [2]. An example of strongly
connected components is illustrated in Figure 1.

One has to bring in mind that there still exist transition matrices that
do not converge. Just consider the so-called Ehrenfest-Matrix 0 1 0

1
2 0 1

2
0 1 0

 ,

which is periodic by satisfying T n = T n+2. However, these types of
matrices form a compact subset of all transition matrices and small
errors will turn them into convergent ones, so many numerically sen-
sitive processes will lead to convergent transition matrices. Some of

Fig. 2. An illustration of an outer approximation of a cell. The image of
the cell C1 under a fixed integration time t is approximated by all cells Ci,
for which Φ(t,C1)∩Ci is not empty.

them might converge very slowly. The numerical instability of non-
convergent matrices explains why we were never able to construct a
divergent Markov chain by the flow induced by a planar vector field as
explained in the next section.

5 CONSTRUCTION OF A TIME-DISCRETE MARKOV CHAIN
GENERATED BY A PLANAR VECTOR FIELD

Let us look back to the population model that we introduced as an ex-
ample in the last section. One could simply assume that, if we replace
the countries by the cells in our dataset and the population by the ar-
bitrarily placed particles in the flow, the job is already done. This is
wrong.
We cannot only trace a few streamlines and assume that the image of
a cell lies entirely in the obtained cells. There may be, depending how
expansive the flow is, many holes in the integration image. On the
other hand, a very dense sampling of the cell could lead to very high
computational costs. A stronger mathematical foundation is needed.

5.1 The Outer Approximation

Chen et al. developed a rigorous and efficient algorithm which can
reconstruct the image of a triangle under a fixed integration time. The
coarse idea is to adaptively integrate all edges and fill the resulting
hole. For a detailed description of the algorithm see chapter 4 of [2].
Our chosen example contains a triangulated mesh (Figure 2), although
this method can be easily applied to any other types of cells, too. An
enclosing technique of flows sampled on cubical grids can be found in
the publication of Mrozek et al. [16].
A set of cells Bi is called an outer approximation of a cell A, if the
image of A under a fixed integration time t is completely contained
in
⋃

i Bi. It has been proven in [12] that these maps deliver a valid
approximation of the flow. Chen et al. encode this mapping into a
graph, use the extraction of strongly connected components and apply
the computation of a powerful, though theoretically demanding, topo-
logical invariant, the Conley Index, to obtain a Morse Decomposition
of the vector field.
Our approach in processing is to construct a high-dimensional sparse
transition matrix from the particle movement in the field, because there
are no generalized algorithms, that compute strongly connected com-
ponents of a graph with weights on edges.
A sparse matrix is a matrix populated primarily with zeros. Special-
ized data structures can take advantage of that and do not need to store
the zero elements, which allows for fast computations and requires
less memory. In particular, the multiplication of a sparse matrix with
a vector is reduced to linear complexity.
As mentioned in the related work, our algorithm does not use an uncer-
tain integration scheme like in [17, 25], but an uncertain destination
cell. We now reformulate the definition of the outer approximation in
the context of probability:
A set of cells Bi is called an outer approximation of a cell A, if all
particles traced from A for a fixed time t are reaching

⋃
i Bi with the

probability of 1.
We will use the model of a uniform distribution, i.e. our particles reach
all cells of the outer approximation with equal probability. The entry
ti j is non-zero, if and only if cell j is included in the outer approxi-
mation by integration from cell i by one time step and its value is the



reciprocal of the total number of cells contained in the outer approxi-
mation. For example, if the image of cell 1 is cell 2,3,7 and 15, then
the entries of t1,2, t1,3, t1,7 and t1,15 will be set to 0.25. Other models
are discussed in the future work section.
We cannot assume a Gaussian distribution as a particle destination,
because if we allow particles to move to each cell of the data with
probability greater zero, our transition matrix will become dense and
efficient computations for big datasets will become impossible. How-
ever, such a consideration might be interesting for small datasets, be-
cause a completely dense matrix would ensure that the conditions of
the Perron-Frobenius-Theorem are fulfilled. Furthermore, a Gaussian
probability density function would rather fit to a particle in quantum
mechanics, but not fluid mechanics, which is one of the most common
sources of discrete vector field data.
After we calculated the outer approximation for each cell, we can fill
the transition matrix. It is sparse, because the number of image cells
is usually much smaller than the total amount of cells in the dataset.
To determine the state of the system in the next time step, not the time
range of the integration is raised, but the distribution vector is multi-
plied with the transition matrix another time:

vn+1 = vT
n ·T.

