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Abstract Post-processing in computational fluid dynamics as well as processing of
fluid flow measurements needs robust methods that can deal with scalar as well as
vector fields. While image processing of scalar data is a well-established discipline,
there is a lack of similar methods for vector data. This paper surveys a particular ap-
proach defining convolution operators on vector fields using geometric algebra. This
includes a corresponding Clifford Fourier transform including a convolution theo-
rem. Finally, a comparison is tried with related approaches for a Fourier transform of
spatial vector or multivector data. In particular, we analyze the Fourier series based
on quaternion holomorphic functions of Gürlebeck et al., the quaternion Fourier
transform of Hitzer et al. and the biquaternion Fourier transform of Sangwine et al.

1 Fluid Flow Analysis

Fluid flow, especially of air and water, is usually modelled by the Navier-Stokes
equations or simplifications like the Euler equations [1]. The physical fields in this
model include pressure, density, velocity and internal energy [17]. These variables
depend on space and often also on time. While there are mainly scalar fields, veloc-
ity is a vector field and of high importance for any analysis of numerical or physical
experiments. Some numerical simulations use a discretization of the spatial domain
and calculate the variables at a finite number of positions on a regular lattice (finite
difference methods). Other methods split space into volume elements and assume
a polynomial solution of a certain degree in each volume element (finite element
methods or finite volume methods). These numerical methods create a large amount
of data and its analysis, i.e. post-processing, usually uses computer graphics to cre-
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ate images. Research about this process is an important part of scientific visualiza-
tion [22].
Besides numerical simulations, modern measurement techniques like particle image
velocimetry (PIV) [8] create velocity vector field measurements on a regular lattice
using laser sheets and image processing. Therefore, simulations and experiments in
fluid mechanics create discretized vector fields as part of their output. The analysis
of these fields is an important post-processing task. In the following, we will assume
that there is a way to continuously integrate the data to simplify notations. Of course,
one can also discretize the integrals conversely.
Flow visualization knows a lot of direct methods like hedgehogs, streamlines or
streamsurfaces [22], but also techniques based on mathematical data analysis like
topology or feature detection methods [10, 21, 18]. Since these methods are often
not very robust, a transfer of image processing to vector data is an attractive ap-
proach. A look into any image processing book, e. g. by Jähne [15], reveals the
importance of shift invariant linear filters based on convolution. Of course, there is
vector data processing in image processing, but the usual techniques for optical flow,
which is the velocity field which warps one image into another, do not really help as
they concentrate mainly on non-continuities in the field which is not a typical event
in fluid flow velocity fields.

2 Geometric Algebra

In classical linear algebra, there are several multiplications involving vectors. Some
multiplications have led to approaches for a convolution on vector fields. Scalar
multiplication can be easily applied and can be seen as a special case of component-
wise multiplication of two vectors which has been used by Granlund and Knutsson
[9]. The scalar product has been used by Heiberg et al. [11] as convolution operator.
Obviously, one would like a unified convolution operator that incorporates these ap-
proaches and can be applied several times, in contrast to the scalar product version
that creates a scalar field using two vector fields. Furthermore, one looks for all the
nice theorems like convolution theorem with a suitable generalized Fourier trans-
form, derivation theorem, shift theorem, and Parseval’s theorem. Geometric algebra
allows such a convolution [5, 6].
Let Rd , d = 2,3, be the Euclidean space with the orthonormal basis

{e1,e2} resp. {e1,e2,e3}. (1)

We use the 2d-dimensional real geometric algebras Gd ,d = 2,3, which have a asso-
ciative, bilinear geometric product satisfying

1e j = e j, j = 1, . . . ,d (2)

e2
j = 1, j = 1, . . . ,d (3)

e jek =−eke j, j,k = 1, . . . ,d, j 6= k (4)
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Their basis is given by

{1,e1,e2, i2 := e1e2} resp. {1,e1,e2,e3,e1e2,e2e3,e3e1, i3 := e1e2e3} (5)

