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Abstract

We present an algorithm that allows stream surfaces to recognize and adapt to vector field topology. Standard

stream surface algorithms either refine the surface uncontrolled near critical points which slows down the compu-

tation considerably and may lead to a poor surface approximation. Alternatively, the concerned region is omitted

from the stream surface by severing it into two parts thus generating an incomplete stream surface. Our algo-

rithm utilizes topological information to provide a fast, accurate, and complete triangulation of the stream surface

near critical points. The required topological information is calculated in a preprocessing step. We compare our

algorithm against the standard approach both visually and in performance.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: flow visualization, stream
surface, topology—Line and curve generation

1. Introduction

Efficient analysis of flow fields in general relies on visual-
ization. An intuitive and well understood visualization tech-
nique are stream surfaces. An ideal stream surface is a two-
dimensional continuum of streamlines starting from a well
defined space curve. It can be seen as a representation of the
area through which virtual particles released into a steady
flow from the seed curve pass. Numerous variants of meth-
ods to compute stream surfaces can be found in the flow vi-
sualization literature (see Sec. 2). However, as we will show
they either tend to bog down or produce incomplete surfaces
if they intersect the 2D stable manifold of a saddle point.

A critical point or singularity is a point in the domain
where the vector field describing the flow becomes zero. A
saddle point is a critical point with a certain eigenvalue con-
figuration of its Jacobian matrix at that particular point. In a
dataset with intricate flow the intersection of 2D stable man-
ifolds with stream surfaces is very likely to be encountered.

The aim of this work is to provide an algorithm for com-
puting stream surfaces which correctly detects, handles and
if necessary incorporates critical points when the stream sur-
face approaches them. Our work was partly motivated by
a discussion in a paper by Peikert and Sadlo [PS07] that
brought up the term of topology aware stream surfaces. Fur-
ther related work can be found in the following section.

2. Related Work

In this section, we want to discuss relevant previous work
which can be divided into three major categories discussed
in the following subsections. Firstly, we recall the ba-
sics of vector field topology, then we review literature on
stream surfaces, and finally we describe topologically rele-
vant stream surfaces.

2.1. Vector Field Topology

Dynamical systems research and analysis [HSD03, GH83]
motivated the usage of topological methods in visualiza-
tion. Thus, topological methods for vector fields focus on
the so-called invariant sets, i.e. critical points, periodic or-
bits and the like. They were introduced as a visualization
technique by Helman and Hesselink [HH91, HH89]. Globus
et al. [GLL91] extended the display of critical points with
local topological information such as eigenvectors to pro-
vide more insight into the behavior of the flow around these
critical points.

Figure 1 shows the two types of a 3D non-degenerate (Ja-
cobian has full rank) saddle point. Both saddle points have
attracting behavior in the grey plane and repelling behav-
ior elsewhere (repelling and attracting behavior can also be
vice versa). The right image shows a focus or spiral saddle,
that has rotating behavior around the 1D unstable manifold,
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Figure 1: Illustration of different types of 3D vector field

saddles. Node saddle (left) and spiral saddle (right).

whereas the left image shows a so-called node saddle that
exhibits no rotation.

The sole depiction of critical points with local topological
information such as eigenvectors [GLL91] does not yield a
picture of the whole vector field topology. Another important
element of vector field topology are the so-called separatri-
ces.

In 3D a separatrix (separation surface, separating 2D man-
ifold) is a uniquely defined stream surface which is locally
tangential to the plane spanned by two eigenvectors of a
saddle point (grey plane in Fig. 1). This stream surface is
also called 2D stable manifold if the eigenvalues associated
with the two eigenvectors are both negative. If they are both
positive it is called 2D unstable manifold. For the sake of
not confusing the reader we will generally restrict ourselves,
without loss of generality, to saddle points with one positive
and two negative eigenvalues exhibiting a 2D stable man-
ifold. This matter will be discussed in more detail in sec-
tion 2.3.

