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Abstract. We aim to generalize Büchi’s fundamental theorem on the
coincidence of recognizable and MSO-definable languages to a weighted
timed setting. For this, we investigate weighted timed automata and
show how we can extend Wilke’s relative distance logic with weights
taken from an arbitrary semiring. We show that every formula in our
logic can effectively be transformed into a weighted timed automaton,
and vice versa. The results indicate the robustness of weighted timed
automata and may also be used for specification purposes.

Introduction

Recently, weighted timed automata [2, 4] have received much attention in the
real-time community. Weighted timed automata are timed automata that allow
us to assign weights to both the locations and the edges. In this way, they can
be used to model continuous consumption of resources [7, 6]. The goal of this
paper is to define a monadic second-order (MSO) logic to specify the behaviours
of weighted timed automata logically. For finite automata over words, this was
first done by Büchi [10]. He showed that MSO is expressively equivalent to finite
automata. This theorem is of great practical interest: a specification expressed by
a MSO formula is often much easier to read and understand than an automaton.
The most important questions that arise in the context of specification, e.g.
the satisfiability problem or the model checking problem, can be solved using
methods from automata theory owing to Büchi’s theorem. In this paper, we aim
to generalize Büchi’s theorem to weighted timed automata.

Our work is also motivated by recent works on weighted logics by Droste
and Gastin [12, 13]. The authors introduce a weighted MSO logic for charac-
terizing the behaviours of weighted finite automata defined over a semiring. In
weighted MSO logic, atomic formulas my additionally comprise elements of the
semiring, which may be used to define the weight of a transition in a weighted
finite automaton. Since full weighted MSO logic is expressively stronger than
weighted finite automata, the authors consider a syntactically restricted frag-
ment. They prove that this fragment is expressively equivalent to weighted fi-
nite automata. Recently, this result has been generalized to weighted settings



of infinite words [15], trees [16], pictures [21], traces [22], texts [19] and nested
words [20].

Here, we aim to generalize the result to timed series. The basis of our work is
a Büchi theorem for the class of timed automata by Wilke [29]. For this result,
Wilke introduces a timed extension of classical MSO logic. The intuitive idea is to
extend MSO(Σ) with formulas of the form d(y, z) ∼ c, called distance predicates,
where y, z are first-order variables, ∼ ∈ {<,≤,=,≥, >} and c ∈ N. A formula
of this form, interpreted over timed words, is supposed to express that the time
distance between the positions y and z satisfies the constraint ∼ c. However, the
logic that allows for the unrestricted use of distance predicates is expressively
stronger than timed automata [25, 29]. For this reason, Wilke restricts the use
of distance predicates. The resulting logic is known as relative distance logic.
Wilke [29] shows that the relative distance logic is expressively equivalent to
timed automata.

Following the approach of Droste and Gastin, we extend Wilke’s relative
distance logic with weighted formulas. In contrast to weighted MSO, we not
only allow elements from the semiring as atomic formulas, but also functions
that, intuitively, may be used to express the weight that arises while being in
a location of a weighted timed automaton. We then define a fragment of our
logic and prove that this fragment is expressively equivalent to weighted timed
automata.

For this, we use parts of the proofs presented by Droste and Gastin [13].
However, in the weighted timed setting we are faced with two new problems
caused by the weights that are assigned to locations. First, the Hadamard prod-
uct, which is used for defining the semantics of conjunction in our logic, does not
preserve recognizability. Second, Droste and Gastin’s restriction on the applica-
tion of the universal first-order quantifier is too strict in the setting of timed
systems. To overcome these problems, we define new syntactical restrictions for
these operators.

Besides these problems, the construction for showing closure of recognizable
series under application of first-order universal quantification given by Droste
and Gastin strongly relies on the fact that every finite automaton can be deter-
minized. However, it is well known that timed automata in general cannot be
determinized [1]. We present two different approaches for solving this problem.
First, we consider idempotent semirings. For this class of semirings the deter-
minizability of weighted timed automata is not needed in the proof of closure un-
der first-order universal quantification. Idempotent semirings comprise amongst
others the so called min-plus-semiring over the positive real numbers, which is
widely used in the context of weighted timed automata [4, 2, 6]. Second, instead
of restricting the discussion to idempotent semirings, we restrict the syntax of
our logic. In particular, we will restrict the application of the first-order universal
quantifier to formulas that define a special subclass of timed languages whose
elements have a bounded variability. This notion was introduced by Wilke [29].
Intuitively, the variability of a timed word corresponds to the maximum number
of events that may occur within one unit time. Then we take advantage of the
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fact that every timed language with a bounded variability is deterministically
recognizable.
Related Work Recently [7, 9, 8, 11], weighted timed extensions of temporal logics
like LTL and CTL have been introduced for the logical analysis of weighted timed
automata. In these logics, the temporal operators are extended with time and
weight constraints. In this way, one can express that the weight in a path is not
allowed to exceed a certain value. The crucial difference to the logic presented
in this article is that the formulas in these logics only take Boolean values.

For weighted event-clock automata, a strict subclass of weighted timed au-
tomata, we recently [24] presented a weighted timed MSO logic and a Büchi
theorem. For this, an MSO logic introduced by D’Souza [17] for characterizing
the behaviour of event-clock automata is extended with weights. Since event-
clock automata - as opposed to timed automata - can always be determinized,
some of the proofs are simpler than the corresponding ones presented in the
present article. In particular, we do not have to restrict the application of the
universal quantifier to timed languages with bounded variability.

In the literature, one can find weighted MSO logics for other types of lan-
guages that are also not deterministically recognizable. In the setting of picture
languages, Mäurer [21] introduces first-order step functions (rather than recog-
nizable step functions as in [13]), and exploits the fact that every first-order
definable picture language can be recognized by an unambiguous (rather than
deterministic) picture automaton. The same approach is followed by Bollig and
Meinecke [5] for Mazurkiewicz traces running over directed acyclic graphs.

1 (Weighted) Timed Automata

Let Σ and Γ denote alphabets, and let N and R≥0 denote the natural numbers
and the positive reals, respectively. A timed word is a non-empty finite sequence
(a1, t1)...(ak, tk) ∈ (Σ × R≥0)

+ such that the sequence t̄ = t1...tk of timestamps
is non-decreasing1. Sometimes we denote a timed word as above by (ā, t̄), where
ā ∈ Σ+. We write TΣ+ for the set of timed words over Σ. A set L ⊆ TΣ+ is
called a timed language. We let the domain dom(w) of w be {1, ..., k} and define
the length |w| of w to be k. Let π : Σ → Γ be a mapping. The renaming π(w) of
a timed word w ∈ TΣ+ is the timed word w′ ∈ TΓ+ of the form (a′1, t

′
1)...(a

′
k, t
′
k)

such that a′i = π(ai) and t′i = ti for all i ∈ dom(w).
Let C be a finite set of clock variables ranging over R≥0. We define clock

constraints φ over C to be conjunctions of formulas of the form x ∼ c, where
x ∈ C, c ∈ N, and ∼∈ {<,≤,=,≥, >}. We use Φ(C) to denote the set of all clock
constraints over C. A clock valuation ν is a function from C to R≥0 mapping each
clock variable to its current value. We let ν0 be a special clock valuation assigning
0 to each clock variable. A clock valuation ν satisfies a clock constraint φ, written
ν |= φ, if φ evaluates to true according to the values given by ν. For δ ∈ R≥0 and
λ ⊆ C, respectively, we define ν + δ to be (ν + δ)(x) = ν(x) + δ for each x ∈ C

1 We assume a timed word to be non-empty for technical simplicity, see Remark 24.
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and ν[λ := 0] by ν[λ := 0](x) = 0 if x ∈ λ and ν[λ := 0](x) = ν(x) otherwise,
respectively. A timed automaton over Σ is a tuple A = (L,L0,Lf , C, E), where

– L is a finite set of locations (states),
– L0 ⊆ L is a set of initial locations,
– Lf ⊆ L is a set of final locations,
– C is a finite set of clock variables,
– E ⊆ L × Σ × Φ(C) × 2C × L is a finite set of edges. An edge (l , a, φ, λ, l ′)

allows a jump from location l to location l ′ if a is read, provided that for
the current valuation ν we have ν |= φ. After the edge has been executed,
the new valuation is ν[λ := 0].

In timed automata, we distinguish between timed and discrete transi-

tions. A timed transition is of the form (l , ν)
δ
−→ (l , ν + δ) for some δ ∈R≥0 and represents the elapse of time δ in l , whereas a discrete transi-

tion is of the form (l , ν)
e
−→ (l ′, ν′) for some e = (l , a, φ, λ, l ′) ∈ E such

that ν |= φ and ν′ = ν[λ := 0]. A transition is a timed transition fol-

lowed by a discrete transition, written (l , ν)
δ,e
−→ (l ′, ν′). A run of A on a

timed word w is a finite sequence (l0, ν0)
δ1,e1
−→ (l1, ν1)

δ2,e2
−→ ...

δ|w|,e|w|
−→ (l|w|, ν|w|)

of transitions. We say that a run r is successful if l0 ∈ L0 and l|w| ∈ Lf .
The timed language L(A) recognized by a timed automaton A is defined
by L(A) = {w ∈ TΣ+ : there is a successful run of A on w}. A timed language
L ⊆ TΣ+ is said to be TA-recognizable over Σ, if there is a timed automaton A
over Σ such that L(A) = L. A timed automaton A is deterministic if |L0| = 1,
and whenever (l , a, φ1, λ1, l1) and (l , a, φ2, λ2, l2) are two different edges in A,
then for all clock valuations ν we have ν 6|= φ1 ∧ φ2. A timed language L ⊆ TΣ+

is deterministically TA-recognizable, if there is a deterministic timed automaton
A over Σ such that L(A) = L.

