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Abstract We present a novel approach to obtain FTLE-like structures and visual-

izations for uncertain vector fields. For this, we compute the flow map for a cer-

tain time interval now mapping to particle distributions rather than single positions.

Our method comprises a variance-based analysis to measure the maximal stretch-

ing of the distributions thereby obtaining FTLE-like structures for uncertain vector

fields. In the case of ordinary vector fields, the results are visually almost identical to

FTLE. We analyze our method in the presence of errors by applying it to a number

of synthetic and real world datasets.

1 Introduction

Uncertainty in vector field data poses a major challenge for visualization in gen-

eral [18] but especially for the identification of coherent structures. For deterministic

steady data vector field topology (VFT) reveals the overall structure in a condensed

abstract view. However, VFT as such, is directly applicable only to steady or quasi

stationary vector fields. This is due to the fact, that the theoretical foundation of

VFT is build on stream lines. A concept build around path lines rather than stream-

line is the finite-time Lyapunov exponent (FTLE) which has its roots in dynamical

systems theory and was introduced by Haller [15]. Lagrangian coherent structures
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(LCS), which can be extracted as ridge lines in the FTLE field, act as material lines

or surfaces in the flow [2]. Hence they are either attracting if nearby particles con-

verge towards them or repelling if they diverge from the respective LCS. They are

the time-dependent analog to stable and unstable manifolds in steady vector fields.

FTLE is one of the most important techniques to analyze flow structures in vector

fields, however, it can not be applied to uncertain vector fields directly. Haller [16]

provided a formal analysis of FTLE behavior in the presence of error and found that

Lagrangian coherent structures are very robust in the presence of these errors. In

contrast, we propose an alternative, practical, variance-based approach directly ap-

plicable to stochastic flow maps computed from uncertain vector fields. We compute

a FTLE-like measure called FTVA (finite time variance analysis) yielding struc-

tures similar to FTLE for uncertain vector fields. In terms of visualization and in the

case of ordinary vector fields, FTVA reproduces the same structures as FTLE (see

Sec. 5). More precisely, FTVA does not give the same results as FTLE numerically

but qualitatively. In this sense FTVA represents a generalization of FTLE to uncer-

tain vector fields. We examine our new technique in the presence of errors and find

that the resulting structures are very robust.

2 Related Work

In this section we give an overview of relevant work on vector field topology, FTLE

and work in the context of visualizing uncertainty in various types of data.

Vector field topology (VFT) has been introduced to visualization by Helman and

Hesselink [17] and Globus et al. [12]. It aims at extracting the so-called invariant

sets. An invariant set is a special set of streamlines, most importantly isolated zeros

(critical points) which are degenerate stream lines. Löffelmann et al. [23] visualized

periodic orbits and Wischgoll et al. [38] and Chen et al. [6] presented an algorithm

locating them in the presence of data uncertainty. Invariant sets can segment the vec-

tor field in regions of similar flow, hence they are termed separatrices. Displaying

all separatrices, however, would lead to occlusion problems. One solution to this

problem is the display of their intersection curves, the so-called saddle connectors

[36].

For the topological analysis of time-dependent vector fields Sadlo et al. [32] used

FTLE and generalized vector field topology, where degenerate streak lines take on

the role of critical points. Weinkauf et al. [37] integrate a streak line field to facilitate

time-dependent topology extraction. In contrast to the integration based perspective,

Fuchs et al. [8] provide a differentiation based perspective to find critical points for

time-dependent vector fields.

In visualization LCS have been increasingly subject of interest in the last decade

[28]. Garth et al. visualized the FTLE field for 2D flows [10] using color and height

maps and for 3D flows [9] using direct volume rendering. In subsequent work [11]

FTLE has been used to identify attachment and separation on the surface of obsta-
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cles. Sadlo et al. compared VFT and LCS visualizations [35] and proposed a scheme

for an accelerated computation [31].

Griethe at al. [13], Johnson et al. [19] and Pang et al. [27] give an overview of

different uncertainty concepts and the different techniques used in visualization.

Uncertainty in vector fields has been visualized using additional geometry such

as glyphs to represent the uncertainty at certain positions [39, 22, 21, 40, 24] to

convey the amount of uncertainty explicitly. Other researches used the concept of

fuzziness or blurring to convey uncertainty in volumetric data [7, 30] or isosurfaces

[14]. Lundstrom et al. [25] and Brown [5] used animation of the different possi-

bilities to convey uncertainty information. Sanderson et al. [33] utilized reaction-

diffusion systems to visualize vector fields and show that it is possible to incorpo-

rate uncertainty into their model. Botchen et al. [3, 4] proposed texture based flow

visualization techniques and convey uncertainty by blurring streak lines using cross

advection and diffusion.