2.2. Stream Surfaces

In this section, we will review literature related to the con-
struction of stream surfaces and their approximation. One of
the first efficient algorithms for stream surface computation
in visualization was described by Hultquist [Hul]. In his al-
gorithm, like in almost any other stream surface algorithm,
the seed curve is discretized into a finite number of points
from which stream lines are started. Typically [GTS∗04], the
surface is constructed by advancing a front of virtual parti-
cles representing stream lines. Thus, the advancing front is a
polyline consisting of segments connecting the endpoints of
neighboring stream lines.

In order to deal with diverging flow, often a distance based
refinement scheme is used: If the distance between two
stream lines exceeds a predefined threshold, a new stream
line is started in the middle of the segment between the cur-
rent end points of adjacent stream lines. The current ribbon
is split into two. This refinement scheme accounts for time
line stretching in regions with diverging flow, but does not
perform very well in regions with intricate flow.

Garth et al. [GTS∗04,GKT∗08] presented two approaches

improving on Hultquist’s work and showed how to obtain
surfaces with higher accuracy. In the first work, the im-
provements are achieved by using a higher order integration
scheme combined with arc-length parameterization. In the
latter, a curve refinement scheme is used to approximate time
lines yielding accurate path surfaces in large time-dependent
vector fields. Using Hermite interpolation for the refinement
process, Schneider et al. [SWS09] achieved fourth order ac-
curacy yielding smooth C1-continuous stream surfaces.

Scheuermann et al. [SBH∗01] presented an algorithm ex-
ploiting the existence of an analytic solution to the stream
surface problem for a tetrahedral cell with linear interpo-
lation. For a grid consisting of tetrahedral cells the stream
surface is then computed on a per-cell basis. The restriction
to tetrahedral cells represents a serious limitation since the
algorithm is not applicable to model computations based on
other interpolation schemes.

A completely different approach was taken by
Schafhitzel et al. [STWE07]. Their method essentially
performs a GPU-accelerated splatting of a massive amount
of advected particles to achieve the impression of a surface
in the vector field. Therefore, this algorithm stays mostly
unaffected of vector field topology with the drawback of not
generating an explicit mesh.

Recently, a work fully employing the segmenting
property of stream surfaces was published by Ober-
maier et al. [OKHBH09]. The stream surfaces in their appli-
cation do not originate from saddle points but rather from so-
called separation lines where the flow separates from bound-
ary walls. This method constructs a watertight segmentation
of the complete vector field using stream surfaces.

A number of other papers have used stream lines, stream
surfaces and their variations for illustrating topologically in-
teresting regions of flows (e.g. [LMGP97, SZH97]. Addi-
tional references about work on stream surfaces can be found
in a survey by McLoughlin et al. [MLP∗10].

None of the above mentioned algorithms is “topology
aware”, i.e. recognizes critical points explicitly. Yet critical
points itself can be subject to seeding stream surface. In the
following section we discuss these stream surfaces related to
critical points.

2.3. Topology Related Stream Surfaces

As mentioned above, stream surfaces play a major role in
three-dimensional vector field topology as 2D (un)stable
manifolds of 3D saddle points. Like streamlines in 2D they
segment the flow into regions with common origin and des-
tination. An example where the separation surface has been
used to illustrate the flow behavior in the vicinity of critical
points can be found in [KOD∗05]. Peikert and Sadlo [PS09]
presented an algorithm for computing the separating 2D
manifold of a saddle by using stream surface techniques.
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Figure 2: Stream surface in linear vector field with highly

diverging stream lines where the angle criterion (130 de-

grees) fails because the surface does not run into the saddle.

The red part of the surface would have been left out if the

angle criterion were to be used.

Their algorithm robustly handles the generation of a suitable
start curve which is a difficult problem in its own right. How-
ever, their approach is not concerned with stream surfaces
intersecting separatrices, which is the topic of this work.

In general, displaying all separatrices of a 3D flow
is problematic. While in 2D all separatrices can be ob-
served simultaneously, the display of the separatrices in
3D strongly suffers from occlusion. To handle this prob-
lem Theisel et al. [TWHS] suggested to display only the so-
called saddle connectors which are the intersection curves of
two separating 2D manifolds.