Proposition 1 ([1, 3]) The class of TA-recognizable timed languages is closed
under union, intersection, renaming and inverse renaming.

The proof that intersection preserves TA-recognizability of timed languages in-
volves the usual product construction known from the classical theory of for-
mal languages. Contrary to the classical case, the class of deterministically TA-
recognizable timed languages forms a strict subclass of TA-recognizable timed
languages [1].

We extend timed automata to be equipped with weights taken from a semir-
ing. For this, we let K be a semiring, i.e., an algebraic structureK = (K,+, ·, 0, 1)
such that (K,+, 0) is a commutative monoid, (K, ·, 1) is a monoid, multiplication
distributes over addition and 0 is absorbing. As examples consider the semir-
ing of natural numbers (N,+, ·, 0, 1), the Boolean semiring ({0, 1},∨,∧, 0, 1),
the tropical semiring (R≥0 ∪ {∞},min,+,∞, 0) or the arctical semiring (R≥0 ∪
{−∞},max,+,−∞, 0). A semiring K is commutative if (K, ·, 1) is a commutative
monoid. A semiring K is idempotent if k + k = k for all k ∈ K. Let A,B ⊆ K
be two subsets of the semiring K. We say that A and B commute element-wise
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if a · b = b · a for each a ∈ A, b ∈ B. Let KA be the subsemiring of K generated
by A. Notice that each element k ∈ KA can be written as a finite sum of finite
products of elements in A. From this it follows that whenever A and B commute
element-wise, then KA and KB commute element-wise.

We let F denote a family of functions from R≥0 to K. For instance, if K is the
tropical semiring, F may be the family of linear functions of the form f(δ) = k · δ
mapping every δ ∈ R≥0 to the value k · δ in K (for some k ∈ R≥0). Given f1, f2 ∈
F , we define the pointwise product f1⊙f2 of f1 and f2 by (f1⊙f2)(δ) = f1(δ)·f2(δ).
Further, we define the function 1 : R≥0 → K : δ 7→ 1 for each δ ∈ R≥0. In the
following, we assume that F always contains 1.

A weighted timed automaton over K, Σ and F is a tuple
A = (L,L0,Lf , C, E, ewt, lwt) such that (L,L0,Lf , C, E) is a timed automaton
over Σ and ewt : E → K is a weight function for taking an edge, and lwt : L → F
is a function that defines the weight for letting time elapse in a location. A
weighted timed automaton A maps each timed word w ∈ TΣ+ to a weight in
K as follows: first, we define the running weight rwt(r) of a run r as above
to be

∏
i∈dom(w) lwt(li−1)(δi) · ewt(ei). Then, the behaviour ‖A‖ : TΣ+ → K

of A is given by (‖A‖, w) =
∑
{rwt(r) : r is a successful run of A on w}. A

function T : TΣ+ → K is called a timed series. A timed series T is said to be
F-recognizable over K and Σ if there is a weighted timed automaton A over K,
Σ and F such that ‖A‖ = T .

Example 2 In Fig. 1, we show a weighted timed automaton over the arctical
semiring and the family of functions of the form f (δ) = δk for some k ∈ R≥0

and each δ ∈ R≥0 together with 1. The locations are labeled with their weight
functions. The edges are labeled with letters fromΣ, clock constraints and resets,
and their weights.

This weighted timed automaton models a situation in a real-time system,
where a problem occurs (o), is treated (t) and finally fixed (f). For the prob-
lem there a two possible treatments, which differ in time conditions and the
consumption of a resource (eg. money or energy). The resource consumption
grows quadratic and cubic, respectively, with time (in the locations), but also
independently on time (at the edges).

A problem and its treatment is modeled as a timed word. For instance, if a
problem occurs at time 1.8, its treatment starts at 5.0 and is fixed at 11.0, then
the corresponding timed word is w = (o, 1.8)(t, 5.0)(f, 11.0). Given such a timed
word, we are interested in the maximum resource consumption for it.

For w, there are two successful runs. Notice that 1 maps each time delay to
0, the unit element of the arctical semiring. The running weight of the run using
the upper location equals 5+62 +100 = 141 and that of the run using the lower
location equals 3 + 63 = 219. Hence, the weighted timed automaton maps w to
219, which corresponds to the maximum resource consumption of this particular
problem situation.

�

For L ⊆ TΣ+, the characteristic series 1L is defined by (1L, w) = 1 if w ∈ L,
0 otherwise. Notice that a timed automaton A over Σ can be seen as a weighted
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1o/0

x := 0

t/5

x ≥ 2

t/3

4 ≤ x ≤ 6

x := 0

f/100

x ≥ 10

f/0

x ≥ 8

Fig. 1. Weighted timed automaton for Example 2

timed automaton over the Boolean semiring, Σ and F = {1}. The timed se-
ries recognized by such a weighted timed automaton is the characteristic series
1L(A). The next lemma states some other conditions under which 1L(A) is F -
recognizable.

Lemma 3 Let K be a semiring and L ⊆ TΣ+.

1. If L is deterministically TA-recognizable over Σ, then 1L is F-recognizable.
2. If K is idempotent and L is TA-recognizable over Σ, then 1L is F-

recognizable.

Proof. For the first claim, let A be a deterministic timed automaton A such
that L(A) = L. Let A′ be the weighted timed automaton obtained from A by
adding weight functions ewt and lwt defined by ewt(e) = 1 for every edge e and
lwt(l) = 1 for every location l in A. One can easily see that ‖A′‖ = 1L. For the
second claim, we use a similar construction. Using the fact that K is idempotent
and hence 1 + 1 = 1, one can show ‖A′‖ = 1L.

�

Given timed series T1, T2 : TΣ+ → K, we define the sum T1 + T2 and the
Hadamard product T1 ⊙ T2 pointwise, i.e., by (T1 +T2, w) = (T1, w)+(T2, w) and
(T1 ⊙ T2, w) = (T1, w) · (T2, w) for each w ∈ TΣ+. If K is the Boolean semiring,
then + and ⊙ correspond to the union and intersection of timed languages,
respectively. Given a mapping π : Σ → Γ and a timed series T : TΣ+ →
K, we define the renaming π̄(T ) : TΓ+ → K by (π̄(T ), u) =

∑
π(w)=u(T , w)

for all u ∈ TΓ+. Notice that the sum in the equation is finite. For a timed
series T : TΓ+ → K, we define the inverse renaming π̄−1(T ) : TΣ+ → K by
(π̄−1(T ), w) = (T , π(w)) for each w ∈ TΣ+.

Later in the paper, we need closure properties of F -recognizable timed series
under these operations. The proof for closure of the class of F -recognizable timed
series under sum can be done as usual, namely by taking a disjoint union of two
weighted timed automata.

Lemma 4 The class of F-recognizable timed series is closed under sum.

In contrast to sum, F -recognizable timed series are not closed under the
Hadamard product due to two reasons. First, as in the untimed setting [13],
we must ensure that the weights occuring in runs of the two weighted timed
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automata commute element-wise. This can be solved by assuming K to be com-
mutative. Second, we have to restrict the location weight functions used in the
weighted timed automata in order to guarantee that the pointwise product of
each pair of functions is in F . This is illustrated in the next example.

Example 5 In Fig. 2, we show two weighted timed automata A1 and A2 over
the semiring (R,+, ·, 0, 1) and the family of linear functions. On the right hand
side, we show the weighted timed automaton A with ‖A‖ = ‖A1‖ ⊙ ‖A2‖. It is
obtained by using the classical product construction. However, notice thatA uses
a quadratic weight function. In fact, it can be proved that there is no weighted
timed automaton over the family of linear functions recognizing ‖A1‖ ⊙ ‖A2‖.

�

2δ 1 3δ 1 6δ2 1a/0 a/0 a/0

A1 A2 A

Fig. 2. Weighted Timed Automata A1 and A2 and the product automaton A

For this reason, we define the notion of non-interfering timed series. Let A =
(L,L0,Lf , C, E, ewt, lwt) and A′ = (L′,L′0,L

′
f , C
′, E′, ewt′, lwt′) be two weighted

timed automata over K, Σ and F . We say that A and A′ are non-interfering if
for all pairs (l , l ′) ∈ L×L′, whenever there is a run from (l , l ′) into Lf×L′f , then

lwt(l)⊙ lwt′(l ′) ∈ F . This guarantees that the product automaton of A and A′ is
a weighted timed automaton over F . If F is closed under the pointwise product,
all pairs of weighted timed automata are non-interfering. However, A and A′

are also non-interfering if lwt(l) = 1 or lwt′(l ′) = 1 for each pair (l , l ′) ∈ L × L′

from which there is a run into Lf × L′f . Notice that testing for reachability of
locations is decidable [1]. We say that two timed series T , T ′ : TΣ∗ → K are
non-interfering over K, Σ and F if there are two non-interfering weighted timed
automata A and A′ over K, Σ and F such that ‖A‖ = T and ‖A′‖ = T ′.

Lemma 6 Let K be commutative. If T1, T2 : TΣ+ → K are non-interfering
timed series over K, Σ and F , then T1 ⊙ T2 is F-recognizable over K and Σ.