Otto et al. [26] considered global uncertainty by the transport of local uncertainty

in steady 2D flow fields. The domain is super-sampled by a high number of parti-

cles. Each particle is integrated and the final distribution is interpreted as a discrete

particle density function. In contrast, we consider the original grid and analyze the

transport of uncertainty by computing a stochastic flow map for unsteady flows. The

stochastic flow map is analyzed using a Principal Component Analysis yielding a

scalar field showing FTLE-like structures for uncertain vector fields.

3 Uncertain Vector Fields

In this work we consider steady and unsteady 2D vector fields. In the following

these are called ordinary vector fields. In contrast, uncertain vector fields no longer

map a position to a single unique vector but rather to a probability distribution of

vectors. We adopt the definition for a steady uncertain 2D vector field given in [26]:

We follow the approach of [16] and examine a stochastic differential equation

describing the vector field and a chosen error model. Since we have full control of

the amount and type of error, this provides us with a method to analyze the vector

field in the presence of uncertainty, i.e. error. The stochastic differential equation is

solved by stochastic integration which is described in the next section.

3.1 Stochastic Integration

In the following we develop a model for stochastic integration in a vector field v

defined over a domain D. We start with solving the following classical ordinary

differential equation (ODE):

dφ = v(φ(t), t)dt (1)
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φ(t0) = x0 (2)

where φ is a map D → D Since we want to analyze vector fields in the presence of

errors, it seems reasonable to modify equation 1 to include random effects disturbing

the system, thus turning it into a stochastic differential equation (SDE):

dΦ = v(Φ(t), t)dt +B(Φ(t))dξt (3)

Φ(t0) = x0 (4)

The first term of the right hand side resembles the classical formulation (see

Eq. 1) and the second term represents the disturbance with dξt being a so-called

continuous-time stochastic process, where ξt is indexed by real numbers t ≥ 0 and

B(.) characterizing the disturbance.

The most popular example of a stochastic process that is ubiquitous in physics,

chemistry, finance and mathematics is the Wiener process Wt named after Norbert

Wiener with the following three properties (see [34]):

Property 1. For each t, the random variable Wt is normally distributed with mean 0

and variance t.

Property 2. For each t1 ≤ t2, the normal random variable Wt2 −Wt1 is independent

of the random variable Wt1 , and in fact independent of all Wt , 0 ≤ t ≤ t1.

Property 3. The Wiener process Wt can be represented by continuous paths.

In order to simplify the matter we set B(Φ(t)) = ε constant. This leads to the fol-

lowing stochastic differential equation:

dΦ = v(Φ(t), t)dt + εdWt (5)

Φ(t0) = x0 (6)

Now we can solve equation 5 in the following way:

Φ(t) = x0 +
∫ t

0
v(Φ(τ),τ)dτ +

∫ t

0
εdWτ (7)

This resembles a so-called drift and diffusion model where v is referred to as the drift

coefficient, while ε is called the diffusion coefficient. A helpful interpretation of the

stochastic integral in equation 7 is that in a time interval of length 1 the stochastic

process changes its value by an amount that is normally distributed with expectation

v and variance ε . This change is independent of the processes past behavior because

the increments of the Wiener process are independent and normally distributed (see

property 1–3). The integral of the Wiener process, in particular, yields a diffusion

term and as necessary a contribution to the drift term. For an in depth discussion of

stochastic differential equations and integrals we refer the reader to [29].
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3.2 Error Model

Despite the popularity and importance of the Wiener process in other fields of re-

search we will use a different random process. We deem this necessary due to the

fact that the Wiener process has normally (Gaussian) distributed increments. This

implies that the increments are unbounded meaning an arbitrary large error could

occur. This means the numerical stochastic integration could perform steps of arbi-

trary length. This does not account for the situation arising with CFD data, because

it would mean that the simulation contains arbitrary large errors. Instead an error

bound is provided describing the maximal error of the calculation. Moreover we

do not want to make any assumption about the error distribution within this bound

which leads us to an equal distribution with zero mean, bounded by a n-dimensional

ball with radius ε (a circle in 2D). Furthermore, we assume independence for this

stochastic process (see property 2 of the Wiener process). On the contrary, the error

in a CFD simulation at one grid point is likely not to be independent from neigh-

boring grid points. However, the modeling of this dependence would require exact

knowledge of the underlying CFD solver and it would be a highly complex task and

a research paper in its own right. Hence, the presented error model seems to be the

best one to be assumed.

