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Predominance Tag Maps
Martin Reckziegel, Muhammad Faisal Cheema, Gerik Scheuermann, Member, IEEE, Stefan Jänicke

Abstract—A predominance map expresses the predominant data category for each geographical entity and colors are used to
differentiate a small number of data categories. In tag maps, many data categories are present in the form of different tags, but related
tag map approaches do not account for predominance, as tags are either displaced from their respective geographical locations or
visual clutter occurs. We propose predominance tag maps, a layout algorithm that accounts for predominance for arbitrary aggregation
granularities. The algorithm is able to utilize the font sizes of the tags as visual variable and it is further configurable to implement
aggregation strategies beyond visualizing predominance. We introduce various measures to evaluate numerically the qualitative
aspects of tag maps regarding local predominance, global features, and layout stability and we comparatively analyze our method to
the tag map approach by Thom et al. [1] on the basis of real world data sets.

Index Terms—Geospatial visualization, point-based data, data aggregation
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1 INTRODUCTION

A CCORDING to Slocum et al. [2], a thematic map is
"used to emphasize the spatial pattern of one or more

geographic attributes, such as population density, family
income, and daily temperature maximums." In order to re-
late geospatial phenomena to real places, a thematic map is
laid atop a general-reference map. Different techniques have
been developed, e.g., choropleth maps that color polygonal
regions after mapping the values of the observed attribute(s)
to color, or symbol maps where for each geo-referenced
object a symbol is drawn at its dedicated location, and
the object’s attributes are expressed using visual channels
such as color, shape or size. In this paper, we focus on the
thematic mapping techniques predominance maps and tag
maps, which we combine as predominance tag maps.

Consider a geo-referenced dataset that maps for each
data item a specific data category to a specific geographical
location. The major goal of a predominance map [3] is to
show which data category is predominant for each geo-
graphical entity, e.g., a polygonal district or a 2-dimensional
raster cell. Thus, the totals of all data categories occurring
within a geographical entity are determined, and the vi-
sual representative, e.g., a polygon or a symbol, receives
the color associated with the most frequent, that is, the
predominant category. The magnitude of the predominance
can be expressed with varying symbol size, or with vari-
ous saturation levels. As the human ability to distinguish
colors is limited, the major drawback of this method is
that the number of distinct categories needs to be small
in order to keep the map examinable. An example is the
forest type predominance map proposed by Ruefenacht et
al. [4] that gives an overview of predominant forest cover
in the United States. For displaying the result, 142 forest
types were merged into 28 forest type groups, which are
displayed using 19 different colors. So, different forest types
are associated with similar colors or the same forest type
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group, which decreases the diversity of the predominance
map.

A tag map is a tag cloud where tags are placed depending
on their geographic location [5]. Having a dataset as defined
above, drawing a tag1 (the data category) for each data item
may lead to an enormous amount of overlaps, rendering
the tag map illegible. Different strategies can be applied to
resolve occlusions algorithmically. Thom et al. [1] propose
a strategy that removes the smaller of each two occluding
equal tags in a first iteration. In a second iteration, the largest
of occluding unequal tags is fixed at its respective position,
and smaller tags are displaced following an Archimedian
spiral. Unfortunately, this approach leads to tags drifting
apart from their original geospatial reference points, which
harms the general principle of preventing from ambiguous
label placement [6]. As a consequence, tags are not nec-
essarily representatives of the predominant data category
of the area they are placed. But, the major opportunity of
using a tag map as opposed to a predominance map is the
ability to distinguish numerous data categories easily. This
can be seen in figure 1a, where we applied Thom et al.’s
approach to the US Forest Types dataset (see section 5.2 for
details). Using both Ruefenacht et al.’s predominance map
and Thom et al.’s tag map as overlays illustrates a larger
capacity of displaying diversity using tags over colors. But,
the layout strategy displaces tags, so that tags often intersect
forest area boundaries, or they are even placed at locations
without data points.

Predominance tag maps account for predominance in tag
maps. Our result for the US Forest Types dataset is shown
in figure 1b. In contrast to the output produced by Thom et
al.’s method, our tag distribution resembles the underlying
color-coded predominance map more accurately. In this
paper, we propose a method that computes predominance
tag maps ensuring a monotonic relationship between font
size and frequency typical for tag clouds. This method is
abstracted to be adaptable to applications outside the scope

1. We use the term tag for a rendered textual item on the map that
represents either a single label or an aggregate of multiple labels.
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(a) Tag map layout after Thom et al. [1] (b) Predominance tag map layout after our approach

Fig. 1: US Forest Types (us) dataset tag maps

of visualizing predominance. We further define measures to
estimate the quality of tag maps regarding predominance,
the capacity of displaying the dataset’s inherent categorial
diversity, as well as layout stability. Using these measures,
we comparatively analyze the results of our approach and
Thom et al.’s method on the basis of different real world
datasets.

2 RELATED WORK

Our work on elaborating a predominant tag map layout is
related to three different aspects of research. We first take
a look at related geovisualization techniques for geospatial
point datasets. Then, we outline general information about
tag clouds, and finally, we discuss related tag mapping
approaches combining geovisualizations and tag clouds.

2.1 Visualizing Geospatial Point Data
Geospatial data is collected by the continuing efforts of
scientific communities, government agencies and private
companies. Also, crowdsourcing approaches [7] lead to
growing amounts of geographic information [8]. Different
geospatial data types exist, e.g., line or polygon data. In the
following, we will focus on point data in the plane, where
each observed entity has a geo-reference in the form of a
latitude/longitude-pair.