It can be verified quickly that the squares of i2, i3 and those of the bivectors
e1e2, e2e3 and e3e1, are −1. General elements in Gd are called multivectors while
elements of the form

v =
d

∑
j=1

α je j (6)

are called vectors, i. e. v∈Rd ⊂Gd . The geometric product of two vectors a,b∈Rd

results in
ab = a ·b+a∧b (7)

where · is the inner product and ∧ is the outer product. We have

a ·b = |a||b|cos(α) (8)
|a∧b|= |a||b|sin(α) (9)

with the usual norm for vectors and the angle α from a to b.
Let F be a multivector-valued function (field) of a vector variable x defined on some
region G of the Euclidean space Rd , compare (19) for d = 3 and (23) for d = 2. We
define the Riemann integral of F by∫

G
F(x)|dx|= lim

|∆x|→0,n→∞

n

∑
j=1

F(x j)|∆x j| (10)

We define ∆x = dx1∧dx2i−1
2 (d = 2) resp. ∆x = dx1∧dx2∧dx3i−1

3 (d = 3) as the
dual oriented scalar magnitude. The quantity |∆x| is used here to make the integral
grade preserving since dx is a vector within geometric algebra in general.

The directional derivative of F in direction r is

Fr(x) = lim
h→0

F(x+hr)−F(x)
h

(11)

with r ∈ R3, h ∈ R. With the vector derivative

∇ =
d

∑
j=1

e j
∂

∂e j
(12)

(vector valued), the complete (left) derivative of F is defined as

∇F(x) =
d

∑
j=1

e jFe j(x). (13)
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Similarly, we define the complete right derivative as

F(x)∇ =
d

∑
j=1

Fe j(x)e j. (14)

Curl and divergence of a vector field f can be computed as scalar and bivector parts
of (12)

curl f = ∇∧ f =
1
2
(∇ f − f ∇), div f = ∇ · f =

1
2
(∇ f + f ∇). (15)

Readers interested in the basics and more applications of geometric algebra are also
referred to [12] and [4]. That fluid flow dynamics is accessible by geometric algebra
methods is also discussed in [3].

3 Clifford Convolution

Let V,H : Rd → Gd be two multivector fields. As Clifford convolution, we define

(H ∗V )(r) :=
∫

Rd
H(ξ )V (r−ξ )|dξ | (16)

If both fields are scalar fields, this is the usual convolution in image processing.
If H is a scalar field, e.g. a Gaussian kernel, and V a vector field, we get a scalar
multiplication and can model smoothing of a vector field. If H is a vector field and
V a multivector field, the simple relation

H(ξ )V (r−ξ ) = H(ξ ) ·V (r−ξ )+H(ξ )∧V (r−ξ ) (17)

shows that the scalar part of the result is Heiberg’s convolution while the bivec-
tor part contains additional information. General multivector fields allow a closed
operation in Gd , so that several convolutions can be combined . We have shown
[5, 7] that this convolution can be used for the analysis of velocity vector fields from
computational fluid dynamics (CFD) simulations and PIV measurements.

4 Clifford Fourier Transform

Our group has found a generalization of the Fourier transform of complex signals to
multivector fields [6] that allows the generalization of the well-known theorems like
the convolution theorem for the convolution defined in the previous section. There
are different approaches of transforming multivector valued data, e.g. in [2], [14]
and [19]. In section 5 we discuss the relation to ours.
Let F : Rd → G3 be a multivector field. We define
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F{F}(u) :=
∫

Rd
F(x)exp(−2πidx ·u)|dx| (18)

as Clifford Fourier transform (CFT) with the inverse

F−1{F}(x) :=
∫

Rd
F(u)exp(2πidx ·u)|du|. (19)

In three dimensions, the CFT is a linear combination of four classical complex
Fourier transforms as can be seen by looking at the real components. Since

F(x) = F0(x)+F1(x)e1 +F2(x)e2 +F3(x)e3 +
F12(x)e1e2 +F23(x)e2e3 +F31(x)e3e1 +F123(x)e1e2e3 (20)

= F0(x)+F1(x)e1 +F2(x)e2 +F3(x)e3 +F12(x)i3e3 +
F23(x)i3e1 +F31(x)i3e2 +F123(x)i3 (21)

= (F0(x)+F123(x)i3)1+(F1(x)+F23(x)i3)e1 +
(F2(x)+F31(x)i3)e2 +(F3(x)+F12(x)i3)e3 (22)

holds, we get

F{F}(u) = [F{F0 +F123i3}(u)]1+ (23)
[F{F1 +F23i3}(u)]e1 +
[F{F2 +F31i3}(u)]e2 +
[F{F3 +F12i3}(u)]e3.