3. Stream Surfaces and Vector Field Topology

In this section, we want to raise the awareness for the
interplay between stream surfaces and vector field topol-
ogy. Stream surface approximation algorithms, especially
Hultquist like approaches, have to deal with diverging flow
i.e. diverging stream lines. Naturally, refinement schemes
take care of an adequate resolution by inserting new stream
lines and terminating existing ones where necessary. The
problem with this method is that if the stream lines diverge
exponentially a distance based refinement scheme inserts ex-
ponentially many new stream lines and stream surface com-
putation eventually bogs down. This kind of behavior is ob-
servable near topologically interesting structures, especially
near critical points of saddle type. In the following we will
discuss this matter in detail.

Let us consider a critical point of saddle type with two
eigenvalues with negative real part (i.e. attracting nature) and
one eigenvalue with positive real part (i.e. repelling nature,
see Fig. 1). Now let us consider further a stream surface in
a 3D domain intersecting the 2D stable manifold (separa-
trix) of that saddle point. Due to the fact that the separa-
trix is stable the stream surface will be drawn closer to the

Figure 3: Stalling’s algorithm applied to a spiral saddle.

When the angle between flow vectors exceeds 150 degrees

the saddle is incorporated leading to visual artifacts such as

the red triangle.

Figure 4: Figure 3 viewed from the side. The approximation

of the spiral by the red triangle in Fig. 3 leads to helix like

structures in the stream surface.

critical point. Yet this holds only for one stream line of the
stream surface. Namely, the one lying in the 2D stable man-
ifold, i.e. the stream line where both surfaces intersect. The
other stream lines of the stream surface are first attracted
to the saddle point but then repelled in direction of the 1D
unstable manifold corresponding to the eigenvalue with pos-
itive real part. Thus, the widely used distance based refine-
ment scheme refines the stream surface exponentially. This
leads to an enormous computational overhead the closer the
stream surface is drawn to the saddle, i.e. the further it is
integrated. Therefore, it is common practice to measure the
angle of the flow vectors of the vector field between neigh-
boring stream lines at the front of the stream surface during
integration. If it exceeds a certain threshold the front is sev-
ered into two parts which are then treated separately by the
algorithm. Unfortunately, this leaves a gap in the surface be-
tween the two stream lines. Moreover, the angle criterion is
not a sufficient means to detect the intersection with a 2D
stable manifold (see Fig. 2).
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The first approach, to the best of our knowledge, trying to
incorporate critical points into the stream surface has been
described by Stalling in his PhD thesis [Sta98]. He presented
an algorithm (see Sec. 2.3) to incorporate node saddles and
sinks into the stream surface. Since our work is an extension
of this approach we describe it in detail in the following.

Firstly, a global list of all critical points along with their
eigenvalues and eigenvectors is computed. Stalling describes
different strategies to handle sinks and saddles. The pres-
ence of the former is detected by the stream line integration
scheme itself. If the sink is only a small distance away the
position of this sink is added as the last stream line posi-
tion. Afterwards this stream line is terminated. The resulting
triangulation thus contains no cracks or wholes (see Fig. 5
left).

Saddles are detected by means of the angle criterion. If
the angle exceeds a prescribed threshold (e.g. 150 degrees)
a saddle is assumed to lie in close vicinity. From the three
different eigenvectors of the saddle the one most parallel
to the quadrilateral, i.e. the front curve, indicating the sad-
dle is chosen. Using the direction of this vector, two new
stream lines are inserted above and below the critical point
(see Fig. 5 right). This way the saddle is incorporated into
the stream surface and it is split into two fronts.

While the above mentioned approach works in 2D we will
explain in the following why it cannot be extended reliably
to 3D. Namely, because the angle criterion is neither a reli-
able nor a sufficient means to detect the intersection of the
stream surface with the separatrix of a saddle point. As a
simple counterexample, consider a stream surface very close
to the 1D stable manifold of a node saddle with two repelling
and one attracting eigenvalue. During integration, depending
on the distance to the 1D manifold, the stream surface gets
arbitrarily close to the saddle point. Near to the saddle point
the stream surface is subject to highly diverging flow (see
Fig. 2). Thus, the angle criterion can rightly indicate a sad-
dle yet the decision to incorporate it would be wrong in this
case. The same example can be constructed with the stream
surface started or getting close to the 2D stable manifold of
a saddle point.