When large geospatial point datasets shall be rendered
on a map, one has to overcome overplotting issues in order
to support the sensemaking process with maps. Tradition-
ally, scatterplots solve this problem with top-down binning
approaches [9], [10]—the plane is split into bins, and bin
coloring reflects the number of points in a bin. Binning is
also applied in geo-applications [11], but the result can be
misleading due to the pre-defined bin segmentation that
might split existing clusters into distinct bins [12]. In cartog-
raphy, choropleth maps represent a sophisticated binning
strategy using geographical regions as bins [2]. They are
widely used and studied. Most recently, Zhang et al. [13]
evaluated the stability of clusterings in choropleth maps
with respect to geographical variations and Beecham et
al. [14] analyzed how spatial auto-correlation in differing
choropleth maps affects their perception.

Without pre-defined regions like in the case of choro-
pleth maps, glyph-based approaches like dot maps, where
a dot represents a single data point, or proportional symbol
maps with different-sized glyphs reflecting weight values
have been established. An overview is given by Slocum et
al. [2]. Typically, closely located points form clusters which
are drawn in circles with varying diameters in order to
gain an uncluttered layout [15], [16]. A yet similar approach
is given by Scheepens et al. [17] who uses pie charts to
visualize the categorical distribution within the clusters. In
contrast, Aman et al. [18] use glyphs to visualize temporal
aspects. Tag maps as the subject of this paper are rather
abstract glyph-based approaches. Each data point is repre-
sented by a tag, and in order to gain a legible map overlay,
tag occlusions must be treated.

2.2 Tag Cloud Visualizations

The primary purpose of tag clouds is to present a visual
summary of textual data [19]. First introduced by Stanley
Milgram’s mental map of Paris [20] in 1976, tag clouds later
became popular in the social web community. Although
originally used for non-specific information discovery, tag
clouds can also be used to support analytical tasks such as
the examination of text collections [21]. Furthermore, tag
clouds obtained wide acceptance as interfaces for navigation
purposes on databases [22]. Traditionally, a tag cloud is a
simple list of words placed on multiple lines, either ordered
alphabetically or by the importance of a tag, which is
encoded by variable font size [23]. Portals such as ManyEyes
could be used to create such kind of tag cloud visualizations
on demand [24]. A user study on the utility of tag clouds
revealed that the usual alphabetic order is not obvious
for the observer, but tag clouds are generally seen as a
popular social component [22]. Potentially, this was one
of the reasons that later more sophisticated tag cloud lay-
out approaches were developed, which rather emphasized
aesthetics than meaningful orderings, e.g., Wordle [25] is
a popular technique for generating visually appealing tag
clouds on demand.

Tag clouds are used for a wide range of applications.
This includes their usage in text analysis environments,
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e.g., to encode the number of word occurrences within a
selected section of a text, a whole document or an entire text
corpus [26], [27]. Also, for the analysis of topic modeling
results, the application of tag clouds have been proven use-
ful, e.g., for analyzing the evolution of topics over time [28],
[29], tag clouds serve to explore the temporal change of a
topic’s terminology. In contrast, some tag cloud approaches
illustrate trends in a text corpus. Parallel Tag Clouds gener-
ate alphabetically ordered tag lists as columns for a number
of time slices and highlight the temporal evolution of a tag
placed in various columns on demand [30]. SparkClouds
attach a graph showing the tag’s evolution over time [31].
Hinrichs et al. [32] links tag clouds to a classification schema
in the form of a tree structure to help humanities scholars
get access to texts of a speculative fiction anthology corpus.
Semantic tag clouds support the detection of tags belonging
to a certain topic [33] by placing related tags close to each
other in visual groups [34], [35]. Force directed approaches,
where semantically close terms attract each other, are quite
popular for this task [36], [37].

The foremost difference of tag maps is that each tag to be
drawn has a predefined position—which is not the case for
the above mentioned tag cloud layout approaches—, and
a displacement of the tag inevitably leads to inhibiting the
reliability of the tag map.

2.3 Surveyed Tag Map Approaches

A number of methods combine geovisualizations with tag
clouds—denoted as tag maps [5]—in order to visually link
space to its related topics. In the following, we distinguish
two kinds of tag maps. The methods of the first kind are
mainly driven by tag cloud layout approaches, thus, the
geospatial reference plays secondary role. By contrast, meth-
ods of the second kind favor placing tags at their dedicated
locations, and tag cloud strategies are rather applied in the
form of a postprocessing step. We did not consider novel
labeling techniques, [38], and methods where tag clouds are
interactively superimposed for a small subset of data points,
e.g., [16] and [39].

2.3.1 Tag-cloud-driven Tag Maps
Rolled-out Wordles, presented by Strobelt et al. [40], are
a heuristic method to remove overlaps in tag clouds. An
example is provided illustrating overlap removal of tags
in the United Kingdom, but the proposed strategy entirely
disregards geographical relations. Hahmann et al. [41] pro-
vide a yet comparable approach that roughly considers
geographical locations. Dependent on a given set of tags
for a specific region, they use an external word cloud pro-
cessor that computes a tag cloud used as a thematic layer
on top of the map. But this approach leads to misinter-
pretations as tags are arbitrarily placed in their respective
region, thus, a tag is not directly associated to its location.
Some approaches generate tag maps within a polygonal
shape that represents a political entity (e.g., district, region,
country) with a space filling strategy [42]. One example
is Taggram [43], which does not take the tags’ geospatial
information into account. Instead, the most frequent tag is
positioned in the shape’s center, and the remaining tags are
iteratively placed on vertical layers as long as free space is

available. As Taggrams, Geo Word Clouds aim to entirely fill
a given shape of a political boundary with tags mimicking
a visually appealing infographic [44]. But unlike Taggrams,
here, tags are placed as near as possible to their original
position within the shape. Based on a k-means clustering
of geospatial data points, the tags representing different
clusters are subsequently placed by decreasing font size.
Initial font sizes are set in relation to the given shape
area, tags are rotated as necessary, and if a tag cannot be
placed without occluding an already positioned tag, its size
is reduced. Thus, Geo Word Clouds do not guarantee the
major property of tag clouds, that is, that a bigger sized tag
is always a tag with a higher frequency.