We have proven earlier [6] that the convolution, derivative, shift, and Parseval theo-
rem hold. For vector fields, we can see that the CFT treats each component as a real
signal that is transformed independently from the other components.
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Fig. 1 Top: Various 3D patterns. Middle: The vector part of their DCFT. Bottom: The bivector
part of their DCFT, displayed as normal vector of the plane. Left: 3× 3× 3 rotation in one coor-
dinate plane. Middle: 3×3×3 convergence. Right: 3×3×3 saddle line. The mean value of the
discrete Clifford Fourier transform (DCFT) is situated in the center of the field. In 3D, the waves
forming the patterns can be easily seen in the frequency domain. The magnitude of the bivectors
of the DCFT is only half the magnitude of the corresponding vectors, though both are displayed
with same length.

In two dimensions, the CFT is a linear combination of two classical complex Fourier
transforms. We have

F(x) = F0(x)+F1(x)e1 +F2(x)e2 +F12(x)e1e2 (24)
= F0(x)+F1(x)e1 +F2(x)e1i2 +F12(x)i2 (25)

= 1[F0(x)+F12(x)i2]+ e1[F1(x)+F2(x)i2] (26)

and obtain

F{F}(u) = 1[F{F0 +F12i2}(u)]+ e1[F{F1 +F2i2}(u)]. (27)
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Regarding the convolution theorem, one has to separate the vector and spinor parts
since i2 does not commute with all algebra elements. With this restriction, the theo-
rem hold again [6].

Fig. 2 A 2D slice of a turbulent swirling jet entering a fluid at rest. The image shows color coding
of the absolute magnitude of the vectors. The colors are scaled from zero (blue) to the maximal
magnitude (red).



8 Wieland Reich and Gerik Scheuermann

Fig. 3 This image shows a (fast) discrete Clifford Fourier transform of the data set. Zero frequency
is located in the middle of the image. Vectors are treated as rotors when using Clifford algebra in
the frequency domain, thus color coding is based on the magnitude of the transformed rotor. The
scaling of the colors is the same as the last image. We zoomed in to get more information.

Fig. 4 In that image we zoom in further and take a look at the direction of the ”vectors” in a
neighborhood of zero frequency.
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5 Relation to other Fourier transforms

In recent years, other definitions of a Fourier transform have appeared in the litera-
ture which can be applied to vector fields. In this section, we compare our approach
with the Fourier series based on quaternion analysis by Gürlebeck, Habetha and
Sprößig [16], the biquaternion Fourier transform by Sangwine et al [20] and the
quaternion Fourier transform by Hitzer in [13]. Therefore we use 3 important iso-
morphisms. First of all quaternions are isomorph to the even subalgebra G+

3 of G3
by

i 7→ e1e2, j 7→ e2e3, k 7→ e1e3, (28)

biquaternions are isomorph to G3 by additionally

I 7→ e1e2e3 = i3. (29)

Further the quaternions are isomorph to the Clifford-Algebra Cl0,2 of the Anti-
Euklidean Space R0,2 by

i 7→ e1, i 7→ e2, k 7→ e1e2, (30)

which we will only use in for the definition of holomorphicity in section 5.1.