Due to the mentioned shortcomings we will improve on
Stalling’s work and present an algorithm in the next section
that works reliably in 3D. Moreover, we extend it by pro-
viding an algorithm to handle focus (spiraling) saddles. This
is necessary as focus saddles are the major type of critical
points in 3D flow datasets.

Applying Stalling’s algorithm for a node saddle to a fo-
cus saddle leads to the approximation of a spiral by a line
(i.e. triangle). This yields visual artifacts (see Fig. 3 and 4)
and an approximation error of unknown size. However, we
cannot prevent similar artifacts from occurring, but with our
new algorithm we can control their size and shift it to a re-
gion where this kind of approximation can be safely made in
terms of approximation error.

Figure 5: Left: Incorporation of a sink into a stream surface.

Right: Depiction of a node saddle where two new stream

lines are inserted along the repelling eigenvector.

4. The Topology-Aware Stream Surface

In this section, we describe the algorithm that detects
whether a stream surface intersects the separating 2D man-
ifold of a saddle point and the incorporation of the saddle
point into the surface. We omit some technical details which
will follow in Sec. 4.3.

The incorporation of a critical point into the stream sur-
face is only correct in two cases: Firstly, the stream surface
has been computed for t → ∞. This is because for time
based integration the stream surface reaches the saddle only
in the limit, i.e. for t → ∞. Secondly, the stream surface is
parameterized by arc-length and not by time because an arc-
length parameterized stream surface reaches the saddle after
a finite arc-length. Yet there is a case where incorporation of
a critical point into the surface is reasonable even for finite
time based integration. Namely, when the distance between
the stream surface front and the critical point is close to the
prescribed numerical precision.

For our algorithm we need the concept of a linear neigh-
borhood around a critical point xc. We define the linear

neighborhood UL(xc) around a critical point xc ∈ R
3 as the

region for which a linear approximation of the vector field
holds within a certain bound CL ∈ R,CL > 0:

UL(xc) =

{

y ∈ R
3
∣

∣

∣

∣

‖v(y)− J(xc) · (y− xc)‖

‖v(y)‖
<CL

}

where J denotes the Jacobian.

4.1. The Sink

To incorporate a sink into the stream surface we extend the
algorithm by Stalling (see Sec. 3) with one additional step.
Namely, we integrate the stream lines which have signaled
to close in on a sink until they reach the linear neighborhood
(see Fig. 5 left) of that sink. Once the stream line has reached
the linear neighborhood the connection to the sink is made.
We render this additional step necessary since it now ensures
that the stream lines really run into the sink.
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4.2. The Saddle

In order to incorporate a saddle into a stream surface, we
need to detect the intersection of the stream surface with the
2D stable manifold of the saddle point. To achieve this, we
continue integrating the stream surface until its front enters,
i.e. intersects, the linear neighborhood of the saddle point.
Within the linear neighborhood one can easily determine
whether the front is intersected by the 2D stable manifold
or not since it is now a plane spanned by the two attract-
ing eigenvectors. Another advantage is that the stream sur-
face and especially stream lines can be described analyti-
cally (see [NJ99]).

Depending on the eigenvalues of the Jacobian matrix, we
need to distinguish two sub-types of saddle points as they
are treated fundamentally different by our algorithm. These
sub-types are discussed in the following subsections.

4.2.1. The Node Saddle

If all eigenvalues are real valued the saddle is of node type.
As already described in Stalling’s thesis [Sta98] there are
two new stream lines inserted starting a little distance away
from the saddle point (see Fig. 5 right). One tracer in positive
and one in negative direction of the eigenvector associated
with the repelling (i.e. positive) eigenvalue. The distance is
determined by the linear neighborhood of the saddle point.
These new streamlines are then used for further triangulation
of the surface. The triangulation then includes the saddle it-
self.

4.2.2. The Focus Saddle

If the two negative eigenvalues occur as a conjugate-
complex pair µ ± λi the saddle is of focus (spiral) type.
Stream surfaces intersecting the separatrix of this saddle
type typically suffer from visual artifacts (see Fig. 11) gener-
ated by the exponential refinement prominently taking place
close to the saddle.