None of the tag-cloud-driven tag map approaches is
directly comparable to our method, as placing coherently-
sized tags at their designated geospatial coordinates is not
focused. But, having an arbitrary set of tags to be placed
on a map and a predefined geospatial subdivision, e.g., all
European countries, Taggram as well as Geo Word Cloud
could be applied to each area in order to make global
topical relations seizable. Still, local structures would remain
fuzzy. A further drawback of using geospatial subdivisions
to generate a tag map are statistical biases that occur when
aggregating data into predefined areas, a problem known
as the modifiable areal unit problem (MAUP) [45], e.g.,
numerous phenomena (meteorological, geological, cultural)
are not necessarily bound to predefined areas. Another
argument against a tag map algorithm on the basis of an
existing geospatial subdivision is that they are not available
for all magnifications, e.g., for maritime phenomena geospa-
tial subdivisions are at most roughly given.

2.3.2 Location-driven Tag Maps
The first paper aiming to put the tags of geo-referenced
photos on their designated map locations introduced the
term tag maps [5]. In order to provide a geospatial summary
of Flickr photos, a hierarchical clustering is first performed.
Second, the resulting clusters are scored according to spe-
cific properties, e.g., the number of photos in a cluster, and
for each cluster a representative tag is placed in the geospa-
tial centroid of the cluster’s associated points. This way, tags
of adjacent clusters may occlude. A similar approach, the
World Explorer, is presented by Ahern et al. [46], who chose
a k-means instead of a hierarchical clustering approach. But
the drawn "primary tags" of the clusters likely occlude each
other—an issue well documented by Slingsby et al. [47] who
compare the results of the Jaffe et al. [5] method to using
Google Earth2, which reduces the number of occlusions at
an expense of reducing the overall number of tags to be
shown by applying a culling strategy. The drawback of this
approach is apparent when zooming into a dedicated re-
gion, which occasionally completely changes the shown tag
set. Slingsby pointed out that both approaches are limited
in terms of map legibility concerning positional accuracy
and data omission, and he asks for future consideration.
Thom et al. [1] addressed this legibility issue for visualizing
geo-referenced Twitter messages. Also using a k-means like
clustering approach, occluding tags are recognized and re-
solved. Equally labeled tags are merged, whereas unequally

2. https://www.google.com/earth

https://www.google.com/earth
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labeled tags are moved following an Archimedean spiral
originating from the center of the tag. When the tag cannot
be placed in a certain distance to the spiral’s origin, it is not
drawn.

As opposed to tag-cloud-driven tag maps, location-
driven tag maps try to place tags as close as possible to
their respective locations, keeping the font sizes coherent
throughout the whole layout. Only one existing method
described by Thom et al. [1] is able to fulfill this goal without
occlusions, but by displacing tags from their aggregation ar-
eas. Referring to predominance maps [3] introduced before,
this displacement dissolves the linkage between tag and
location the way that the tag does not necessarily reflect
the predominant category of the data items located in an
aggregation area centered around the tag. By accounting
for predominance in tag maps, predominant tags would be
drawn centered at the corresponding aggregation area, and
all non-predominant tags would be omitted. We have not
found an occlusion-free location-driven method accounting
for predominance. In order to close this gap, we present a
layout framework accounting for this linkage between tag
and location in the next section and describe in section 4 an
implementation thereof to generate predominance tag maps.

3 LAYOUT METHOD

In this chapter we present an occlusion-free location-driven
tag map algorithm with a tight spatial connection between
the drawn tags and the underlying data. Concluding from
the Gestalt principle of proximity [48] we assume that
locations of areas where no glyph is rendered in a tag map
layout are perceived as being associated to their nearest tag.
If the nearest tag to such location is very distant, i.e., more
distant than the average size of all tags on the map, we
assume that this location is perceived as not relating to any
tag, but for simplicity we ignore that assumption. Following
our simplified perception model, an optimal aggregation
strategy would be context-sensitive. The aggregation area
of one tag would depend on its size and the distance to its
neighbors. Furthermore, the sizes of the tags on the map
vary because of different word lengths as well as different
font sizes used. In an overlap-free tag map, the distance
between two visible neighboring tags depend on their sizes.
But to calculate those sizes, their aggregation areas need
to be known, and these depend again on their size and
distance, resulting in a complex optimization problem. We
simplify this problem by using an aggregation area which
centers in the middle of a tag but that is not dependent on
the location of neighboring tags. We will show in section 5.5
that this simplification improves performance in terms of
predominance compared to the approach by Thom et al. [1]
even under our perceptual assumption.

The input of the layout method is the set of data points
P . Each data point p ∈ P is associated with a label, and all
labels constitute the set of label categories L. The data points
are geo-referenced, so that for all p ∈ P a location in WGS84
coordinate system3 is provided in the form of latitude and

3. Widely used by web mapping services such as Google Maps and
Bing Maps, we transform the WGS84 coordinates into Web Mercator.
We use this planar coordinate system to calculate distances in our
layout method and to state units in this paper. Thus, the values given
only match geographic distances on the equator.

longitude information. Further, the algorithm is configured
with a minimum font size fmin and a maximum font size
fmax given in geospatial units. These specify the desired
range of font sizes in the generated tag map.