Proof. Let T1, T2 : TΣ+ → K be non-interfering over K, Σ and F .
Then there exist two non-interfering weighted timed automata Ai =
(Li,Li0,L

i
f , C

i, Ei, ewti, lwti) over K, Σ and F (i = 1, 2) such that ‖A1‖ = T1
and ‖A2‖ = T2. We may assume that L1 ∩ L2 = ∅ and C1 ∩ C2 = ∅. Define
L′ = {(l1, l2) ∈ L1×L2 : lwt1(l1)⊙ lwt2(l2) /∈ F}. We let A = (L,L0,Lf , C, E,wt)
be the weighted timed automaton over K, Σ and F such that

– L = (L1 × L2)\L′,
– L0 = (L1

0 × L
2
0)\L

′,
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– L0 = (L1
f × L

2
f )\L

′,

– C = C1 ∪ C2,
– ((l1, l2), a, φ1 ∧ φ2, λ1 ∪ λ2, (l

′
1, l
′
2)) ∈ E ⇔ (l1, a, φ1, λ1, l

′
1) ∈ E1,

(l2, a, φ2, λ2, l
′
2) ∈ E

2 and (l1, l2), (l
′
1, l
′
2) ∈ L,

– ewt((l1, l2), a, φ1∧φ2, λ1∪λ2, (l
′
1, l
′
2))=ewt1(l1, a, φ1, λ1, l

′
1)·ewt2(l2, a, φ2, λ2, l

′
2)

– lwt ((l1, l2)) = lwt1(l1)⊙ lwt2(l2) for every (l1, l2) ∈ L.

Intuitively, A is the classical product automaton, but we remove all “bad” pairs
of locations whose pointwise product of their location weight functions is not
in F . As a consequence, we obtain lwt ((l1, l2)) ∈ F for every (l1, l2) ∈ L. The
removing of “bad” pairs of locations can be done since by assumption from every
such pair there is no run into L1

f × L
2
f anyway. Using commutativity of K, it is

straightforward to show that for each successful run of A there are successful
runs r1 of A1 and r2 of A2 such that rwt(r) = rwt(r1) · rwt(r2), and vice versa.
This can be used to prove ‖A‖ = ‖A1‖ ⊙ ‖A2‖. �

Lemma 7 The class of F-recognizable timed series is closed under renamings.

Proof. Let π : Σ → Γ be a renaming and let A = (L,L0,Lf , C, E, ewt, lwt) be
a weighted timed automaton over K, Σ and F . Define E′ = {(l , π(a), φ, λ, l ′) :
(l , a, φ, λ, l ′) ∈ E}. Now, define ewt′ : E′ → K by

ewt′(l , b, φ, λ, l ′) =
∑

(l,a,φ,λ,l′)∈E
π(a)=b

ewt(l , a, φ, λ, l ′)

and put A′ = (L,L0,Lf , C, E′, ewt′, lwt). Clearly, A′ is a weighted timed au-
tomaton over K, Γ and F . Next, we show that ‖A′‖ = π̄(‖A‖).

Let v ∈ TΓ+ be of the form (b1, t1)...(bk, tk) and R be the set of successful
runs of A on w ∈ TΣ+ such that π(w) = v. Let r, r′ ∈ R be of the form

r = (l0, ν0)
δ1,e1
−→ ...

δk,ek−→ (lk, νk)

and

r′ = (l ′0, ν
′
0)

δ1,e
′
1−→ ...

δk,e
′
k−→ (l ′k, ν

′
k).

We say that r and r′ are equivalent, written r ≡ r′, if li = l ′i and νi = ν′i for
0 ≤ i ≤ |w|. Intuitively, r ≡ r′ if the runs differ at most in the labels, guards
and reset sets of their edges, provided that π maps the labels to the same image
and the resulting clock valuations are the same. We use R/≡ to denote the set
of all equivalence classes induced by ≡. From the fact that ≡ induces a partition
of R, we obtain ∑

w∈TΣ+

π(w)=v

(‖A‖, w) =
∑

R∈R/≡

∑

r∈R

rwt(r).

Next, let R ∈ R/≡ and r ∈ R be of the form (l0, ν0)
δ1,e1
−→ ...

δk,ek−→
(lk, νk). We define rR to be the sequence that is obtained from r by replac-
ing ei = (li−1, ai, φi, λi, li) for each i ∈ dom(w) by the corresponding edge
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e′i = (li−1, π(ai), φi, λi, li) ∈ E′. We neither change the clock constraints φi
nor the reset sets λi, so we have ν′i−1 |= φi and ν′i = (ν′i−1 + δi)[λi := 0] for each
i ∈ dom(w), and thus, rR is a successful run of A′ on v. Moreover, the set of
successful runs of A′ on v is precisely the set of such runs rR for each R ∈ R/≡,
i.e., we have

(‖A′‖, v) =
∑

R∈R/≡

rwt(rR),

where rR is the run of A′ on v obtained from an arbitrary run r ∈ R as described
above. Next, we show that for every R ∈ R/≡ we have rwt(rR) =

∑
r∈R rwt(r),

which, with the help of the two equations above, implies the result. Let R ∈ R/≡
and r ∈ R as above. Then, the following equation holds by distributivity of K:

rwt(rR) =
∏

1≤i≤|v|

lwt(li−1)(δi) · ewt(e′i)

=
∏

1≤i≤|v|

lwt(li−1)(δi) ·
∑

(li−1,ai,φi,λi,li)∈E

π(ai)=bi

ewt(li−1, ai, φi, λi, li)

=
∑

(li−1,ai,φi,λi,li)∈E

π(ai)=bi

∏

1≤i≤|v|

lwt(li−1)(δi) · ewt(li−1, ai, φi, λi, li)

=
∑

r∈R

rwt(r).

Hence, (‖A′‖, v) =
∑

w∈TΣ+

π(w)=v

(‖A‖, w), and thus ‖A′‖ = π̄(‖A‖).
�

Lemma 8 The class of F-recognizable timed series is closed under inverse re-
namings.

Proof. Let π : Σ → Γ be a renaming and let A = (L,L0,Lf , C, E, ewt, lwt)
be a weighted timed automaton over K, Σ and F . Define E′ = {(l , a, φ, λ, l ′) :
(l , π(a), φ, λ, l ′) ∈ L} and ewt′(l , a, φ, λ, l ′) = ewt(l , π(a), φ, λ, l ′). Then the be-
haviour of the weighted timed automaton A′ = (L,L0,Lf , C, E′, ewt′, lwt) over
K, Σ and F precisely corresponds to π̄−1(‖A‖).

�

2 Weighted Monadic Logic of Relative Distance

In this section, we define a logic for the specification of recognizable timed series.
Then we aim to show that this logic is expressively equivalent to weighted timed
automata. The first result of this kind, the equivalence between finite automata
and sentences in a monadic second-order (MSO) logic over some alphabet Σ,
denoted by MSO(Σ), was obtained by Büchi [10]. A result of this kind has
recently been presented for weighted finite automata over semirings by Droste
and Gastin [13]. The authors define a weighted MSO logic, where atomic formulas
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may additionally comprise elements of the semiring. The full weighted MSO logic
is expressively stronger than weighted finite automata. Thus the authors consider
a syntactically defined fragment and show that it is expressively equivalent to
the class of weighted finite automata. For timed automata, a Büchi theorem was
given by Wilke [29]. Wilke extends MSO(Σ) with formulas of the form d(y, z) ∼ c,
called distance predicates, where y, z are first-order variables, ∼ ∈ {<,≤,=,≥
, >} and c ∈ N. Formulas of this form are supposed to express that the time
distance between the positions y and z in a timed word satisfies the constraint
∼ c. However, it is shown by Alur and Henzinger [25], that the unrestricted use
of distance predicates leads to an undecidable theory. For instance, formulas like
∀y.∀z.d(y, z) = 1 can be used to specify timed words that correspond precisely to
the halting computations of a turing machine. Moreover, since TA-recognizable
timed languages are not closed under complement, one cannot expect to find
a full MSO logic that is expressively complete for timed automata [29]. For
this reason, Wilke restricts the use of distance predicates. He introduces relative

distance predicates of the form
←−
d (D, y) ∼ c, where D is a second-order variable,

which may only be existentially quantified. Furthermore, this may only be done
at the beginning of a formula. The resulting logic is known as relative distance
logic. Wilke [29] shows that timed languages definable in this logic can be fully
characterized in terms of timed automata.

We recall the syntax and semantics of the relative distance logic over Σ. We
do this in two steps. We start with the definition of the underlying auxiliary
logic, denoted by MSO(TΣ+), which is an extension of MSO(Σ) with relative
distance predicates. Formulas of MSO(TΣ+) are defined by the following gram-
mar

ϕ ::= Pa(y) | y = z | y < z | y ∈ X |
←−
d (D, y) ∼ c | ¬ϕ | ϕ ∨ ϕ | ∃y.ϕ | ∃X.ϕ,

where y, z are first-order variables,X,D are second-order variables, a ∈ Σ, c ∈ N
and∼ ∈ {<,≤,=,≥, >}. Notice that the syntax of MSO(TΣ+) does not allow for
the quantification of D occuring in a relative distance predicate. For this reason,
we may temporarily interprete D as a constant and note that MSO(TΣ+) is a
full MSO logic. As usual, we may use true, ϕ ∧ ψ, ϕ −→ ψ, ϕ←→ ψ, ∀y.ϕ and
∀X.ϕ as abbreviations for ¬ϕ ∨ ϕ, ¬(¬ϕ ∨ ¬ψ), ¬ϕ ∨ ψ, (ϕ −→ ψ) ∧ (ψ −→ ϕ),
¬∃y.¬ϕ, and ¬∃X.¬ϕ, respectively.