One cannot derive the backward particle movement by the inversion of
T , because we have no guarantee that its eigenvalues are all different
from zero, and even if this is the case, the inversion of such a high di-
mensional matrix is a numerically unstable operation. As a solution we
construct two transition matrices, one for the forward integration (T+)
and one for the backward integration (T−). The stationary probability
vectors of T+ are cells, that contain the attracting invariant sets, those
of T− are containing the repelling ones. Dellnitz et al. already for-
mulated a method to find these invariants by eigenvector computation
[3]. There are several public available tools that can solve eigenvalue
problems of high-dimensional sparse matrices, e.g. [9].
We have chosen some examples of invariants to illustrate in Figure 3,
where it visible, that there is always a duality between a transition ma-
trix and a probabilistic graph. The matrices have to be considered as
a block or multiple blocks of a matrix of much higher dimension. The
matrices concerning these examples are

• (a)


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

 ,

which is convergent by potentiation.

• (b)


0 a 0 0 0 1−a
0 0 b 0 0 1−b
0 0 0 c 0 1− c
0 0 0 0 d 1−d
e 0 0 0 0 1− e
0 0 0 0 0 1

 ,

which is convergent, if one of the probability parameters is not
exactly 1.0.

• (c)


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 ,

which has only eigenvalues on the unit circle in the plane of com-
plex numbers and is divergent.

• (d)


0 a 1−a 0 0
0 0 1 0 0
0 0 0 b 1−b
0 0 0 0 1
1 0 0 0 0

 ,

which is convergent, if one of the probability parameters is not
exactly 1 or exactly 0.

(a) (b)

(c) (d)

Fig. 3. Examples of different invariants in the context of probabilistic
mappings: (a) attracting node, (b) attracting focus, (c) ideal closed orbit,
(d) realistic closed orbit. The balls may represent cells or unions of cells.

As a consequence, a time-discrete Markov chain is not necessarily
convergent, when it is created by the flow of a single particle. This
could lead to an ideal periodic orbit (c). Due to the fact, that we use
particle distributions, some particles might reach cells some time steps
earlier or later than the majority in the context of cell mappings - the
distribution will get blurred alongside the closed streamline, leading
to (d).
The reader might already noticed, that saddles and separatrices are
missing in these examples. The reason is, that these structures in gen-
eral cannot be found be eigenvector computation, neither of T+, nor
T−, because particle distributions won’t converge against these invari-
ants. This issue that was also mentioned in [17] . This was the actual
motivation for us to write this paper. In Section 6 we will introduce the
degree of uncertainty, which removes this shortcoming and is a mea-
sure for separation of convergent transition matrices and eventually
separating structures in the vector field.

5.2 Boundary Topology
We cannot claim to have a complete algorithm that determines stream-
line separation at infinity without including the boundary topology.
An existing algorithm by Scheuermann et al. [24] computes all inner
tangential points on the boundary of the dataset and traces generalized
separatrices from there, which divide the vector field into additional
equivalence classes of flow behaviour. Our method is similar, except
that we extract connected regions of outflow on the boundary, which
are often bordered by such tangential points. Both methods are
illustrated in Figure 4.
These computed exit sets will be treated as additional cells, i.e., if
a particle crosses the boundary, it will be automatically mapped to
the corresponding cell which represents the exit set. Further, these
cells will be mapped with probability 1 to themselves, so, loosely
speaking, particles reaching a certain exit set will stick there forever.
The transition matrix has to be extended in size by the number of
exit sets, which is normally much smaller than the number of cells in
dataset. This has to be done for T+ and T−. In the end, the algorithm
is able to decide, whether particle distributions are likely to flow into
two or more different outflow regions.
A similar method has also been used by Mahrous et al. to improve
topological segmentation of 3d vector fields [15].