Let T be the resulting set of tags drawn on the map by
our algorithm. A given tag t ∈ T can be described by its
center tpos, font size tf and label category tl to be displayed.
Our algorithm is divided in three main parts. The first part
generates a set of seed positions. Each will be used as center
position for a tag candidate. The second part calculates the
font size and label category of each candidate. At this point
a set of tag candidates is fully described but still overlaps
between the candidates exist. The last part of the algorithm
will select an overlap-free subset of the candidates which is
the resulting tag map T .

3.1 Seed Position Generation

At first, we generate a set of seed positions S where tags can
be placed in the final step of our layout method. Although
arbitrary geographical locations could be used, we compose
S of all distinct positions inherent in the data point set P .
This way, we avoid placing tags in regions where no data
points are located. To improve the run-time performance,
we use a pseudo-random sample of the data points. To
remain deterministic, this is implemented by incrementally
adding the set of input points in a deterministic order to S,
maintaining a maximal distance between two seed locations
of fmin

10 , ignoring closer locations.

3.2 Tag Candidate Calculation

For each seed position s ∈ S, we initialize a tag candidate
c ∈ C that is a tuple consistent of four attributes:

c = {cp, cf , cl, cs}.

Whereas the candidate’s position cp is a final value taken
from s, the remaining attributes font size cf , label category
the tag will display cl, and score cs will be iteratively
computed with a bisection method.

3.2.1 Aggregation

For a tag candidate c ∈ C , we define a customizable
rectangular aggregation area Rc(cf ) centered at position cp
dependent on the font size cf delivered by the bisection font
scaling procedure explained in section 3.2.2.

The goal of one aggregation step is finding the best
fitting label cl with font size cf placed at position cp that
reaches the highest score cs. In order to account for diverse
implementations of our layout method, we define two cus-
tomizable independent functions L and S, both aggregating
the information of the data points overlaid by Rc(cf ) to
compute cl and cs as

cl = L
(
Rc(cf )

)
and cs = S

(
Rc(cf )

)
,

which fully describe the tag candidate’s tuple. Section 4
describes implementation variants of the functions Rc, L
and S.
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Aggregation Step Bisection Step

Fig. 2: Illustration of the bisection method for finding the
optimal font size cfopt for one tag candidate

3.2.2 Font Scaling

Usually, in tag clouds and tag maps font size encodes the
frequency of data points associated to it—a higher font size
reflects a larger frequency. We formalize this in an abstract
way by targeting a linear relationship between cf and cs.
So, for each visible tag t ∈ T ⊆ C we target to hold

S
(
Rt(tf )

)
= m · tf + n

where m and n are the parameters of a line the algorithm
will automatically determine. We formalize this as an opti-
mization problem our method tries to solve by minimizing
the following scaling energy function:

E(T ) =
∑
t∈T

S
(
Rt(tf )

)
−m · tf + n

The scoring function S is allowed to return a floating
point number. The font size of a tag is defined as height
of its bounding box, as such also a floating point number.
Given the set of tag candidates C , we determine their font
sizes and labels minimizing E and respecting the configured
minimum and maximum font sizes fmin and fmax. First, for
each candidate c ∈ C we calculate the scores S

(
Rc(fmin)

)
and S

(
Rc(fmax)

)
. The minimum of all scores for fmin

will be assigned to a global minimum scoremin, likewise,
scoremax holds the global maximum. Both values are used
to define the linear function m · tf + n in E to go through
the end points (fmin, scoremin) and (fmax, scoremax) in the
respective Euclidean space, thus, setting the parameters m
and n. For the corresponding tag candidates which achieve
the global scoremin and scoremax we set the appropriate
minimal and maximal font sizes accordingly. In order to
minimize E, we independently search for a font size cf for
each candidate left, such that the error

εc(cf ) = S
(
Rc(cf )

)
−m · cf + n

is as near as possible to zero. We do this using a bisection
method in the interval [fmin, fmax]. Each possible function
εc(cf ) can be evaluated to zero: For the font size fmin

all values S
(
Rc(fmin)

)
are higher or equal to scoremin,

and m · fmin + n will evaluate to scoremin, so that ∀c ∈
C : εc(fmin) ≥ 0. Accordingly, all values S

(
Rc(fmax)

)
are

lower or equal to scoremax, so that ∀c ∈ C : εc(fmax) ≤ 0.
Figure 2 illustrates the bisection method for one tag candi-
date c. Starting with an initial font size cfs = fmin+fmax

2 the
scoring function S and the error function εc are iteratively
evaluated to approach an optimal font size cfopt . Iterating
the bisection method ten times for each candidate c deliv-
ered stable results for all examples presented in this paper.

(a) The data points inside
Rc and its representative
tag B.

B D A C E
0

10

20

(b) The histogram of frequencies
inside Rc

Fig. 3: An example of the histogram visualizing the aggre-
gation function L for calculating the predominant represen-
tative inside the aggregation rectangle Rc

For each candidate c, we set cl = L
(
Rc(cfopt)

)
and cs =

S
(
Rc(cfopt)

)
with the optimal font size determined by the

bisection method for the location cp to generate the set of
final tag candidates C .

3.3 Tag Placement
The result of the last step is a set of tag candidates C .
Each candidate c ∈ C consists of a score cs and a label
cl to be rendered centered at location cp with font size
cfopt . Placing all tag candidates on the map would lead to
occlusions. In order to determine a subset T ⊆ C of non-
overlapping tags to render, we perform a greedy approach.
First, we sort C by descending candidate scores cs. If two
candidates share the same score, we favor the one with the
lexicographically smaller label, if these are equal, the one
with the smaller position values. Then, we iterate the sorted
set, incrementally rendering a new candidate as long as its
bounding box does not overlap any of the already rendered
tags’ bounding boxes. The final result T compiles the tag
map.