Furthermore, we assume the same error bound ε for the whole domain. This has

the effect of a homogeneous error distribution and the error beeing independent of

the location in space and time. Formally this is achieved by setting B(Φ(t)) = ε
constant (like in Sec. 3.1) which leads to the following SDE:

dΦ = v(Φ(t), t)dt + εdRt (8)

Φ(t0) = x0 (9)

with dRt denoting the random process complying with the error model described

above.

If the error distribution, however, turns out to be inhomogeneous over time, ε is

no longer a constant but will depend on the location in space and time ε(Φ(t), t).
Moreover, the error ε does not need to be a scalar quantity but can provide direc-

tional information, hence becoming biased or anisotropic. This further shows the

similarity between error and diffusion. In these cases the underlying SDE needs to

be modified to fit the chosen error model resulting in a different numerical approx-

imation (see Sec. 3.3). In general the error model can of course be tuned to model

any kind of distribution including a Gaussian one.

3.3 Numerical Approximation

The classical numerical approximation schemes (e.g. Euler or Runge-Kutta) cannot

be applied to a stochastic differential equation as such, but needs to be modified.

In order to approximate the stochastic integration process numerically we need to
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discretize the stochastic process dRt in equation 8. This is accomplished by the

Euler-Maruyama method (see [20]) which provides an approximate numerical solu-

tion of a stochastic differential equation. Application to the stochastic process dRt

yields:

∆Rn = ε ∆ t RW (10)

where RW denotes an increment of a so-called random walk. A random walk is the

mathematical formalization of a trajectory consisting of successive random steps

discretizing the considered stochastic process. Our error model (see Sec. 3.2) re-

quires RW to be an undirected random walk with a bounded symmetric uniform

probability distribution with bound ε .

The discretization of 8 then reads as follows:

yn+1 = yn +∆ t v(yn, t)+∆ t ε RW (11)

As one can see, the classical Euler method is a special case of the Euler-Maruyama

integration for ε = 0. The successive application of equation 11 yields a stochastic

stream- or path-line respectively. However, the obtained trajectory is an approximate

realization of the solution stochastic process Φ in Equation 8 and each one will be

different.

In the case that the vector field consists of measured data and a stochastic mod-

eling of the process is not possible then the uncertain vector field vu, consisting of

the measured data, can of course be evaluated directly yielding:

yn+1 = yn +∆ t vu(yn, t) (12)

where vu is automatically respecting the probability distribution.

3.4 Stochastic Flow Maps

A classical discrete flow map φ t0+t
t0 (x) maps from a sample position x ∈ D to the po-

sition of a particle started at x at time t0 advected by the flow for the time t. In other

words φ t0+t
t0 (x) maps x to its advected position. In case the integration reaches the

boundary we store the position on the boundary in the flow map. Classical flow maps

are computed by integrating one particle per sample position. In contrast, stochastic

flow maps Φ store a whole distribution per sample position, yet the principle is the

same. We approximate the distributions in the stochastic flow map by sampling: we

start multiple stochastic integrations at each grid point x. The number of integrations

per position is prescribed by the parameter N.

In Sec. 4 we evaluate the stochastic flow map at a certain grid point r and at

the neighboring grid points for our calculations. In the following we call these grid

points the stencil of the grid point r. Since we are interested in the endpoints of

trajectories for the grid points of a stencil they are part of one random experiment.
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Therefore, N of these random experiments would have to be run for every grid point

in the mesh.

Assigning two or more particles to the same random experiment means they are

dependent in a certain way. This dependency manifests in the way that if two par-

ticles meet at exactly the same point in space and time they experience the same

fluctuation, i.e. RW in Eq. 8 is for both particles the same. However, if one of these

two particles is only a small distance off that position the random variables are in-

dependent, i.e. RW evaluates for each particle to a different value.

An algorithm taking this into account would create N ordinary vector fields Vd ,

each disturbed according to the error model. For each of these vector fields par-

ticle integration is carried out deterministically. This way we obtain a distribution

consisting of advected particles for each start point as well, at the expense of ad-

ditional memory consumption for the creation of an additional vector field and the

computational cost for its construction.