6 PROCESSING OF A TIME-DISCRETE MARKOV CHAIN GEN-
ERATED BY A PLANAR VECTOR FIELD

The reason, that 2D vector fields generate transition matrices, that are
convergent by potentiation, makes it appealing to compute T ∞

+ or T ∞
− .



(a) (b)

Fig. 4. Processing of the boundary: (a) Method by Scheuermann et
al., who compute and trace tangential points (yellow) on the boundary.
(b) In our method, connected regions of outflow (exit sets) b1− b6 are
denoted as additional invariants.

Even though we do have a lot acceleration methods, like parallelizing
the process or using binary exponentiation, i.e., computing T 2n

, this is
a quite bad idea. If a matrix T is sparse, it does not automatically hold
for its powers. We experienced a heavy rise of computation time with
each multiplication step we executed.
The solution for this problem lies in an iteration scheme. We do not
need the calculate the stationary distribution for every initial distribu-
tion that is possible, but only for unit distributions, so called Dirac-
impulses. That means, all entries of the probability distribution vector
are zero except at the i-th position, which is 1, representing a distri-
bution located only in the i-th cell. We will refer to it as ei. The unit
vectors ei will be the initial values for the following iteration process.
We apply T to ei until the result does not change anymore, i.e., given
a small ε > 0, we set

(si)0 = ei

and compute
(si)n+1 = (si)

T
n ·T,

until the condition
||(si)n+1− (si)n||< ε

is fulfilled. That technique has to be executed for all ei twice, once
using T+ and T−, and si+ and si− will be the obtained stationary dis-
tribution vectors.
In contrast to computing T ∞

+ or T ∞
− , our matrix will always stay the

same and just the values of our vector change.
We experienced the best performance doing the iteration-scheme with
dense vectors and converting them back to sparse vectors immediately
after they reached the stationary state. An overview over multiple
matrix-vector-iteration-schemes can be found in [28].
While all images of ei under this procedure are contained in the
eigenspace of eigenvalue 1 of either T+ or T−, it would be hard to
visualize the stationary vector for every cell. Instead we analyze how
these stationary vectors change in a neighborhood around each cell.
This can be done by the ordinary l1-metric, which measures the dis-
tance of the stationary distributions. Defining the neighborhood of a
cell i by a number of N cells that have common vertices with i, we
introduce the degrees of uncertainty by

dunc+ =
1

2N

N−1

∑
j=0
||si+− s j+||,

dunc− =
1

2N

N−1

∑
j=0
||si−− s j−||.

All values inside the metrics had already been calculated by our iter-
ation process. As interpretation, the degree of uncertainty describes

how different the stationary distribution obtained by cell i is compared
to the stationary distributions in its neighborhood in average. dunc is 0
if all stationary distributions are the same. dunc is 1 if all neighboring
cells of cell i lead to stationary states consisting of cells, which are
disjoint to those represented by si, which is a very exceptional event.
Let us summarize the whole algorithm:

1. Convert the flow field into a collection of cells.

2. Determine the destination probabilities of the particles traced
from each cell and fill the transition matrix entries of T+ and
T−.

3. Iterate all unit distributions, which represent single cells, with
the transition matrices to compute the stationary distributions.