4 PREDOMINANCE METHOD VARIANTS

This section outlines how our tag map layout framework
can be customized to implement predominance tag maps. First,
we list different aggregation strategies, second, we discuss
two font scaling variants.

4.1 Aggregation Types
In order to approximate the above introduced perception
model following the Gestalt law of proximity, we define
aggregation areas the way that shown tags are always de-
rived from their underlying data. A simple solution is using
the bounding box of a tag as aggregation area. Figure 3a
illustrates a basic example for a single candidate c and its ag-
gregation area Rc for which a representative label needs to
be determined. Figure 3b shows the number of data points
for each label category inside Rc as a sorted histogram. To
account for predominance, we naturally choose the relative
majority or the highest valued label in the histogram defined
as

L(Rc) = argmax
l∈L

(
|Pl(Rc)|

)
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where Pl(Rc) is the set of data points associated with label
category l in the rectangle Rc. If multiple labels reach the
same number of data points |Pl(Rc)|, we choose the lexico-
graphically smallest label as argumentum maximi to ensure
a deterministic algorithm. We use this implementation in
all examples of this paper though the proposed framework
allows for a different definition, e.g., by choosing outliers to
be displayed or rarely occurring labels reaching a high total.

In the outlined example, the aggregation areas of all
possible labels A to E would be similar. Most often, the
word lengths of the label categories vary, which affects the
definition of the respective aggregation areas. Below, we will
show two strategies to deal with this situation.

4.1.1 approximate bounding box mode (aPTM)
As we do not know the representative label category cl for
a candidate c ∈ C before defining the aggregation area,
we neither know its bounding box nor how to calculate
the aggregation area. We implement a fast and simple
strategy to overcome this problem by always defining the
aggregation area Rc depending on the average aspect ratio
ravg of all possible label categories, thereby ignoring actual
word lengths. The height of Rc(cf ) is defined by the cur-
rently applied font size cf , so that the width of Rc(cf ) is
defined as ravg · cf . As a consequence, wider tags have an
under-represented area while narrower tags have an over-
represented area. Although this might not be an issue for
some applications, it is difficult for a user to sense the
aggregation area of a tag on the map without further visual
cues.

4.1.2 exact bounding box mode (ePTM)
To avoid the problems of under- and over-representation,
this mode considers individual word lengths, thus, it tests
all possible labels with their individual bounding boxes as
aggregation areas for finding the best fitting representative
cl. Where the heights of all aggregation areas Rc(cf ) are
equally defined by cf , the width rl ·cf of an individual label
to be tested depends on its aspect ratio rl. Applying this
strategy, we need to check if

L(Rc) = argmax
l∈L

(
|Pl(Rc)|

)
= l

for each label category l. In the majority of cases, this test
will pass for exactly one category, which will be used to
define Rc and L. If the test fails for all categories, we inval-
idate the tag candidate and ignore it for further processing.
If multiple categories pass the test, we choose the category
with the highest value for |Pl(Rc)|. If there is a draw, we
choose the lexicographically smallest label. Applying this
strategy, we ensure that each tag to be placed on the final tag
map will always represent the predominant label category
of the data points enclosed by the tag’s bounding box,
thereby implementing predominance tag maps.

4.2 Font Scaling Types

The font sizes of tags to be placed on the map depend on the
scoring function S. In tag clouds and tag map approaches
like Thom et al. [1], usually, the font size of a tag correlates
with the number of data points it represents. Similarly, in

our case, we target the font size of a tag to correlate with
|Pl(Rc)|, that is, the number of data points associated with
the mostly occurring label category l within the respective
aggregation area. We implemented two variants of the scor-
ing function, a linear and a cubic root scaling:

Sl(R) = max
l∈L

(
|Pl(Rc)|

)
Sc(R) = max

l∈L

(
3
√
|Pl(Rc)|

)
Although these variants return an integer, thus, not guar-
anteeing a zero position in εc, the bisection method will
approach sufficiently enough to zero as shown in section 5.3.
The proposed framework can be used to map also other data
characteristics to the font size of the tags, such as the overall
number of the points inside each aggregation area in order
to visualize the density of the data set. This enables font size
to be used as a configurable visual variable.

5 EVALUATION

In order to evaluate the quality of our tag map layout
method, we applied it to different datasets and compared
the results to the tag maps generated by the algorithm of
Thom et al. [1] with respect to different characteristics, both
quantitatively and qualitatively. In addition, we discuss font
scaling and run-time characteristics of our method.

5.1 Computational Complexity
Our algorithm uses two types of acceleration data struc-
tures. First, a 2D range tree [49] capable of performing range
counting queries in O(log2n). The complexity of such a
query is independent of the size of the rectangle and the
number (of points) reported. Second, an implementation of
a dynamic R-Tree4 capable of fast nearest neighbor queries.
As preprocessing step, we build one range tree for each
label category existing in the dataset, with the data points
associated to that category inserted. For the seed position
generation, as well as the tag placement steps we use the
dynamic R-Tree to find neighbors respectively overlapping
tags. For the examples calculated, these steps had minor
run-time, not contributing to the overall complexity.

The most time our algorithm spends in the tag can-
didate calculation step. Given the number of data points
n, the number of label categories l, and the number of
seed locations s our algorithm is evaluating the aggregation
step ten times for each location in the bisection method. In
each aggregation step, we evaluate Rc, L and S once. The
complexity of these differ for the two modes:

For the aPTM mode evaluating Rc is constant. L and S
can be calculated together by evaluating the histogram of
categories in a rectangular area. By using one range count-
ing query for each category, this can be done in O(l · log2n)
and sums up to O(s · l · log2n) for the whole bisection
method.