Now we argue that the probability of any two particles which are part of the same

random experiment seeded at different positions in space meet at exactly the same

position in space and time is zero in the continous setting. Since we are in a dis-

crete setting the probability of this event is not zero anymore. However, if this still

very unlikely event is happening we argue that in a continous setting both particles

would not have met at exactly the same position in space and time. Hence we argue

further that this event is due to the discretisation of the vector field and especially

due to the discrete approximation of the integration process. The conclusion of this

argumentation is that we calculate trajectories for particles of the same random ex-

periment simply as they were independent random experiments since the possible

gain is neglectible. After all we are only interested in the expected value and the

variance of the particle distribution. However, this argumentation is only valid for

an error model assuming independence of errors.

4 FTLE-like Variance Based Analysis of Stochastic Flow Maps

The classical FTLE method [15] measures the maximal separation or expansion rate

of two closely seeded particles when advected by the flow for a finite time t. FTLE

can be computed by utilizing the above mentioned flow map. More precisely it is

the spectral norm of the (right) Cauchy-Green deformation tensor ∆(x) [1]:

∆(x, t, t0) = (∇φ t0+t
t0 (x))T (∇φ t0+t

t0 (x)) (13)

The function ∆ is a symmetric matrix and measures the square of the distance

change due to deformation. Now FTLE is defined as the logarithm of the Cauchy-

Green deformation tensor’s maximum eigenvalue λmax normalized by the absolute

advection time t. More formally this reads as follows:

FT LEt
t0
(x) =

1

|t|
ln
√

λmax(∆(x, t, t0)) (14)
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For an in depth discussion about FTLE the reader is referred to the work of

Haller [15].

The above description provides us with an algorithm for the computation of

FTLE in ordinary vector fields. However, it cannot be directly applied to uncertain

vector fields since we are dealing with probability distributions. On the other hand,

the idea of FTLE is to find the maximal stretching a virtual particle experiences

during its lifetime. We think this idea can be carried over to the realm of uncer-

tain vector fields by replacing the stretching with variance. Therefore, we propose

a new geometry driven technique to compute a FTLE-like field for uncertain vector

fields based on variance. The FTLE principle then translates to finding the maximal

variance of the advected distribution. The best linear approximation for this prob-

lem is provided by the principal component analysis (PCA). PCA is hence used to

measure the deformation of the seeding points and the according probability distri-

butions comprising of the advected particles. Therefore, we evaluate the stochastic

flow map at the current and neighboring positions wrt. the mesh. This is necessary

mainly for two reasons: First, we need a reference value for the variance to measure

the stretching. Moreover this simulates the discrete derivation process in the FTLE

computation, since the direct neighbors are involved in the numerical approxima-

tion of the derivative. Second, if we would consider only the current position and

the error ε is rather small we would obtain rather an analysis of the error (diffusion)

process than the stretching caused by the underlying vector field. This is due to the

discrete nature of the vector field.

The distributions gained by evaluating the stochastic flow map are approximated

by stochastic trajectory endpoints. All these endpoints are merged to one single

set or distribution respectively. From this set we compute the covariance matrix C

which is a symmetric matrix like the Cauchy-Green deformation tensor. The ma-

trix C is a linear model measuring the square of the standard deviation (variance) in

every direction of space. We are interested in the maximal variance of C which is

represented by the maximal eigenvalue. Fig. 1 summarizes the algorithm visually.

Fig. 1 Stochastic integration from a starting point gives a distribution of end points due to uncer-

tainty. A principal component analysis of the start and end point distribution provides information

about the maximum amount of stretching.
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The relative maximal standard deviation consists of the maximal standard deviation

of the matrix C divided by the maximal standard deviation of the seed points. If

we interpret the relative maximal standard deviation as a measure for the maximal

stretching of a distribution after integration in the uncertain vector field and recall

that variance is the squared standard deviation and account for the similarities be-

tween the Cauchy-Green deformation tensor and the covariance matrix C we can

simply rewrite equation 14 by changing ∆ and C:

FTVAt
t0
(x) =

1

|t|
ln
√

λmax(C(x, t, t0)) (15)

where FTVA stands for finite time variance analysis.

5 Results

In this section we apply our method to a 2D steady and unsteady vector field to

demonstrate the utility and robustness of our method. The quality of the results

naturally depends on certain parameters, which are integration time, the amount of

error and the number of particles per position. The fist one is relevant for FTLE as

well, whereas the last one is an additional parameter for the stochastic integration.

The amount of error is only a parameter for our numerical experiment because it is

usually determined by the application.