In the relative distance logic, D will be allowed to be existantially quantified
at the beginning of a formula. Formally, we define the relative distance logic,

denoted by L
←−
d (Σ), to be the smallest class of formulas containing all formulas

generated by the next two rules.

1. If ϕ ∈ MSO(TΣ+), so is ϕ ∈ L
←−
d (Σ).

2. If ϕ ∈ L
←−
d (Σ), so is ∃D.ϕ ∈ L

←−
d (Σ).

Formulas of L
←−
d (Σ) are interpreted over timed words over Σ. For this, we asso-

ciate with w ∈ TΣ+ the relational structure consisting of the domain dom(w)
together with the binary relation Pa = {i ∈ dom(w) : ai = a} and the usual =
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and < relations on dom(w). We further define the binary relation
←−
d (·, ·) ∼ c to

be (I, i) ∈ 2dom(w)×dom(w) such that one of the following conditions is satisfied

– there is some j ∈ I such that j < i, ti − tj ∼ c and there is no k ∈ I with
j < k < i,

– there is no j ∈ I such that j < i, and ti − 0 ∼ c.

For ϕ ∈ L
←−
d (Σ), let Free(ϕ) be the set of free variables, i.e., variables not bound

by any quantifier, V ⊇ Free(ϕ) be a finite set of first- and second-order variables,
and σ be a (V , w)-assignment mapping first-order (second-order, respectively)
variables to elements (subsets, respectively) in dom(w). For i ∈ dom(w), we let
σ[y → i] be the assignment that maps y to i and agrees with σ on every variable
V\{y}. Similarly, we define σ[X → I] for any I ⊆ dom(w). For Σ, we define the
extended alphabets ΣV = Σ × {0, 1}V for every finite set V of variables. A timed
word w ∈ TΣ+ and a (V , w)-assignment σ are encoded as timed word over the
extended alphabet ΣV . A timed word over ΣV is written as ((ā, σ), t̄), where
(ā, t̄) is the projection over TΣ+ and σ is the projection over {0, 1}V . Then, σ
represents a valid assignment over V if for each first-order variable y ∈ V , the
y-row of σ contains exactly one 1. In this case, σ is identified with the (V , w)-
assignment such that for every first-order variable y ∈ V , σ(y) is the position of
the 1 in the y-row, and for each second-order variable X ∈ V , σ(X) is the set of
positions with a 1 in the X-row.

Example 9 Let w = (a, 2.0)(a, 3.5)(b, 4.2) be a timed word over Σ. Further
let V = {y,X} and consider the valid (V , w)-assignment σ with σ(y) = 2 and

σ(X) = {1, 2}. We encode w and σ as the timed word

(
a
0
1
, 2.0

)(
a
1
1
, 3.5

)(
b
0
0
, 4.2

)

over ΣV .
�

We define NV = {((ā, σ), t̄) ∈ T (ΣV)
+ : σ is a valid (V , (ā, t̄))-assignment}. The

definition that ((ā, σ), t̄) satisfies ϕ, written ((ā, σ), t̄) |= ϕ, is as usual provided
that the domain of σ contains Free(ϕ). We let LV(ϕ) = {((ā, σ), t̄) ∈ NV :
((ā, σ), t̄) |= ϕ}. The formula ϕ defines the timed language L(ϕ) = LFree(ϕ)(ϕ).

A formula ϕ is a sentence if Free(ϕ) = ∅. A timed language L ⊆ TΣ+ is L
←−
d (Σ)-

definable if there exists a sentence ϕ ∈ L
←−
d (Σ) such that L(ϕ) = L.

Theorem 10 ([29]) A timed language L ⊆ TΣ+ is L
←−
d (Σ)-definable if and

only if L is TA-recognizable over Σ. The transformations from a timed automa-

ton over Σ to a L
←−
d (Σ)-sentence and back can be done efficiently.

Now, we turn to the weighted extension of these logics. For this, we fix a semiring

K and a family F of functions from R≥0 to K including 1. We extend L
←−
d (Σ)

with two kinds of weighted formulas of the form k (where k ∈ K) and f (y) (where
f ∈ F and y is a first-order variable), the semantics of which correspond to the
weights of edges and locations, respectively, in weighted timed automata. Again,
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we start with the underlying auxiliary logic and define it by the following
grammar.

ϕ ::= Pa(y) | ¬Pa(y) | y = z | ¬(y = z) | y < z | ¬(y < z) | y ∈ X | ¬(y ∈ X) |
←−
d (D, y) ∼ c | ¬(

←−
d (D, y) ∼ c) | k | f (y) | ϕ ∨ ϕ | ϕ ∧ ϕ | Qy.ϕ | QX.ϕ

where y, z are first-order variables, X,D are second-order variables, Q ∈ {∃, ∀},
a ∈ Σ, c ∈ N, ∼ ∈ {<,≤,=,≥, >}, k ∈ K and f ∈ F . We use MSO(K, TΣ+,F)
to denote the collection of all such formulas. Formulas of the form k and f (y)
are called weighted atomic formulas.

Notice that negation may only be applied to atomic formulas of MSO(TΣ+).
This is because for arbitrary semirings it is not clear what the negation of a
weighted atomic formula should mean. In the following, we use the term atomic
formulas to refer to atomic formulas of MSO(TΣ+) and their negations.

Finally, we define the weighted relative distance logic, denoted by

L
←−
d (K, Σ,F), to be the smallest class of formulas containing all formulas gener-

ated by the next two rules.

1. If ϕ ∈ MSO(K, TΣ+,F), then ϕ ∈ L
←−
d (K, Σ,F).

2. If ϕ ∈ L
←−
d (K, Σ,F), then ∃D.ϕ ∈ L

←−
d (K, Σ,F).

Next, we define the semantics of this logic. Let ϕ ∈ L
←−
d (K, Σ,F) and V ⊇

Free(ϕ). The V-semantics of ϕ is a timed series [[ϕ]]V : T (ΣV)
+ → K. Let (ā, t̄) ∈

TΣ+. If σ is a valid (V , (ā, t̄))-assignment,
(
[[ϕ]]V , ((ā, σ), t̄)

)
∈ K is defined

inductively as follows:
(
[[ϕ]]V , ((ā, σ), t̄)

)
=

(
1LV(ϕ), ((ā, σ), t̄)

)
if ϕ is atomic

(
[[k]]V , ((ā, σ), t̄)

)
= k

(
[[f (y)]]V , ((ā, σ), t̄)

)
= f (tσ(y) − tσ(y)−1)(

[[ϕ ∨ ϕ′]]V , ((ā, σ), t̄)
)

=
(
[[ϕ]]V , ((ā, σ), t̄)

)
+

(
[[ϕ′]]V , ((ā, σ), t̄)

)
(
[[ϕ ∧ ϕ′]]V , ((ā, σ), t̄)

)
=

(
[[ϕ]]V , ((ā, σ), t̄)

)
·
(
[[ϕ′]]V , ((ā, σ), t̄)

)
(
[[∃y.ϕ]]V , ((ā, σ), t̄)

)
=

∑

i∈dom((ā,t̄))

(
[[ϕ]]V∪{y}, ((ā, σ[y → i]), t̄)

)

(
[[∀y.ϕ]]V , ((ā, σ), t̄)

)
=

∏

i∈dom((ā,t̄))

(
[[ϕ]]V∪{y}, ((ā, σ[y → i]), t̄)

)

(
[[∃X.ϕ]]V , ((ā, σ), t̄)

)
=

∑

I⊆dom((ā,t̄))

(
[[ϕ]]V∪{X}, ((ā, σ[X → I]), t̄)

)

(
[[∃D.ϕ]]V , ((ā, σ), t̄)

)
=

∑

I⊆dom((ā,t̄))

(
[[ϕ]]V∪{D}, ((ā, σ[D → I]), t̄)

)

(
[[∀X.ϕ]]V , ((ā, σ), t̄)

)
=

∏

I⊆dom(ā,t̄)

(
[[ϕ]]V∪{X}, ((ā, σ[X → I]), t̄)

)

For σ not a valid (V , (ā, t̄))-assignment, we define
(
[[ϕ]]V((ā, σ), t̄)

)
= 0. We write

[[ϕ]] for [[ϕ]]Free(ϕ).
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Remark 11 If K is the Boolean semiring, then L
←−
d (K, Σ,F) corresponds to

L
←−
d (Σ). This is because every formula in L

←−
d (Σ) is language equivalent to a

formula where negation is applied to atomic subformulas only. Also, every such

formula in L
←−
d (Σ) can be seen as a formula of L

←−
d (K, Σ,F).

Example 12 Consider the formula ϕ = ∃D.∃y.Pb(y) ∧
←−
d (D, y) < 2 and let

w = (a, 1.0)(a, 2.0)(b, 3.0). If K is the Boolean semiring or, equivalently, we

interprete ϕ as an L
←−
d (Σ)-formula, we have ([[ϕ]], w) = 1, as, for instance, the

time difference between the third and second position is less than 2, so we may
choose σ(y) = 3 and σ(D) = {2}. If on the other hand, we letK be the semiring of
the natural numbers, we have ([[ϕ]], w) = 4, since there are 4 different assignments

such that Pb(y) ∧
←−
d (D, y) < 2 is evaluated to 1. In fact, using the semiring of

the natural numbers, we can count how often a certain property holds. This may
give rise to interesting applications in the field of verification.

�

Example 13 We let K be the arctical semiring and f (δ) = δ for each δ ∈ R≥0.
Then, the formula ϕ = ∃y.f (y) computes for each timed word w the maximal
time difference ti − ti−1 between two consecutive events. Formally, ([[ϕ]], w) =
max{ti − ti−1 : i ∈ dom(w)} for each w ∈ TΣ+.