For the ePTM mode evaluating Rc is the dominant
function while the other two can be calculated within the
computation of Rc. Here, we need to evaluate the histogram
for each label category which sums up to O(s · l2 · log2n) for
the whole bisection method.

The average run-time for each of the 20 instances per
dataset and method described in section 5.5 can be seen in

4. https://github.com/mourner/rbush

https://github.com/mourner/rbush
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TABLE 1: Average run-time of the quantitative evaluation of
section 5.5 in seconds.

Thom et al. aPTM ePTM
atlanta 7.6 13.6 51.9
germany 3.0 69.8 2932.1
us 22.1 79.2 7281.5

table 1. The factor between the aPTM and ePTM modes is
roughly the number of categories in the respective dataset,
which matches the complexity explained above. Further,
Thom et al.’s approach is faster than ours. This slow per-
formance could be addressed within future work, as we
have not yet exploited the full potential of possible op-
timizations. For example the calculations of the bisection
method is independent for each tag candidate, as such could
be parallelized.

5.2 Datasets
We use three real world datasets to evaluate our method.
These datasets vary with respect to the number of
categories—7, 53 and 92—which we consider a good basis
for a comparative evaluation.

City Name Suffixes Germany (germany): Moritz Ste-
faner5 defined a set of 53 typical German city name suffixes.
Joining those categories with a geo-referenced list of more
than 50,000 German cities6, we receive a dataset where each
data item represents a city, and the assigned category is one
of the 53 city name suffixes. The results reveal a look at
prominent city name suffixes in different German regions
outlined in figure 4.

Atlanta Crime Data (atlanta): Atlanta Crime Data
was obtained from the Atlanta police department website7.
The dataset contains all crime records since 2009, for each
incident a geo-reference is provided as well as one of the
following crime types: Aggravated Assault, Auto Theft,
Burglary, Homocide, Larceny, Rape and Robbery. We chose
the crime records of 2009 totalling a number of 39,627 data
items for evaluation. Using the crime type as tag illustrates
an overview of the most often committed crimes in different
neighborhoods (see figure 5).

US Forest Types (us): The United States Department
of Agriculture published a raster dataset8 containing the
dominant forest type within a raster of 250m2 resolution.
We down-sampled this raster to remain 69,696 squares
assigned to one forest type. We chose each square’s center as
data point associated to the corresponding type. The down-
sampled dataset contains 107 unique forest categories. Some
of their labels, however, are very long, containing multiple
types separated with a slash character. Such wide labels
would not be chosen in a real world application, as such
we shortened those combined with a slash by only using
the first type. This merged some labels and we remained
92 unique categories. As figure 1b shows, this does not
distort the overall map picture compared to the colored
predominance map rendered using the unmodified raster.

5. http://truth-and-beauty.net/experiments/ach-ingen-zell
6. https://github.com/MoritzStefaner/ach-ingen-zell
7. http://www.atlantapd.org/i-want-to/crime-data-downloads
8. https://data.fs.usda.gov/geodata/rastergateway/forest_type

5.3 Font Scaling Characteristics

As described in section 3.2.2 we minimize the scaling energy
function E with a bisection method to result in an approxi-
mate linear relationship between the score ts of a tag t ∈ T
and its font size tf . An example of the output of both scoring
functions, Sl and Sc, is shown in figure 4b and figure 4c.
The cubic variant Sc clearly scales lower frequent regions
with larger font sizes. In case of the linear scoring function
Sl, the font size correlates linearly with the number of data
points associated to a tag in its aggregation area. In order to
evaluate the quality of the result, we define a set of ordered
pairs

Ct =
{
(ts, tf ) | t ∈ T

}
containing the calculated scores and font sizes of all visible
tags T . We test for a linear relationship between those pairs
by determining their Pearson correlation r [50], running the
algorithm 20 times for each dataset. For each run the ratio
between fmin and fmax increases, keeping the average font
size equal. To remain independent of the dataset expansions,
we fixed the average at bh

20 , where bh is the height of the
bounding box of the whole data set. In all of the performed
runs the Pearson correlation r of the respective set Ct is
greater than 0.98, except for a few outliers down to 0.90. As
such, it can be stated that for both variants a nearly perfect
correlation is achieved.

We have observed one behavior which deserves further
investigation out of the scope of this paper. For high dif-
ferences between fmin and fmax using Sl, the resulting
map has often only one tag set to fmax (which does not
run through the bisection method) while the others are
distributed in the lower end of the font size spectrum,
changing significantly often for only small variations in
fmin and fmax. We assume, this is caused by the similarity
of Sl

(
Rc(f)

)
and m · f + n occurring under certain cir-

cumstances depending on configuration and dataset. This
results in more than one reachable zero position for some
tag candidates. Interestingly, we have not observed this
behavior for the cubic root scaling Sc on our tested datasets.

Figure 5b and 5c show the effect of increasing both font
size parameters fmin and fmax. Our algorithm aggregates
information within rectangular areas defined by the bound-
ing boxes of labels, displaying an area’s most suitable repre-
sentative. Therefore, fmin and fmax have similar effects on
the output like the kernel size parameters have for kernel
density estimation techniques (cf. [51], [52]) specifying their
aggregation area.