5.1 Tilted Bar

Our first dataset is a 2D unsteady vector field comprising of 100 time steps each with

79200 positions and 78421 quad cells. It consists of a Karman vortex street behind

a tilted bar. A direct visual comparison between FTLE and FTVA in the steady case

of a selected time step with integration time 1 is depicted in Fig. 2 and shows only

slight visible differences. We used the color mapping proposed in [10], where red

structures indicate high divergence in positive time, blue high divergence in negative

time, black high divergence in both time directions and white no divergence.

In order to show the robustness of our method and the computed LCS, we in-

creased the error in the computations successively. Figure 3 shows LCS for inte-

gration time 0.4 but with different amounts of error. An expected result is that the

relative strength of LCS weakens as the error grows (see Fig. 3 bottom). However,

despite the weakening, the LCS are very robust. As can be seen the LCS remain

visible for a surprisingly large error which, according to our model, grows linearly

with the integration time.

Another parameter to be studied is the amount of particles per position which is

a crucial one in terms of quality. For the visualizations in figure 4 the number of
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Fig. 2 Visual comparison between FTLE and FTVA computed for a time slice of the tilted bar

dataset with integration time 1.0. Top: FTLE field Bottom: FTVA field with 1 particle per position

and ε = 0

particles per position has been set to 100 and the error has been varied. As a result,

if too few particles are chosen the distribution cannot be approximated correctly.

Hence the FTVA fields become disturbed, which manifests in an un-smooth color

map. As expected, this effect unfolds with increasing error.

5.2 Turbulent Jet Flow

Our second dataset is a swirling jet flow entering the domain, containing resting

fluid, to the left. The dataset is steady, consist of 124×101 quad cells and is highly

turbulent. Again, there is almost no visible difference between a visualization of

the FTLE and the FTVA fields (see Fig. 6). As was the case in the former example

dataset the relative strength of the LCS in the FTVA fields weakens and are less

sharp. This means the error does have a diffusion like effect on the LCS. However,

even in the presence of a large error the LCS remain visible clearly (see Fig. 7).

The lion’s share of the computation time is spent integrating particles for the

stochastic flow map, which is about 99% of the timings given in Fig. 5. These tim-
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Fig. 3 Sequence of images for the tilted bar dataset, showing the relative weakening of LCS for

growing error, obtained for an integration time of 0.4 with different errors: Top: 10 Particles and

ε = 0.01 Bottom: 500 particles and ε = 1.0

ings are given for a non-parallelized version of the algorithm executed on an Intel

Xeon CPU E5620 CPU with 2.4 GHz.

6 Conclusion and Future Work

In this paper we have proposed a method to compute an FTLE-like measure called

FTVA (finite time variance analysis) to find regions of converging and diverging

flow in uncertain flow fields. We have produced promising visualization results,

however, we would like to study application examples with naturally arising uncer-

tain vector fields. Despite a successful implementation of the stochastic flow map

further research is needed to limit the high computational cost (see Tab. 5). There-

fore, we will look into an adaptive approach for the automatic determination of

the number of stochastic trajectories necessary per position, which would be highly

desirable. Furthermore, we want to research deeper into the differences and simi-

larities of the covariance matrix and the Cauchy-Green stress tensor and exploit the

results to improve our method. Also a parallelized version should be much faster

and additionally acceleration techniques [31, 9] can be implemented as well.
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Fig. 4 Comparison between FTVA results for the tilted bar dataset for a constant number of parti-

cles (100 particles per position) to show the influence of error on the visualizations: Top: integra-

tion length 1.0 and ε = 0.1 Middle: integration length 1.0 and ε = 1.0 Bottom: integration length

1.0 and ε = 2.0

No. particles per position No. particles total Computation time

10 7.92 105 7min

100 7.92 106 1h 15min

500 3.96 107 6h 18min

1000 7.92 107 12h 41min

Fig. 5 Computation times for the tilted bar dataset for different number of particles per position.

Timings are given for non-parallel integration.
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Fig. 6 Comparison between FTLE (left) and FTVA (right) with 1 particle per position and ε = 0

for the jet flow dataset

Fig. 7 Visualizations for the jet flow dataset showing the blurring of the FTVA structures for

integration length 1, 100 particles per position and varying error Left: ε = 1 Right: ε = 5

The extention of the presented concepts to 3D is straight forward: First, the

stochastic flow map computation needs to be extended to 3D. Second, the stochastic

flow map needs to be computed for every grid point. Third, The PCA needs to be

computed for all neighboring grid points and the advected distribution from these

particles as given by the stochastic flow map. Neither of which poses a major hurdle.
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