�

The following lemma states that for each formula ϕ of our logic, the semantics
for different finite sets V of variables containing Free(ϕ) are consistent with each

other. It can be proved by induction on the structure of L
←−
d (K, Σ,F)

Lemma 14 Let ϕ ∈ L
←−
d (K, Σ,F) and V a finite set of variables containing

Free(ϕ). Then (
[[ϕ]]V , ((ā, σ), t̄)

)
=

(
[[ϕ]], ((ā, σ|Free(ϕ)), t̄)

)

for each ((ā, σ), t̄) ∈ T (ΣV)
+ such that σ is a valid (V , (ā, t̄))-assignment.

Let L ⊆ L
←−
d (K, Σ,F). A timed series T : TΣ+ → K is called L-definable if

there is a sentence ϕ ∈ L such that [[ϕ]] = T . The goal of this section is to

find a suitable fragment L ⊆ L
←−
d (K, Σ,F) such that L is expressively equivalent

to weighted timed automata. In other words, we want to generalize Theorem

10 to the weighted setting. It is not surprising that L
←−
d (K, Σ,F) itself does

not constitute a suitable candidate for L, since also in the untimed setting, full
weighted MSO logic is expressively stronger than weighted finite automata [13].
In the next section, we explain the problems that occur when we do not restrict
the logic. For simplicity, we do this exemplarily for the case of idempotent and
commutative semirings. To be as general as possible, we will moreover consider
families of functions that are not closed under pointwise product. Notice that this
setting includes e.g. the weighted timed automaton of Example 2. Stepwisely,

we develop solutions resulting in a fragment of L
←−
d (K, Σ,F) for which we are

able to present a Büchi theorem for weighted timed automata over this partic-
ular setting. Later we will show how to generalize this approach to arbitrary
semirings.
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3 From Logic To Weighted Timed Automata

We fix an idempotent and commutative semiring K. Moreover, we assume that
F is not necessarily closed under pointwise product.

We want to develop a fragment L ⊆ L
←−
d (K, Σ,F) in which, for every sen-

tence ϕ ∈ L, [[ϕ]] is an F -recognizable timed series. As in the classical setting,
the proof for this is done by induction over the structure of the logic: for the
induction base, we show that for every atomic formula ϕ in L, there is a weighted
timed automaton A over K, ΣFree(ϕ)

2 and F such that ‖A‖ = [[ϕ]]. For the in-
duction step, we need to show that F -recognizable timed series are closed under
the operators of L. In the case of disjunction and existential quantification, the
proofs are very similar to the classical case [27, 13]. In the case of conjunction
and universal quantification, however, problems arise. The problems with unre-
stricted use of conjunction are due to the fact that F -recognizable timed series
are not closed under Hadamard product in general (see Example 5). Problems
with unrestricted use of universal quantification are due to the fact that the
semantics of formulas may grow with the size of a timed word too fast to be
recognizable by a weighted timed automaton. This is demonstrated in the next
example.

Example 15 Let K be the arctical semiring and F be the family of functions
of the form δk for some k ∈ N and all δ ∈ R≥0. We let f be the function
defined by f (δ) = δ1 for each δ ∈ R≥0. We consider the formula ϕ = ∀z.∃y.f (y).
Then we have ([[ϕ]], w) = |w| ·max{ti − ti−1 : i ∈ dom(w)} for each w ∈ TΣ+.
However, [[ϕ]] is not F -recognizable, as is proved in the following: assume A =
(L,L0,Lf , C, E, ewt, lwt) is a weighted timed automaton over K, Σ and F such
that ‖A‖ = [[ϕ]]. Notice that ewt assigns constants to the edges, respectively.
Thus, for each location l , there is some δ ∈ R≥0 such that lwt(l)(δ) is strictly
greater than each of these constants. For this reason, we may assume ewt(e) = 0
for each e ∈ E. For each l ∈ L, we use cl to denote the constant to which power
the time delay δ is taken of, i.e., if lwt(l)(δ) = δn for each δ ∈ R≥0 and some
n ∈ K, then, cl = n. Let M = max{cl : l ∈ L}. Then, for every timed word
w ∈ TΣ+ and for each run of A on w we have rwt(r) ≤

∑
1≤i≤|w|(ti − ti−1)

M .

Furthermore, we have (‖A‖, w) = max{rwt(r) : r is a run of A on w} and thus
(‖A‖, w) ≤

∑
1≤i≤|w|(ti−ti−1)

M . Now choose w ∈ TΣ+ such that |w| > 2M and

there exists some i ∈ dom(w) such that ti− ti−1 = 2 and for all j ∈ dom(w) with
j 6= i we have tj − tj−1 = 0. Then we obtain (‖A‖, w) < [[ϕ]], a contradiction.
The timed series [[ϕ]] grows too fast to be F -recognizable.

�

Similar examples can be given for ∀X . For this reason, we restrict the application
of conjunction and universal quantification and consider a syntactically restriced
fragment of MSO(K, TΣ+,F). We present the definition of this fragment in the

2 Notice that atomic and weighted atomic formulas may contain free variables. Thus
the weighted timed automata recognizing the semantics of an atomic formula ϕ are
defined over the extended alphabet ΣFree(ϕ).
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following. We start with the definition of unweighted and almost unambiguous
formulas.

We say that a formula ϕ ∈ MSO(K, TΣ+,F) is unweighted, if it does not
contain any weighted atomic formulas. It can be easily seen that unweighted
formulas are in MSO(TΣ+).

Lemma 16 The semantics [[ϕ]] of each unweighted formula ϕ ∈
MSO(K, TΣ+,F) takes only values in {0, 1}. In particular, [[ϕ]] = 1L(ϕ).

Proof. Follows from the semiring axioms and idempotence of K.
�

Let y be a first-order variable. We say that a formula ψ ∈ MSO(K, TΣ+,F)
is almost unambiguous over y, if it is in the disjunctive and conjunctive closure
of unweighted formulas, constants k ∈ K and formulas f (y) for some f ∈ F ,
such that f (y) may appear at most once in every subformula of ψ of the form
ψ1 ∧ ψ2.

Example 17 Let f , g ∈ F , k ∈ K and let z be a first-order variable. The
formulas ∃y.f (y) and ∃y.k are not almost unambiguous over y. The formula
[(f (y) ∧ k) ∨ g(y)] ∧ Pa(z) is almost unambiguous over y, whereas the formulas
[(f (y) ∧ k) ∨ g(z)] ∧ Pa(z) and f (y) ∧ k ∧ g(y) ∧ Pa(z) are not.

�

We say that two formulas ψ and ζ are equivalent, written ψ ≡ ζ, if
[[ψ]]Free(ψ)∪Free(ζ) = [[ζ]]Free(ψ)∪Free(ζ). The next lemma can be proved using the
semiring axioms, commutativity of K and Lemma 16.

Lemma 18 Let y be a first-order variable, k1, k2 ∈ K, f ∈ F , and ψ1, ψ2, ψ3 ∈
MSO(K, TΣ+,F) be unweighted. Then, the following equivalences hold:

1. ψ1 ∧ (ψ2 ∨ ψ3) ≡ (ψ1 ∧ ψ2) ∨ (ψ1 ∧ ψ3)
2. ψ1 ∧ ψ2 ≡ ψ2 ∧ ψ1

3. ψ1 ≡ 1 ∧ ψ1

4. ψ1 ≡ 1(y) ∧ ψ1

5. ψ1 ≡ ψ1 ∧ true

6. k1 ∧ k2 ≡ k1 · k2

Lemma 19 Let y be a first-order variable and ψ ∈ MSO(K, TΣ+,F) be almost
unambiguous over y. Then there is a formula ζ ∈ MSO(K, TΣ+,F) such that
ζ is of the form

∨
1≤i≤n fi(y) ∧ ki ∧ ψi for some n ∈ N, fi ∈ F , ki ∈ K and

unweighted ψi ∈ MSO(K, TΣ+,F) for each i ∈ {1, ..., n}, and ζ ≡ ψ.

Proof. We transform every almost unambiguous formula into the appropriate
form using Lemma 18. First, transform every formula of the form ψ1 ∧ (ψ2 ∨ψ3)
into the form (ψ1 ∧ψ2)∨ (ψ1 ∧ψ3) and every formula of the form (ψ1 ∨ψ2)∧ψ3

into the form (ψ1 ∧ ψ3) ∨ (ψ2 ∧ ψ3). Then, each disjunct can be put in the right
form using Lemma 18.

�
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Given a formula ϕ ∈ MSO(K, TΣ+,F), we define the set Vf (ϕ) to be the set
of all first-order variables y such that f (y) appears in ϕ.

We define the syntactically restricted auxiliary logic
sRMSO(K, TΣ+,F) to be the smallest class of formulas generated by the
following rules.

1. If ϕ ∈ MSO(K, TΣ+,F) is an atomic or a weighted atomic formula, then
ϕ ∈ sRMSO(K, TΣ+,F).

2. If ϕ, ψ ∈ sRMSO(K, TΣ+,F), then ϕ∨ψ, ∃y.ϕ, ∃X.ϕ ∈ sRMSO(K, TΣ+,F).
3. If ϕ ∈ sRMSO(K, TΣ+,F) is unweighted, then ∀X.ϕ ∈ sRMSO(K, TΣ+,F).
4. If ϕ ∈ sRMSO(K, TΣ+,F) is almost unambiguous over y, then ∀y.ϕ ∈

sRMSO(K, TΣ+,F).
5. If ϕ, ψ ∈ sRMSO(K, TΣ+,F) and at least one of the following conditions

holds

– Vf (ϕ) = ∅,
– Vf (ψ) = ∅,
– Vf (ϕ) ∩ Vf (ψ) = ∅, Vf (ϕ) ⊆ Free(ϕ), and Vf (ψ) ⊆ Free(ψ),

then ϕ ∧ ψ ∧
∧

y∈Vf (ϕ),z∈Vf (ψ)

y 6=z

¬(y = z) ∈ sRMSO(K, TΣ+,F).