4. Determine the measure of flow separation with our propagated
formula and use a dual color map to visualize it.

7 RESULTS

We applied our algorithm to artificially generated data (Figure 6
and Figure 5) and CFD-simulations (Figure 7 and Figure 8). For
the construction of the outer approximation we used a Runge-Kutta-
integration of 4th order. Sparse matrix operations were done by our
own implementations. The much bigger part of the computational time
was always the matrix iteration process.
We experienced enormous discrepancies in the computational time of
the algorithm, which was independent of the number of cells in the
data. Vector fields of vanishing rotational behaviour (Figure 6) were
handled in less than one minute, while highly rotational fields (Figure
7) took up to several hours. The reason for that is that transition ma-
trices generated by gradient fields often have a less amount of dom-
inating eigenvalues or are even reducible with only one dominating
eigenvalue in each block matrix, so that a convergence in linear time
of many matrix-vector-iteration processes is ensured [28]. This does
not hold for highly rotational fields, where discrete particle distribu-
tions take much more time steps to converge.
In Figure 5, the closed streamline could not be detected by using [14],
instead 4 lines of local separation were extracted. The FTLE as able
to find the closed orbit (assuming, one chooses a sufficient integra-
tion time), but still includes the separation lines as features. The time-
discrete Markov chain only highlights the attracting closed streamline,
because it is the only uncertainty-generating feature in the data con-
cerning backward time integration. Some particles flow to boundary,
others to the critical point in the interior, two disjoint stationary dis-
tributions, leading to an alternative approach in finding closed stream-
lines, without checking for cell cycles of single particle movement like
in [31].
Figure 6 is the only example, where the results of FTLE and dunc are
almost identical.
Due to the fact, that the time-discrete Markov chains only determines
the long time behaviour of particle movements, local separation fea-
tures are completely ignored. Also, the neighborhood of center points
in Figure 7, which is containing infinitesimally many closed stream-
lines, is treated as a one stationary distribution. In these regions, the
values of λmax of the FTLE are likely to oscillate by growing inte-
gration time, there might be misleading informations of separation
features. Also, the separatrices of the saddle on the right were never
discovered by any time step we tried in the FTLE. The time-discrete
Markov chain had no problems with that feature and also sharply ex-
tracted many uncertain destinations of particles on the lower and right
boundary of the data (Figure 7(f)). It is remarkable, that the saddle
point on the left, unlike to an “ordinary“ saddle point, but joining 2
homoclinic periodic orbits, leads to a crossing of two uncertainty lines
of the same(!) time direction of integration.
Figure 8 shows, that it is not always easy to guess the ideal time step
when using FTLE. The extracted structures may be loose and discon-
nected for a small integration time (Figure 8(b)) or blurred for a too
large integration time (Figure 8(c)). The dunc (Figure 8(d)) is able to
reduce these occurrences.



(a) (b)

(c) (d)

Fig. 5. An attracting closed streamline: (a) a LIC [26] and its exact
position (red), (b) separation lines found by the algorithm of Kenwright
[14], (c) color map of the FTLE in negative time direction, (d) color map
of our method (dunc−) for the same time step like in (c).

Table 1. Comparison of FTLE, FTVA and time-discrete Markov chains.

FTLE FTVA Markov chain
local separation yes yes no

separation at infinite times no no yes
linear complexity yes yes no (future work)
grid-independent yes yes yes

time-dependent data yes yes no (future work)
handles uncertain data no yes yes

includes boundary topology no no yes
free of differential operators no yes yes

Compared to the topological skeleton of a vector field (Figure 7(g)),
the dunc is able to detect more structures, in particular features related
to the boundary topology. Its separation lines are broader because of
the averaging effect that occurs when we include all neighboring cells
into the calculation, which also depends on the size of the cells. One
has to explore in future work, whether this can be avoided by taking
the maximum instead of the average in the calculation of dunc, so that
weaker separation features are better visible and do not suffer another
low pass filter effect.

8 CONCLUSION

We have presented an alternative approach to detect separation in
steady 2d vector fields by computing the uncertainty that initial
particle distributions generate by being transported to their stationary
distribution. A brief comparison to FTLE and FTVA can be found in
table 1 and the computational times are listed in table 2. Common
post-processing methods like the extractions of ridge- and valley-lines
are applicable to all of them.
It became clear that increasing the integration time of FTLE does not
necessarily lead to better results. The discrete-time Markov chain can
fill the gap by allowing infinite-time-evaluation inclusively respecting
the boundary topology and eventually being able to detect separation
features that were hidden before. It completes existing techniques by