5.1 H-holomorphic Functions and Fourier Series

We follow the definitions by Gürlebeck et al. [16] and identify the quaternions as
in (29). Let f : H→ H be a function with the real partial derivatives ∂k := ∂

∂qk
we

define the complete real differential as

d f =
3

∑
k=0

∂k f dqk (31)

and set

dq = dq0 +
3

∑
k=1

ekdqk dq̄ = dq0−
3

∑
k=1

ek dqk (32)

This leads to

d f =
1
2

(
3

∑
k=0

∂k f ek

)
dq̄+

1
2

(
∂0 f dq−

3

∑
k=1

∂k f dqek

)
. (33)

A real C1-function f is right H-holomorphic in G⊂H if for every q∈G and h→ 0
exist ak(q) ∈H with
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f (q+h) = f (q)+
3

∑
k=1

ak(q)(hk−h0ek)+o(h) (34)

and left H-holomorphic if

f (q+h) = f (q)+
3

∑
k=1

(hk−h0ek)ak(q)+o(h) (35)

with Landau Symbol o(h). The h0,hk are the 4D coordinates of h ∈ H. With the
operator

∂̄ :=
∂

∂q0
+

3

∑
k=1

∂

∂qk
ek, (36)

we have

f is left H-holomorphic⇔ ∂̄ f = 0 (37)
f is right H-holomorphic⇔ f ∂̄ = 0. (38)

Let B3 := {q ∈ H||q| = 1} be the unit sphere in H. Let L2(B3) be the functions on
B3 with existing integral of the squared function. Then one can write

L2(B3)∩ker∂̄ =
∞⊕

k=0

H+
k (39)

where H+
k are the homogenous H-holomorphic polynomials. There is an orthogonal

basis for this space that allows a Fourier series approximation [16].
If we look at a vector field

v : R3→ R3 ⊂ G3 (40)

we have to find a related H-holomorphic function f : B3 → H ⊂ G3 to apply the
construction above. We tried

v(x) = f (x)e1 f (x) (41)

and
v(x) = f (x)e1, v(x) = e1 f (x) (42)

as well as
f (x) = v1(x)e1e2 + v2(x)e2e3 + v3(x)e1e3 (43)

with ei ∈ G3.
In all examined cases, general linear vector fields v do not generate a H-holomorphic
function f, which makes applying the fourier series expansion to our purpose incon-
venient. Options by using the concept of monogenicity alternatively may succeed,
but are not worked out yet.
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5.2 Biquaternion Fourier Transform

Let HC be the biquaternions, i. e.

HC = {q0 +q1i+q2 j +q3k|qk = ℜ(qk)+ Iℑ(qk) ∈ C} (44)

with the algebra isomorphism HC→G3 as in (28)+(29). Sangwine et al. [20] choose
a µ ∈ G3 with µ2 = −1 and define the right biquaternion Fourier transform
(BiQFT) for a signal F : R3→ G3 by

F µ
r {F}(u) =

∫
R3

F(x)exp(−2πµx ·u)|dx| (45)

and the left biquaternion Fourier transform by

F µ

l {F}(u) =
∫

R3
exp(−2πµx ·u)F(x)|dx| (46)

For µ = i3, this is the 3D-CFT. But for a pure bi-quarternion, i.e. a bivector, one can
choose an orthogonal basis µ,ν ,ξ = µν , with {µ,ν ,ξ} being quaternionic roots of
−1, such that any q ∈ G3 can be written as

q = q0 +q1e1e2 +q2e2e3 +q3e1e3 (47)
= q0 + q̃1µ + q̃2ν + q̃3ξ

= (q0 + q̃1µ)+(q̃2 + q̃3µ)ν
= Simp(q)+Perp(q)ν

with Simp(q),Perp(q) denoting the so-called simplex and perplex of q. For a pure
bi-quarternion µ , the corresponding BiQFT fulfills

F e1e2 = T−1F µ T (48)

with the linear operator T (1) = 1,T (e1e2) = µ,T (e2e3) = ν ,T (e1e3) = ξ , so any
two BiQFT with pure bi-quarternion µ differ just by an orthogonal transformation.
The BiQFT splits like the CFT in four independent classical complex Fourier trans-
forms.
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F µ
r {F}(u) =

∫
R3

F(x)exp(−2πµx ·u)|dx| (49)