The motivation for these restrictions will be explained later in this section.

Remark 20 If F is closed under pointwise product, we can replace condi-
tion 5 by the following rule: if ϕ, ψ ∈ sRMSO(K, TΣ+,F), then ϕ ∧ ψ ∈
sRMSO(K, TΣ+,F).

Now, we want to show that for each formula ϕ ∈ sRMSO(K, TΣ+,F), there
is a weighted timed automaton A such that ‖A‖ = [[ϕ]]. As mentioned before,
this is done by induction. However, due to our restriction on conjunction in
sRMSO(K, TΣ+,F), we will prove a stronger result, stated in the next theorem.

Given a formula ϕ ∈ MSO(K, TΣ+,F), we let Func(ϕ) be the set of functions
f ∈ F such that ϕ contains a subformula f (y) for some first-order variable y.
Given a weighted timed automaton A, we let Func(A) be the set of functions f
such that lwt(l) = f for some location l in A.

Theorem 21 Let ϕ ∈ sRMSO(K, TΣ+,F) be a syntactically restricted formula.
Then for each finite set V ⊇ Free(ϕ) there is some weighted timed automaton
Aϕ over K, ΣV and F such that

1. ‖Aϕ‖ = [[ϕ]]V ,
2. Func(Aϕ) ⊆ Func(ϕ) ∪ {1},
3. for each formula f (y) occurring in ϕ with y ∈ Free(ϕ), whenever lwt(l) = f

for some location l in Aϕ, then for each edge (l , (a, σ), φ, λ, l ′) in Aϕ we have
σ(y) = 1.

The remainder of this section is devoted to the proof of this theorem. The proof is
done by induction on the construction of sRMSO(K, TΣ+,F)-formulas. However,
we will only show the claim for V = Free(ϕ). For each other finite set V ′ of
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variables with V ′ ⊇ Free(ϕ), the claim follows from the following Lemma together
with the fact that [[ϕ]]V′ = π̄−1([[ϕ]]) ⊙ 1NV′ .

Let V ,V ′ be two finite sets of first- and second-order variables such that
V ⊆ V ′. Let π : ΣV′ → ΣV be a projection defined by (a, σ) 7→ (a, σ|V).

Lemma 22 For each weighted timed automaton A over ΣV , there is a weighted
timed automaton AV′ over ΣV′ such that

1. ‖AV′‖ = π̄−1(‖A‖)⊙ 1NV′ ,
2. Func(AV′) = Func(A),
3. for each f ∈ F and each first-order variable y ∈ V, if each edge of the form

(l , (a, σ), φ, λ, l ′) in A with lwt(l) = f satisfies σ(y) = 1, then each edge of
the form (l1, (b, σ

′), φ′, λ′, l2) in AV′ with lwt′(l1) = f satisfies σ′(y) = 1.

Proof. Let A = (L,L0,Lf , C, E, ewt, lwt) be a weighted timed automaton over
ΣV . We define A′ = (L,L0,Lf , C, E′, ewt′, lwt) over ΣV′ as follows. For each
edge e ∈ E of the form (l , (a, σ), φ, λ, l ′) with (a, σ) ∈ ΣV , for each y ∈ V ′\V and
for each i ∈ {0, 1}, there is an edge e′ ∈ E′ of the form (l , (a, σ′), φ, λ, l ′) with
(a, σ′) ∈ ΣV′ , where

σ′(z) =

{
σ(z) if z ∈ V ,

i otherwise.

Moreover, ewt′(e′) = ewt(e). There are no other edges in E′. Let ANV′ be a
weighted timed automaton over ΣV′ with ‖ANV′‖ = 1NV′ and Func(ANV′ ) =
{1}. In this way, ANV′ is non-interfering with any weighted timed automaton.
Now, let AV′ be the product automaton of A′ and ANV′ as defined in the proof
of Lemma 6. It is easy to show that AV′ satisfies conditions 1. to 3.

�

Example 23 Figures 3 and 4 show the weighted timed automata Af (y) over
Σ{y} and Σ{y,z}, respectively. Note that taking the Hadamard product with
AN{y,z}

is necessary, because otherwise there are successful runs over timed words
encoding invalid variable assignments.

�

Now, we prove Theorem 21. For the induction base, we consider the atomic and
weighted atomic formulas in sRMSO(K, TΣ+,F).

Atomic and Weighted Atomic Formulas Let ϕ ∈ sRMSO(K, TΣ+,F) be
atomic. If ϕ equals Pa(y), y < z, y = z, y ∈ X , or one of its negations, we
can construct a timed automaton A′ϕ using the same approach as for formulas
in MSO(Σ) (see e.g. Thomas [26]). We define Aϕ to be the weighted timed
automaton obtained from A′ϕ by adding weight functions ewt and lwt defined
by lwt(l) = 1 for each location l and ewt(e) = 1 for each edge e. For ϕ not
as above, the corresponding weighted timed automata Aϕ are shown in Fig.
3. The idea behind the construction of A←−

d (D,y)∼c
is as follows: the automaton

non-deterministically guesses when the last edge labeled with a letter in Σ{y,D}
with a 1 in the D-row is taken and resets the clock variable at this edge. Then
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Fig. 3. Weighted timed automata recognizing (weighted) atomic formulas. Edge
weights equal to 1 are omitted.

it verifies that whenever an edge is labeled by a letter with a 1 in the y-row,
the time distance to the last event labeled with a letter with a 1 in the D-row
satisfies ∼ c. This can be done by adding a corresponding clock constraint to this

edge. The idea for ϕ = ¬
←−
d (D, y) ∼ c is similar. The weighted timed automaton

Af (y) verifies that whenever an edge is labeled with a letter such that there is a
1 in the y-row, then the source location of this edge must be assigned the weight
function f . All the other locations must be assigned the weight function 1. We
further construct Ak in such a way that there is exactly one edge with cost k,
and all other edges are assigned 1. Finally, it can be shown in a straightforward
manner that conditions 2. and 3. of Theorem 21 are satisfied.

Remark 24 We remark that for e.g. the tropical semiring, there is no weighted
timed automaton that corresponds to the formula k if we allow for empty timed
words. For including empty timed words, one may extend the model of weighted
timed automaton with weight functions assigning a weight for entering a location
and leaving a location, see [23]. Then, the semantics of k are F -recognizable.

For the induction step, we consider the operators of sRMSO(K, TΣ+,F). We
start with disjunction and existential quantification.

Disjunction Let ψ, ζ ∈ sRMSO(K, TΣ+,F) and assume ϕ = ψ ∨ ζ. Note that
Free(ϕ) = Free(ψ) ∪ Free(ζ) and thus Free(ψ) ⊆ Free(ϕ) and Free(ζ) ⊆ Free(ϕ).
By induction hypothesis, there are weighted timed automata Aψ over ΣFree(ϕ)

and Aζ over ΣFree(ϕ), respectively, satisfying condition 1. to 3. of Theorem 21.
Let Aϕ be the disjoint union of Aψ and Aζ . We have ‖Aϕ‖ = ‖Aψ‖+ ‖Aζ‖ and
thus ‖Aϕ‖ = [[ϕ]]. Clearly, also conditions 2. and 3. hold.

Existential quantification Let ψ ∈ sRMSO(K, TΣ+,F) and assume ϕ =
∃y.ψ. We further let V = Free(ϕ) and V ′ = V ∪ {y} = Free(ψ). By induction
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hypothesis, there is a weighted timed automaton Aψ over ΣV′ satisfying condi-
tions 1. to 3. of Theorem 21. Let p : ΣV′ → ΣV be the projection that simply
erases the y-row. Let Aϕ be the weighted timed automaton over ΣV obtained
from Aψ as defined in the proof of Lemma 7. Hence, we have ‖Aϕ‖ = p̄(‖Aψ‖).
However, for each ((ā, σ), t̄) ∈ T (ΣV)

+, we also have

(
p̄(‖Aψ‖), ((ā, σ), t̄)

)

=
(
p̄([[ψ]]V∪{y}), ((ā, σ), t̄)

)

=
∑

((ā,σ′),t̄)∈T (ΣV∪{y})+

p((ā,σ′),t̄)=((ā,σ),t̄)

(
[[ψ]]V∪{y}, ((ā, σ

′), t̄)
)

⋆
=

∑

i∈dom(ā,t̄)

(
[[ψ]]V∪{y}, ((ā, σ[y → i], t̄)

)

=
(
[[∃y.ψ]]V , ((ā, σ), t̄)

)

where ⋆ uses the equivalences

p
(
(ā, σ′), t̄

)
= ((ā, σ), t̄) ⇔ σ′ = σ[y → i] for some i ∈ dom(ā, t̄)

and

σ is a valid (V , (ā, t̄))-assignment

⇔

σ[y → i] is a valid (V ∪ {y}, (ā, t̄))-assignment for every i ∈ dom(ā, t̄).

Hence, ‖Aϕ‖ = [[ϕ]]. It is obvious that condition 2. is satisfied. For showing
condition 3., let f (z) be a subformula occuring in ϕ with z ∈ Free(ϕ). Thus,
z 6= y. Since Aϕ is obtained from Aψ by only removing the y-row from the
labels of all edges, condition 3. is satisfied.