Therefore, we propose to handle refinement differently
once the stream surface front has entered the linear neighbor-
hood of a focus saddle and intersects its separating 2D man-
ifold. Namely, we insert two new streamlines on the front
segment. One stream line on either side of the separating 2D
manifold. Now the problem consists of finding a good start-
ing point on the front segment for the new stream lines. This
is crucial, because if they are placed too far off the separat-
ing manifold the two inserted stream lines will diverge too
quickly. On the other hand, if they are placed too close to the
separating manifold they stay near it for an unknown amount
of time. It would be desirable to insert the streamlines such
that they separate from the manifold in a defined way after
a predefined amount of time or arc-length. Additionally, the
seeding strategy needs to take into account a non-orthogonal
eigenvector basis. That is the angle between separating 2D

Figure 6: Illustration of the algorithm for finding a seeding

position Ps of a stream line inserted near a focus saddle.

manifold and the real eigenvector can take on arbitrary val-
ues in the interval (0, π

2 ). The effect of non-orthogonal eigen-
vectors is that streamlines seeded at the same distance from
the separating manifold can have substantially different rates
of departing from the separating 2D manifold.

The seeding strategy presented in the following fulfills
the above criteria. It uses the formulas provided by Niel-
son (see [NJ99] case 4) to anticipate stream line behavior
and adjust the seeding for each of the two inserted stream-
lines individually. (P1,P2) denotes the front segment and Pi

the intersection point with the 2D stable manifold on that
segment. Without loss of generality, we describe our seed-
ing strategy in the following for the segment (Pi,P1) since it
works analogous for (Pi,P2).

For the seeding strategy we introduce a forecast time t f ∈
R and compute the analytic stream lines φ for t f from the
point P1 and Pi using Nielson’s formulas. From the analytic
stream lines we obtain two new locations in space: P′

i and
P′

1. Now the stretching of the segment can be calculated to
obtain a parameter s along the segment (Pi,P1):

s(t f ) =
‖P1 −Pi‖

‖P′

1 −P′

i ‖
s ∈ R

The parameter s is used to linearly interpolate a seeding lo-
cation Ps for the new stream line on the front segment (see
Fig. 6):

Ps = (1− s)Pi + sP1

The seeding of new stream lines ends for time based inte-
gration when the distance between the intersection point and
the critical point dist(Pi,PCi

) falls below a prescribed thresh-
old. Within this region around the critical point it is assumed
to be safe to replace the spiral by a triangle in terms of ap-
proximation error. While this threshold controls the approxi-
mation error, the exact dependency of the approximation er-
ror on this threshold is part of future work. For arc-length
integration the seeding ends when the remaining arc-length
along the spiral into the saddle falls below the threshold.
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4.3. Algorithmic Details

In this section, we give an overview of the algorithm steps
and provide algorithmic details which have been omitted
in the former description. An overview of the algorithm in
pseudo code is given in Algorithm 1.

4.3.1. The Linear Neighborhood

In a preprocessing step, along with the critical points, the lin-
ear neighborhood of each critical point is computed. In order
to determine the intersection point between separatrix plane
and front segment, one only needs the linear neighborhood
restricted to the separatrix plane. Therefore, one can com-
pute the radius of the linear neighborhood using an ellipse
lying in the plane and determine its radius. This is accom-
plished by making the two repelling eigenvectors the main
axes of an ellipse. The ellipse is then discretized and ev-
ery discretized position is checked for linearity. The linearity
test consists of checking whether the relative error induced
by the linearization around the critical point xc falls below
a prescribed threshold CL. The relative error consists of the
absolute error between the linearized field and the real vector
v of the field divided by the magnitude of v:

‖v(x)− J · (x− xc)‖

‖v(x)‖
<CL (1)

If one of the positions exceeds the prescribed threshold for
linearity the radius is halved and the algorithm is executed
recursively until it succeeds. This way, one finds an approx-
imation for the maximal radius with linear flow behavior in
the separatrix plane.

A modified version of the above algorithm using a ray
instead of the ellipse is used to determine the interval of the
linear neighborhood along the 1D unstable manifold. The in-
terval boundaries provide starting positions for the two new
stream lines inserted along the 1D unstable manifold of the
critical point (one on either side of the separatrix).