5.4 Comparative Setup

The tag map layout proposed by Thom et al. [1] is the only
concurrent approach we found in the literature that tries to
place tags as close as possible to their respective locations
while keeping font sizes coherent throughout the whole
layout. Thom et al.’s tag map layout is designed to visualize
a time ordered stream of twitter messages. To apply their
algorithm to time independent, categorical point events, we
define a data point with its associated category as what they
call a term artifact, feed their clustering algorithm with an
arbitrary input sequence, reduce the dimensionality to two
for all of their calculations and use 2·fmin as cluster splitting

http://truth-and-beauty.net/experiments/ach-ingen-zell
https://github.com/MoritzStefaner/ach-ingen-zell
http://www.atlantapd.org/i-want-to/crime-data-downloads
https://data.fs.usda.gov/geodata/rastergateway/forest_type
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(a) Thom et al. (b) ePTM with Sl (c) ePTM with Sc

Fig. 4: Thom et al. and two scaling variations of ePTM for the germany dataset using fmin = 20km, fmax = 120km.

threshold k. We apply a linear font scaling dependent on the
number of points in each cluster in step (iii) of the algorithm
(cf. [1], pp. 6). The parameters of the spiral used in their step
(vi) (cf. [1], pp. 6) as described by Luboschik et al. [53] are
r = fmin · 2, c = 5, mmax = 100 and d = 1. Further, we
omit any noise cancellation and filtering in the term cloud
layout and set the weights according the number of data
points associated to each cluster.

In order to compare our tag map layout approach to
Thom et al., we propose a set of metrics. In the following,
let P be the set of geospatial data points, T the set of tags
placed by a tag map layout algorithm, bt the bounding box
of a placed tag t ∈ T , A(bt) the area of that bounding box,
Asum the sum of all bounding boxes’ areas in T , P (bt) the
set of data points inside the bounding box bt and Pt(bt) the
set of data points associated with the category of the tag t
inside bt.

Nearest Coverage: According to our simplified per-
ception model, an arbitrary location is assigned to its nearest
tag on the map. Based on that assumption, we want to
measure how many data points nearest to one particular tag
are correctly assigned to the tags’ category. The more data
points match in this regard for one tag, the better it reflects
its perceived aggregation area in terms of predominance.
Let Nt(bt) be the set of points associated to the category of
the tag t which are closer to the bounding box of t than to
the bounding box of any other tag on the tag map T . To
retain one metric for the whole tag map, we accumulate the
count of these sets and normalize that value by the number
of total data points. Thus, we set Mncov to

Mncov =
∑
t∈T

|Nt(bt)|
|P |

.

Global Coverage: Next to the above defined mea-
sure that accounts for the relationships between tags and
underlying data points, the global coverage measure Mgcov

estimates how many data points in total are covered by the
gained tag distribution to evaluate the density of the tags on
the map. Thus, we set Mgcov to

Mgcov =
∑
t∈T

|P (bt)|
|P |

.

Considering the fact that Mgcov reaches an ideal result
for a single tag covering all data points as well as when
applying minimal font size to all tags, we use the same,
reasonable values for fmin and fmax for both algorithms in
the comparative evaluation.

Global Categorical Distribution: To evaluate how
well a tag map reflects the global distribution of the cate-
gories in the dataset, we calculate the normalized histogram
of the whole dataset. For each category, it counts the per-
centage of data points assigned to it. We further compute a
normalized histogram of the visible tag categories weighted
with their corresponding visible areas. Let Tl be the set of
tags showing the label category l. For each category l ∈ L
the value of that normalized histogram entry h(l) is defined
by

h(l) =

∑
t∈Tl

A(bt)

Asum

with h(l) = 0 for |Tl| = 0. These two histograms can be
interpreted as two high dimensional vectors of unit length.
We define Mgcat as the Euclidean distance between the two
vectors, so that it reflects the difference between the visible
categorical distribution and the categorical distribution of
the dataset.

Matching Visual Overlap: To evaluate the similarity
between two tag maps, we calculate the percentage of
matching overlap between their tags’ bounding boxes. Let
A be a reference tag map and B a tag map to compare A
to. For a tag a ∈ A we calculate the matching area ma(B)
by iterating over all tags in B, adding the area of the inter-
section between the pairs’ bounding boxes if they show the
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(a) Result for Thom et al. with
fmin = 400m,fmax = 2000m

(b) Result for aPTM with Sc,
fmin = 400m,fmax = 2000m

(c) Result for aPTM with Sc,
fmin = 700m,fmax = 3500m

Fig. 5: Results for the atlanta dataset. The colored backgrounds show the percentage of data points inside a tags bounding
box assigned to that tag to visualize the quality of the output with regards to predominance. A more saturated red indicates
a lower percentage.
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Fig. 6: Quantitative Results for all three datasets encoded by color. A solid line shows Thom et al., a dotted line shows
ePTM using Sc. The x-axis denotes fmin linearly increasing from left to right, fmax = 5 · fmin.
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Fig. 7: Quantitative Results for all three datasets encoded by color. A solid line shows Thom et al., a dotted line shows
ePTM using Sc. The x-axis denotes fmin linearly increasing from left to right, fmax = 5 · fmin.
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same label. We calculate the overall percentage of similarity
by accumulating the matching areas and normalize with the
sum of areas in A:

OA(B) =

∑
a∈A ma(B)

Asum

5.5 Comparative Analysis
With these metrics defined we can quantitatively and qual-
itatively compare the results of our layout algorithm with
the algorithm described by Thom et al. [1].

Quantitative Setup: As in the font scaling evalua-
tion, we use the height of the bounding box of each dataset
bh as reference to set the range of font sizes for evaluating
the quantitative metrics. We started at bh

200 for fmin, linearly
increasing until bh

20 and generated 20 results per dataset
and method, keeping fmax = 5 · fmin. The results of this
empirical analysis are shown in figure 6 and figure 7.