The proof for the case ϕ = ∃X.ψ can be done analogously.

Before we come to the case of conjunction, we consider the following example.

Example 25 Consider the formula f (y) ∧ g(z). Notice that Af(y) and Ag(z)
over Σ{y,z} are not non-interfering: in both automata, there is a run from a
location which is assigned the weight function f (or g, respectively) to a final
location. This is due to common labels of the form (a, 1, 1), which represent the
fact that y and z may be assigned the same position in a timed word (see the
uppermost part of Af (y) in Figure 4). We eliminate this by adding the formula
¬(y = z). This can be seen in the right automaton in Figure 4. The formula
f (y)∧ g(z)∧¬(y = z) is in sRMSO(K, TΣ+,F), whereas the formula f (y)∧ g(z)
is not.

�
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Fig. 4. Two non-interfering weighted timed automata. Edge weights equal to 1 are
omitted.

Conjunction Let ψ, ζ ∈ sRMSO(K, TΣ+,F) and assume that one of the fol-
lowing conditions hold:

– Vf (ψ) = ∅,
– Vf (ζ) = ∅,
– Vf (ψ) ∩ Vf (ζ) = ∅, Vf (ψ) ⊆ Free(ψ), and Vf (ζ) ⊆ Free(ζ),

Further assume ϕ = ψ ∧ ζ ∧
∧

y∈Vf (ψ),z∈Vf (ζ)

y 6=z

¬(y = z).

Note that Free(ϕ) = Free(ψ) ∪ Free(ζ) and thus Free(ψ) ⊆ Free(ϕ) and
Free(ζ) ⊆ Free(ϕ). By induction hypothesis, there are weighted timed automata
Aψ over ΣFree(ϕ) and Aζ over ΣFree(ϕ) satisfying conditions 1. to 3. of Theorem
21.

We now distinguish between three cases.

(Case 1) We assume that Vf (ψ) = ∅. Hence, Func(ψ) = ∅. By induction hy-
pothesis, we thus have Func(Aψ) = {1}. This implies that Aψ is non-interfering
with Aζ . We let Aϕ be the product automaton of Aψ and Aζ as defined in the
proof of Lemma 6. Notice that we are allowed to apply this lemma since we
assume K to be commutative. Hence, we have ‖Aϕ‖ = ‖Aψ‖ ⊙ ‖Aζ‖ and thus
‖Aϕ‖ = [[ϕ]]. It is straightforward to show that Aϕ also satisfies conditions 2.
and 3.
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(Case 2) We assume that Vf (ζ) = ∅. This case be done analogously to case 1.

(Case 3) Assume that both Vf (ψ) 6= ∅ and Vf (ζ) 6= ∅, and thus we may assume

(a) Vf (ψ) ∩ Vf (ζ) = ∅,
(b) Vf (ψ) ⊆ Free(ψ), and
(c) Vf (ζ) ⊆ Free(ζ).

Let χ =
∧

y∈Vf (ψ),z∈Vf (ζ)

y 6=z

¬(y = z) and put ̺ = ζ ∧ χ. Since Vf (χ) = ∅, the

conditions of case 2 are satisfied and hence there is a weighted timed automaton
A̺ over ΣFree(ϕ) satisfying conditions 1. to 3.

Next, we show thatAψ andA̺ are non-interfering. For this, let l be a location
in Aψ such that lwtψ(l) = f for some f ∈ F . By condition 2. of Theorem 21,
there is some subformula f (y) occurring in ψ for some first-order variable y. By
(b), we know that y ∈ Free(ψ), and thus by condition 3. of Theorem 21, for each
edge (l , (a, σ), φ, λ, l1) in Aψ we have σ(y) = 1.

Now, let l ′ be a location in A̺ such that lwt̺(l
′) = f ′ for some f ′ ∈ F .

By condition 2. of Theorem 21, there is some subformula f ′(z) occurring in ̺
for some first-order variable z. Clearly, by definition of ̺, this subformula f ′(z)
can only occur in ζ. Let (l ′, (b, σ), φ′, λ′, l2) be an edge of A̺. By (b), we have
z ∈ Free(ζ) ⊆ Free(̺), and thus by condition 3. of Theorem 21, we have σ(z) = 1.
We further know by (a) that y 6= z, which implies σ(y) = 0. From this it follows
that for l and l ′, there is no edge labeled with a common letter in ΣFree(ϕ). Hence,

from (l , l ′) there is no run into Lψf ×L
ρ
f , and thus Aψ and A̺ are non-interfering.

Finally, let Aϕ be the product automaton of Aψ and A̺ as defined in the
proof of Lemma 6. Clearly, we have

‖Aϕ‖ = [[ψ ∧ ζ ∧
∧

y∈Vf (ψ),z∈Vf (ζ)

y 6=z

¬(y = z)]].

It is straightforward to show that conditions 2. and 3. also hold.

Second-Order Universal Quantification Now, let ψ ∈ MSO(K, TΣ+,F) be
unweighted and assume ϕ = ∀X.ψ. Clearly, ϕ is also unweighted. By Lemma
16, [[ϕ]] = 1L(ϕ). By Theorem 10, there is a timed automaton A such that
L(A) = L(ϕ). Let Aϕ be the weighted timed automaton obtained from A as
defined in the proof of Lemma 3.2. Then Aϕ satisfies conditions 1. to 3. of
Theorem 21.

Before we come to first-order universal quantification, we introduce a nor-
malization technique and some notations.

Lemma 26 For every TA-recognizable timed language L ⊆ TΣ+, there is a
timed automaton A′ such that L(A′) = L, and for each location l in A′ there is
a unique a ∈ Σ such that every edge (l , a′, φ, λ, l ′) in A′ satisfies a′ = a.

Proof. Let L ⊆ TΣ+ be TA-recognizable over Σ. Then there is a timed automa-
ton A = (L,L0,Lf , C, E) such that L(A) = L. Define A′ = (L′,L′0,L

′
f , C, E

′),
where
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– L′ = L ×Σ,
– L′0 = L0 ×Σ,
– L′f = Lf ×Σ,
– E′ = {((l , a), a, φ, λ, (l ′, a′)) : (l , a, φ, λ, l ′) ∈ E, a′ ∈ Σ}.

Then we have L(A′) = L(A), which can be proved in a straightforward way.
�

Let n ∈ N\{0}. We define Σ(n) = Σ × {1, ..., n}. Similarly to timed words over
the extended alphabet ΣV for some finite set V of variables, we write ((ā, µ), t̄) to
denote a timed word over Σ(n), where (ā, t̄) ∈ TΣ+ and µ ∈ {1, ..., n}dom(ā,t̄). We

define for every ξ ∈ MSO(TΣ+) the formula ξ̃ ∈ MSO(T (Σ(n))+) by replacing in
ξ every occurence of Pa(y) by

∨
1≤j≤n P(a,j)(y). The next lemma can be proved

by induction over the structure of ξ.

Lemma 27 Let ξ ∈ MSO(TΣ+) and V ⊇ Free(ξ). Then for every ((ā, µ, σ), t̄) ∈
T ((Σ(n))V)

+ with ((ā, σ), t̄) ∈ NV we have

((ā, σ), t̄) |= ξ ⇔ ((ā, µ, σ), t̄) |= ξ̃.

First-Order Universal Quantification Let ψ ∈ MSO(K, TΣ+,F) be almost
unambiguous over y and assume ϕ = ∀y.ψ. By Lemma 19, we may assume that
ψ is of the form

ψ =
∨

1≤j≤n

fj(y) ∧ kj ∧ ψj

where n ∈ N, kj ∈ K, fj ∈ F , unweighted ψj ∈ MSO(K, TΣ+,F) for each
j ∈ {1, ..., n}.

Let W = Free(ψ) and V = Free(ϕ) = W\{y}. Recall that ψ1, ..., ψn can be
considered as formulas in MSO(TΣ+). We may assume that ψ1, ..., ψn define

a partition of NW . We define L̃ ⊆ T ((Σ(n))V)
+ to be the set of timed words

((ā, µ, σ), t̄) in T ((Σ(n))V)
+ such that ((ā, σ), t̄) ∈ NV , and for all i ∈ dom(ā, t̄)

and j ∈ {1, ..., n} we have

µ(i) = j implies ((ā, σ[y → i]), t̄) |= ψj .

Notice that for every ((ā, σ), t̄) ∈ NV , there is a unique µ such that ((ā, µ, σ), t̄) ∈

L̃, since (ψ1, ..., ψn) forms a partition of NW . Next, we prove that L̃ is TA-
recognizable. For this, consider the formula ζ ∈ MSO(T (Σ(n))+)

ζ = ∀y.
∧

1≤j≤n

∧

a∈Σ

(
P(a,j)(y) −→ ψ̃j

)
.