4.3.2. Practical Considerations

In order to speed up the algorithm, we use the angle criterion
as a cheap means to indicate a possible intersection of a
front segment with a separating 2D manifold of a saddle. We
found that using an angle of 90 degrees yields good results. If
that angle is exceeded a simple test is performed whether the
reporting front segment intersects the linear neighborhood
of a critical point. This being the case, the two end points
are checked whether they lie on different sides of the linear
separatrix plane. This finally decides if the stream surface is
intersected by the 2D stable manifold. If an intersection is
found the algorithm needs to discriminate between the focus
and node saddle case to choose the appropriate algorithm.
If any of the above tests fail the stream surface is integrated
further.

The end points of the segment (P1,P2) can lie outside the
linear neighborhood making the estimate of the separation

Algorithm 1 Short overview of the algorithm in pseudo code

Require: Computed saddle points PCi

1: for all front segments (P1, P2) do

2: Integrate segment
3: if angle(v(P1),v(P2))≥ 90◦ then

4: if (P1,P2) in linear neighborhood of PCi
then

5: if (P1,P2) intersected by 2D stable manifold (in-
tersection point denoted Pi) then

6: if Node Saddle then

7: Insert two streamlines in direction of the re-
pelling eigenvector

8: Severe the front
9: else

10: if dist(Pi,PCi) < thresh then

11: Insert two streamlines in direction of the
repelling eigenvector

12: Severe the front
13: else

14: Insert two new stream lines on the seg-
ment (P1, P2) on either side of the sepa-
rating 2D manifold

15: end if

16: end if

17: end if

18: end if

19: end if

20: end for

rate less accurate. However, the algorithm robustly handles
these inaccuracies. Since only the starting location Ps is af-
fected, suboptimal choices will be corrected in future re-
finement steps resulting in a few additional stream lines at
the worst. Alternatively, the intersection points between seg-
ment and linear neighborhood might be utilized.

The linearity threshold defines the size of the linear neigh-
borhood and thus the distance at which the algorithm can
start its work. The problem with increasing the threshold
is the increasing uncertainty of the intersection point Pi

between the segment and the 2D stable manifold. Thus,
overzealous increase might lead to seeding locations not sep-
arated by the 2D stable manifold. We used a threshold of 0.1
for all examples;

Inside the linear neighborhood, the forecast time t f con-
trols roughly how many time line approximations are leaped
before refinement occurs again. It can be tuned to fit the
threshold for distance-based refinement in case of arc-length
integration. For time based integration it can be chosen π

2 .
This way, roughly every quarter rotation new stream lines
are seeded.

Using the described algorithm, mild exponential refine-
ment still occurs in the case of focus saddles, yet its occur-
rence is limited especially in the case of arc-length parame-
terization.

c© 2011 The Author(s)
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Figure 7: Negative time stream surface in Draft Tube dataset Left: Location of the surface in the dataset. Right: Overview of

the topology-aware stream surface running into a node saddle. Close ups of the saddle region can be seen below in Fig. 8.

Figure 8: Close ups of the saddle region showing the triangulation. Left: Stream surface generated by the standard algorithm

continuously refining the stream surface near the saddle. The visual artifacts from the refining process are clearly visible. Right:

Stream surface computed with our algorithm incorporating the saddle cleanly into the surface.

5. Results

We applied our algorithm to a number of complex realistic
datasets and were able to prove its utility and robustness. We
provide images and a discussion for two of the datasets in
the following.

5.1. Francis Draft Tube

The Draft Tube dataset is a CFD simulation with about one
million arbitrarily shaped hexahedron cells. The dataset is
very turbulent resulting in a large number of critical points.
We chose a stream surface intersecting the 2D unstable man-
ifold of a node saddle (see Fig. 7). The surface is there-
fore integrated backwards in time and parameterized by arc-
length. The stream surface is basically split into two parts
by the saddle point. Beyond the saddle point the two parts
of the surface move largely independently. Figure 8 shows
close ups of the saddle point and visualizes the difference
between a standard stream surface and our algorithm.