Table 2. Computational times.

dataset FTLE Markov chain
figure 6 < 1 min < 1 min
figure 7 < 1 min 390 min
figure 8 < 1 min 172 min

getting closer to the real Lyapunov exponents, which pose a very high
challenge to be calculated numerically. In the end, the time-discrete
Markov chain leads to sharper, less cluttered structures than simply
increasing the time for FTLE would do, and, by ignoring local
distentions of the flow, to easier interpretations. For the computation
of dunc+ and dunc− the whole domain of the data is influential, not
only values in a local neighborhood. Not every separation feature
does automatically lead to higher uncertainty in particle destinations.
Sometimes visualizing less is more.

9 FUTURE WORK

We admit that the high computational costs have to be considered as
the most important issue to solve. One possible solution would be to
extend the method with graph analysis, so closed streamlines can be
detected earlier and the corresponding cells, which cause the highest
computational costs, can be excluded from the process.
As mentioned in the results section, it can be preferable not to average
the results over multiple cells.
It is possible that using other models than the uniform distribution of
particles over the outer approximation could lead to even better repre-
sentations, but it would be necessary to sample also the interior of the
cell when creating the flow map, which makes this stage of the algo-
rithm much more costly. As a compromise, one could avoid iterating
each single cell through the process, but grouping cells by reasonable
equivalence relations and iterate initial distributions over these groups
instead.
The extension of the method to time-dependent data is in progress.
Time-dependent vector fields cannot be expressed by a time-
homogeneous Markov chain, i.e. a single matrix, we would need a
sparse transition matrix for every time slice. Since there is always a
finite number of them, the iteration to ”infinity“ is reduced to a finite
product

si = eT
i ·T1 ·T2 · ... ·Tn.

That product is surprisingly less costly than our method for steady vec-
tor fields. On the other hand, more time is needed to construct the flow
maps and one has to expect more influences from the size of the cells.
A distribution over many cells, that are very small compared to the rest
of the dataset, does not necessarily indicate much separation, neither
is guaranteed that si contains an invariant set here.
An interesting challenge is to combine Markov processes with
integration-free approaches from discrete Morse theory. Due to the
fact that simplicial cells in that method are only linked to the neighbor-
ing simplices of lower dimension, it could cause the transition matrix
to be even less populated and eventually increases the performance.
Also, an extension to 3D is possible, which requires an outer approxi-
mation for the image of a 3d cell by integration. The rest of the algo-
rithm would be completely the same.
In case that there will ever occur a divergent time-discrete Markov
chain, it is possible that it is periodic instead, like the Ehrenfest ma-
trix, so doing Fourier analysis with the obtained discrete distributions
is also an interesting aspect.
Transition matrices also allow a more in-depth exploration of the
topology suffering from errors made by integration or interpolation.
In the stage of the algorithm, where we process the boundary, we al-
ready exploited the fact that we can declare an arbitrarily chosen cell
i as an invariant set by setting ti,i to 1. We are able do this practically
anywhere and study the changes that it creates. Transition matrices are
easy to manipulate.



(a) (b) (c)

Fig. 6. A gradient vector field containing 49 stationary points: (a) the exact position of the points denoted by spheres (red: saddle, blue: sink, green:
source), (b) FTLE (red: forward separation, blue: backward separation), (c) dunc+ (red) and dunc− (blue).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. A CFD-dataset simulating a fluid entering at the left bottom: (a) 4 center points (yellow) and 2 saddles (red), the left saddle joins two
homoclinic orbits, (b)-(e) FTLE with increasing time step, (f) dunc+ (red) and dunc− (blue), (g) toplogical skeleton (red) extracted by the method of
Helman [8] (h) separation lines computed by the method of Kenwright [14].



(a) (b)

(c) (d)

Fig. 8. A swirling jet entering a fluid at rest from the left side: (a) the magnitude of velocity from zero (blue) to red (max), (b) FTLE for t = 0.01, (c)
FTLE for t = 0.3, (d) dunc+ (red) and dunc− (blue).
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