=
∫

R3
( f0(x)+ f̃1(x)µ)exp(−2πµx ·u)|dx|+∫

R3
( f̃2(x)+ f̃3(x)µ)ν exp(−2πµx ·u)|dx|

=
∫

R3
(ℜ( f0(x))+ℜ( f̃1(x))µ)exp(−2πµx ·u)|dx|+∫

R3
(ℑ( f0(x))+ℑ( f̃1(x))µ)exp(−2πµx ·u)|dx|i3 +∫

R3
(ℜ( f̃2(x))+ℜ( f̃3(x))µ)ν exp(−2πµx ·u)|dx|∫

R3
(ℑ( f̃2(x))+ℑ( f̃3(x))µ)ν exp(−2πµx ·u)|dx|i3

For a real vector field

v : R3→ R3 ⊂ G3, x 7→
3

∑
k=1

vk(x)ek (50)

we have

v(x) = (−v3(x)e1e2− v1(x)e2e3 + v2(x)e1e3)i3 (51)
= ((−v3(x)e1e2)+(−v1(x)+ v2(x)e1e2)e2e3)i3. (52)

We get for µ = e1e2:

F i
r{v}(u) =

∫
R3

(−v3(x)e1e2)exp(−2πe1e2x ·u)|dx|i3 (53)

+
∫

R3
(−v1(x)+ v2(x)e1e2)exp(−2πe1e2x ·u)|dx|i3

which means that the vector field is split in a purely complex signal −v3(x)e1e2
and a complex signal −v1(x)+ v2(x)e1e2 which are transformed independently by
two classical Fourier transforms. In essence, the BiQFT means choosing a planar
direction µ in R3, transforming the planar part of the vector field with a 2D-CFT
in each plane parallel to µ , and transforming the scalar part orthogonal to µ as
independent real signal. One can say that the BiQFT is the direct generalization of
the 2D-CFT to three dimensions while the 3D-CFT looks at a vector field as three
independent real signals.
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5.3 Two-Sided Quaternion Fourier Transform

Another approach for transforming a function F including the main QFT Theorems
can be found in [2] and its generalization in [13]. Hitzer also stated a Plancherel
Theorem for the QFT and, together with Mawardi, extended the theory to higher
dimensional Clifford Algebras in [14]. Let F : R2→G+

3 , then the QFT is defined as

F{F}(u) =
∫

R2
e−2πe1e2x1u1F(x1,x2)e−2πe2e3x2u2 |dx|. (54)

The inverse QFT is given by

F−1{F}(x) =
∫

R2
e2πe1e2x1u1F(u1,u2)e2πe2e3x2u2 |du|. (55)

Though the usual decomposition of F into 4 real-valued resp. 2 complex-valued
signals is possible via

F = F0 + e1e2F1 +(F2 + e1e2F3)e2e3 (56)

and there are several options to embed two real variables in a quaternion for applying
the transform to a real vector field, the Two-Sided QFT is different from the 2D-CFT.
Not only the multiplication from 2 sides and using 2 distinct axis of transformation
at once leades to different numerical results, even if the fourier kernel is all right-
sided, we cannot merge the 2 exponentials, because the functional equation does not
hold for arbitrary quaternions.
Investigating the precise relationship of both transforms is left for future work.

6 Conclusion

It has been shown that a convolution of vector fields is a nice asset for the analysis of
fluid flow simulations or physical velocity measurements. Geometric algebra allows
a formulation of a suitable convolution as closed operation. Furthermore, one can
define a Clifford Fourier transform in two and three dimensional Euclidean space
that allows the well-known theorems like convolution theorem, derivative theorem
and Parseval’s theorem. Looking into the two CFT transforms reveals that they look
at the vector field in a totally different manner, i.e. the 2D-CFT transforms the vector
field as one complex signal while the 3D-CFT transforms the vector field as three
independent real signals. This mismatch can be interpreted by the BiQFT of Sang-
wine et al. which needs an element µ ∈ G3 with µ2 =−1. For a pure bivector, this
means choosing a planar direction in which the vector field is transformed as com-
plex signal. The perpendicular part of the vector field is independently transformed
as real signal. For µ = i3, one gets the 3D-CFT. We have also shown that several
constructions do not allow a use of the Fourier series approach based on [16].
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