Figure 9 shows the efficiency gain from our algorithm.
Especially arc-length parameterization benefits from it since
the arc-length of the stream line running into the saddle point
is finite. Thus, parameterization is easily maintained after
incorporation of the saddle point.

Integr.
Length

Incorps. /
Splits

Stream Lines
Topo Aware

Stream Lines
Standard

0.1 0 110 110
0.2 1 343 393
0.3 1 430 680
0.4 1 490 941
0.5 1 588 1239

Figure 9: Comparison between standard and topology

aware algorithm for the Draft Tube dataset. As can be seen,

our algorithm produces considerably fewer stream lines.
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Figure 10: High quality rendering of the 2D unstable manifold stream surface of the left breakdown bubble in the Delta Wing

dataset running into the opposing focus saddle point. Red eigenvectors indicate repelling behavior whereas blue eigenvectors

indicate attracting behavior as communicated by the arrow directions.

Figure 11: Close ups of Fig. 10. Both surfaces consist of a similar amount of streamlines (approx. 8300) and have the same

integration time of 0.035. Left: Close up of the surface generated by the standard algorithm showing artifacts of the refinement

process and the resulting broken surface approximation. Right: Close up of the surface computed with our topology aware

algorithm with t f =
π
2 .

5.2. The Delta Wing

This dataset stems from an unsteady vortex breakdown study
around a delta wing configuration. The CFD simulation con-
sists of a total of 1000 time steps. For our example we chose
time step 650 with fully developed vortex breakdown bub-
bles. The data is given on an unstructured grid with about 12
million cells (tetrahedra and prisms).

Figure 10 shows an overview of the left breakdown bub-
ble configuration with two spiraling saddle points. The 2D
unstable manifold of the first saddle intersects the 2D stable
manifold of the second saddle multiple times due to fold-
ing of the stream surface. This is an excellent example for
our algorithm because the second saddle needs to be incor-
porated multiple times. Now the algorithm is actually capa-
ble of counting the number of incorporations (see Fig. 12).
Furthermore, it can provide the exact parameter of the event
at least for arc-length parameterization. Moreover, our algo-

rithm generates a superior triangulation near the saddle for
both arc-length and time parameterization. In Fig. 11 one
can see that the closer the stream surface of the standard al-
gorithm gets to the focus saddle the worse the surface ap-
proximation becomes. This is, because the fixed distance re-
finement strategy is too crude for the small region around the
saddle. In contrast, our algorithm maintains a good surface
approximation due to adapting seeding positions to the flow.

Arc
Length

Incorps. /
Splits

Stream Lines
Topo Aware

Stream Lines
Standard

0.2 1 427 472
0.3 2 911 1315
0.4 4 1802 2641
0.5 10 3889 5864

Figure 12: Comparison between standard and topology

aware arc-length integration for the Delta Wing dataset.
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6. Conclusion

A method for robustly and efficiently handling the special
conditions near critical points while maintaining a correct
stream surface approximation has been presented. Especially
for the very intricate case of focus saddles.

The computation times for the presented examples lie in
the order of tens of seconds. Depending on the integration
length our approach was up to 30% faster.

The introduction of the linear neighborhood enables the
algorithm to make definite assumptions about the flow be-
havior around the critical point and about how to incorpo-
rate it into the stream surface. Therefore, the algorithm is
capable of reliably detecting the intersection of the stream
surface with the 2D (un)stable manifold of a saddle point.

For arc-length parameterization our algorithm produces
considerably fewer stream lines than standard implementa-
tions. Stream surfaces parameterized by time intersecting a
2D (un)stable manifold of a focus saddle benefit less from
these savings. Still both parameterizations benefit from the
superior triangulation producing a correct stream surface ap-
proximation in contrast to standard algorithms. The algo-
rithm takes only two additional parameters: the maximum
(starting) radius to determine the linear neighborhood of a
critical point and the linearity threshold.

One limitation of this approach is that the algorithm needs
to integrate until a stream surface front segment intersects
the linear neighborhood of a critical point. Depending on
the linearity threshold this might happen very late and after
a considerable amount of refinement. However, this ties in
with the rest of the stream surface quality settings.
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