Local Predominance vs. Global Distribution: The
idea of our approach is to generate a layout optimizing the
local predominance, showing regional hot spots of predom-
inant label categories for arbitrary granularities controlled
by the font size parameters. As shown in figure 6a, for all
three datasets our method clearly achieves higher scores for
Mncov , a metric used to indicate local predominance at the
assumption of our perception model. We color coded the
tags in figure 5 to visualize this difference. By contrast,
our method is neither suited, nor intended to show the
global distribution of the categories appropriately. The more
the categorical distributions in the rectangular aggregation
regions are similar or at least deliver the same winner,
which is dataset-dependent, the less the global distribution
is shown. This effect can be divined in figure 5 where the
result produced by Thom et al. shows a larger number
of distinct tags, potentially reflecting the global categorical
distribution better within the given dataset. A quantitative
analysis showing how well the global categorical distribu-
tion is reflected can be seen in figure 6c. With increasing font
sizes (decreasing the amount of shown tags), the Euclidean
distance between the histogram of the visible tag map and
the histogram of the underlying categorical distribution
increases as well for both methods. This is expected, as
smaller font sizes result in less aggregation and a larger
amount of tags, better reflecting the global distribution. The
difference of the Euclidean distances between the methods
also depend on the dataset, as Thom et al. is performing
better for two datasets, while both methods perform similar
for the us dataset given the same font size bounds. A further
examination of this behavior is however outside the scope
of this paper.

Global Coverage: For the results of the global cover-
age metric Mgcov shown in figure 6b no clear winner can be
identified. For the atlanta data set our method performs a
little better, in contrast to the germany dataset and close to
the us dataset. However, we think that the spiral placement
used by Thom et al. is of general advantage here, as it
can better fill gaps in the map area, with the drawback
of overplotting the boundaries of the dataset as can be
observed in figure 4a. This effect will vary with different
parameters used for the archimedian spiral which we fixed
in the examples of this paper.

TABLE 2: Mean visual overlap for similar input sets derived
from random samples. The first column denotes the size of
the samples. The other denote the mean visual overlap of the
resulting tag maps of the respective algorithm and dataset.

sample size atlanta germany
Thom et al. ePTM Thom et al. ePTM

100% 42% 100% 29% 100%
95% 42% 91% 32% 84%
90% 46% 89% 31% 76%
80% 43% 84% 31% 70%

Method Variant Analysis: Figure 7 shows the quan-
titative comparison between the two aggregation variants
aPTM and ePTM. Interestingly, the values of Mncov are
nearly identical and the values of Mgcov and Mgcat are very
similar. This shows that both modes operate equally good
with respect to our perceptual assumption. However, only
the ePTM mode ensures that shown tags coincide with the
predominant category their bounding boxes cover.

Stability Analysis: The method described by Thom
et al. is designed to work for a constant stream of twitter
messages and it is nondeterministic as it incrementally
builds geospatial clusters using the k-means algorithm. This
produces different outputs, even when run on the same in-
put. To investigate the similarity of the output given similar
inputs, we evaluate both methods ten times with the same
configuration, each run using a fixed sized random sample
from a dataset. We calculated the mean of the matching
visual overlap OA(B) for each possible different ordered
pair of tag maps (A,B) from the ten runs of a method.
Table 2 shows the result of this analysis for the atlanta
and germany datasets using random samples ranging from
100% to 80% of the respective number of data points. The
similarity of our approach scales with the similarity of the
random sample while further depending on the structure
of the dataset, showing determinism when the input is
equal. The similarity in the output of Thom et al. however
does not seem to relate to the similarity of the random
sample. Instead, their approach consists of constantly higher
variance, even when fed with the same input.

6 CONCLUSION

Given a set of labels associated to geographical locations,
choosing a subset of them to be placed on a map has been an
important, longstanding task in cartography. The amount of
text to render exceeds the available space, so that strategies
avoiding occlusions are needed to keep the map legible.

Tag maps transfer this task to the field of geovisualization.
Geospatial data points are associated with textual informa-
tion, and a tag distribution is visualized as a thematic map
overlay. Since vast geo-referenced datasets often contain dif-
ferent labels for one and the same location, tag map layout
methods need to decide on aggregations and omissions. We
observed that related approaches did not deliver satisfactory
results in terms of local predominance that is, a tag on the
map always represents the relative majority of data points
in a defined local aggregation area.

Predominance maps used in cartography usually imple-
ment visualization techniques using color to encode the
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predominant category. We evaluated how this encoding
could be implemented using tags to improve the number of
distinguishable categories in a predominance tag map. While
the approach by Thom et al. [1], which uses a displacement
strategy when tags occlude, distorts the layout by loosening
the linkage between themes and geography, our presented
layout framework is designed to strengthen that relation-
ship. It is configurable to implement different aggregation
strategies, even beyond the implemented predominance tag
maps while preserving a desired font size mapping. We de-
fined a set of measures to investigate qualitative aspects of
tag maps empirically, and we could show that our approach
serves better results regarding local predominance than the
method by Thom et al. under our assumed perception
model. Following our proposed strategy, the resultant label
distribution is locally optimized, which can affect the global
summary of the given dataset. But due to the nature of real
world datasets used in this paper, our approach also retains
and visualizes their inherent regional thematic diversities.

It has to be said that the reliabiliy of all tag map lay-
out methods—including ours—suffer from aggregation and
omission decisions, and the problem of the interdependency
of parameter settings, especially the chosen font sizes, will
always deliver local optima if a tag map layout shall be
computable in a reasonable amount of time. In as much as
it represents locally predominant tags reliably, our method
performs well. The scope of this paper was to investigate
this fact numerically with the proposed measures under the
assumption of a perception model. Future work will include
run-time optimization as well as investigating if our method
also performs best when it is comparatively evaluated by
users. This includes qualitative aspects in terms of aesthet-
ics, which requires future efforts, for example, in applying a
color scheme that visually links labels of the same tag.
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