Let ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)
+ such that ((ā, σ), t̄) ∈ NV . Using the semantics

of MSO(T (Σ(n))+), one can show that ((ā, µ, σ), t̄) |= ζ if and only if for every
i ∈ dom(ā, t̄) and j ∈ {1, ..., n} we have that µ(i) = j implies ((ā, µ, σ[y →

i]), t̄) |= ψ̃j . This, by Lemma 27, holds if and only if ((ā, σ[y → i]), t̄) |= ψj .
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Thus, ((ā, µ, σ), t̄) |= ζ if and only if ((ā, µ, σ), t̄) ∈ L̃, and we have L(ζ) = L̃. By

Theorem 10, L̃ is TA-recognizable over (Σ(n))V .
Next, we will use the information encoded in µ to build a weighted timed

automaton over K, (Σ(n))V and F . Let Ã = (L,L0,Lf , C, E) be a timed au-

tomaton such that L(Ã) = L̃. By Lemma 26, there is a timed automaton

A′ = (L′,L′0,L
′
f , C, E

′) such that L(A′) = L(Ã), the locations in A′ are elements

in L×(Σ(n))V , and for each (l , (a, b, σ)) ∈ L′, every outgoing edge is labeled with
(a, b, σ). Observe that this latter fact is crucial for assigning the weight functions
to the locations in a proper way. Now define A = (L′,L0,Lf , C, E′, ewt, lwt) by

– ewt
(
(l , (a, b, σ)), (a, b, σ), φ, λ, (l ′, (a′, b′, σ′))

)
= kb for each(

(l , (a, b, σ)), (a, b, σ), φ, λ, (l ′, (a′, b′, σ′))
)
∈ E′,

– lwt
(
(l , (a, b, σ))

)
= fb for every (l , (a, b, σ)) ∈ L′.

Note that Func(A) = {f1, ..., fn}. We also observe that for each w = ((ā, µ, σ), t̄) ∈
T ((Σ(n))V)

+, and for each run r of A on w with rwt(r) 6= 0 we have

rwt(r) =
∏

i∈dom(ā,t̄)

fµ(i)(ti − ti−1) · kµ(i). (1)

Consider the renaming p : (Σ(n))V → ΣV defined by (a, b, σ) 7→ (a, σ) for each
(a, b, σ) ∈ (Σ(n))V . We show that p̄(‖A‖) = [[∀y.ψ]]. First, for every ((ā, σ), t̄) ∈

NV and the unique µ such that ((ā, µ, σ), t̄) ∈ L̃, we have

(
p̄(‖A‖), ((ā, σ), t̄)

)
=

(
‖A‖, ((ā, µ, σ), t̄)

)

⋆
=

∏

i∈dom(ā,t̄)

fµ(i)(ti − ti−1) · kµ(i)

=
∏

i∈dom(ā,t̄)

(
[[ϕ]]W , ((ā, σ[y → i]), t̄)

)

=
(
[[∀y.ϕ]], ((ā, σ), t̄)

)

where ⋆ is due to (1) and idempotence of K. For every ((ā, σ), t̄) 6∈ NV , we obtain
0 for both

(
p̄(‖A‖), ((ā, σ), t̄)

)
and

(
[[∀y.ϕ]], ((ā, σ), t̄)

)
. Thus, p̄(A) = [[∀y.ψ]].

Finally, let Aϕ be the weighted timed automaton over ΣV obtained from A
as defined in the proof of Lemma 7. Hence, we have ‖Aϕ‖ = p̄(‖A‖) = [[ϕ]]. Since
the construction of Aϕ according to Lemma 7 does not add any location weight
functions, condition 2. is satisfied. Condition 3 is trivially satisfied, since the set
of subformulas f (z) occurring in ϕ with z ∈ Free(ϕ) is empty. This finishes the
proof of Theorem 21.

�

We proved that each formula ϕ ∈ sRMSO(K, TΣ+,F) is recognizable by a
weighted timed automaton. Now, we give the definition of the syntactically

restricted weighted relative distance logic, denoted by sRL
←−
d (K, Σ,F). It

is defined as the smallest class of formulas containing all formulas generated by
the next two rules.
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1. If ϕ ∈ sRMSO(K, TΣ+,F), then ϕ ∈ sRL
←−
d (K, Σ,F).

2. If ϕ ∈ sRL
←−
d (K, Σ,F), then ∃D.ϕ ∈ sRL

←−
d (K, Σ,F).

Altogether, using the same lines of argumentation as in the proof of Theorem 21
in the case of existential quantification, we can show that if the semantics of ϕ ∈

sRL
←−
d (K, Σ,F) is F -recognizable over ΣFree(ϕ), so is the semantics of ∃D.ϕ F -

recognizable overΣFree(∃D.ϕ). Altogether, we obtain the following theorem, which
corresponds to one direction of a Büchi theorem for the class of F -recognizable
timed series.

Theorem 28 Let K be idempotent and commutative. If ϕ ∈ sRL
←−
d (K, Σ,F),

then [[ϕ]] is F-recognizable over ΣFree(ϕ).

We remark that the transformations can be done effectively provided that the
operations of K and F are given effectively. The only critical point in the proof
is the construction of a weighted timed automaton recognizing [[∀y.ϕ]] if ϕ is
almost unambiguous. However, by Lemma 19 we can transform each almost
unambiguous formula into the form

∨
1≤i≤n fi(y) ∧ ki ∧ ψi with fi ∈ F , ki ∈ K

and unweighted ψi ∈ MSO(TΣ+) for each i ∈ {1, ..., n} and some n ∈ N, as it is
required in the corresponding construction.

4 From Weighted Timed Automata to Logic

In this section, we show that the behaviour of each weighted timed automaton

can be defined by a sentence in sRL
←−
d (K, Σ,F). For this, we extend the proof

proposed by Droste and Gastin [13] to the timed setting.

Theorem 29 Let K be idempotent and commutative. Each F-recognizable timed

series is sRL
←−
d (K, Σ,F)-definable.

Proof. Let A = (L,L0,Lf , C, E,wt) be a weighted timed automaton over K, Σ
and F . We choose an enumeration (x1, ..., xm) of C together with an enumeration
(e1, ..., en) of E and assume ei = (li, ai, φi, λi, l

′
i). Let D̄ = D1, ..., Dm, where Di

stands for the clock variable xi for each i ∈ {1, ...,m}, and let Ȳ = Y1, ..., Yn,
where Yj stands for the edge ej for each j ∈ {1, ..., n}. Intuitively,Di stores all the
positions in a timed word where the clock variable xi has been reset, and Yi stores
all the positions in a timed word that have been reached by executing ei. We
define an unweighted formula ψ(D̄, Ȳ ) describing the successful runs of A. This
can be done similarly to the unweighted and untimed settings, respectively [29,
13]. For instance, the clock constraints at the edges may be defined by the formula

ψtest := ∀y.
∧

1≤i≤n


y ∈ Yi −→

∧

(xj∼c)∈φi

←−
d (Dj , y) ∼ c
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and the resets of the clock constraints can be defined by

ψreset :=
∧

1≤i≤m

∀y.


y ∈ Di ←→

∨

1≤j≤n
xi∈λj

y ∈ Yj


 ,

see [28] for further explanations. Then, for every timed word (ā, t̄) and valid
({D̄, Ȳ }, (ā, t̄))-assignment σ, we have [[ψ(D̄, Ȳ )]]((ā, σ), t̄) = 1 if there is a suc-
cessful run of A on (ā, t̄), and [[ψ(D̄, Ȳ )]]((ā, σ), t̄) = 0 otherwise. This can be
proved similar to [13] by showing that there is a bijective correspondence between
the set of successful runs and the set of (V , w)-assignments as above.

Now, we “add weights” to ψ(D̄, Ȳ ) to obtain a formula ξ(D̄, Ȳ ) whose se-
mantics corresponds to the running weight of a successful run of A on (ā, t̄).
Define

ξ(D̄, Ȳ ) = ψ(D̄, Ȳ ) ∧
∧

ei∈E

∀y.(¬(y ∈ Yi) ∨ [y ∈ Yi ∧ lwt(li)(y) ∧ ewt(ei)]).

Finally, let ζ = ∃D1...∃Dm∃Y1...∃Yn.ξ(D̄, Ȳ ). Using similar methods as in the
untimed setting [13], we obtain [[ζ]] = ‖A‖.

As a consequence of the results presented in this and the previous section,
we obtain a Büchi theorem for the class of F -recognizable timed series over
idempotent and commutative semirings.

Theorem 30 Let K be commutative and idempotent and let F contain 1. Each

timed series T : TΣ+ → K is F-recognizable if and only if T is sRL
←−
d (K, Σ,F)-

definable.

5 Generalizations to Arbitrary Semirings

In this section, we explain how we can generalize Theorem 30 to non-idempotent
semirings. Later on, we will indicate how we skip the restriction on the semiring
being commutative.

Let K be a commutative semiring, not necessarily being idempotent.
In the last section, we used the idempotence of K in two crucial steps. First,

in the proof of Lemma 16, where we showed that each unweighted formula ψ ∈
MSO(K, TΣ+,F) takes only values in {0, 1}. This no longer holds if K is not
idempotent. We thus cannot use Lemma 16 to show Lemmas 18 and 19. Notice
that if we exclude the usage of disjunction and existential quantification in an
unweighted formula ϕ ∈ MSO(K, TΣ+,F), then the semantics of ϕ takes only
values in {0, 1}. However, not every unweighted formula can be transformed
into a language equivalent such formula, due to the syntactical restriction on
negation. Instead, we will introduce syntactically unambiguous formulas.

Second, we used the idempotence of K in the proof of Theorem 21 in the
case of universal first-order quantification. We used that for each timed word w,
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the running weights of all successful runs of A on w are the same, and thus, by
idempotence of K, the behaviour of A on w is the same as the running weight
of an arbitrary successful run of A on w. Notice that if A is deterministic,
i.e., there is only one successful run of A on w, then the behaviour of A on
w is also the same as the running weight of an arbitrary successful (i.e., the
only) run. However, as we have noted in Sect. 1, the class of deterministically
TA-recognizable timed languages is a strict subclass of TA-recognizable timed
languages. For this reason, we focus on a subclass of timed languages whose
elements have a bounded variability. Then we take advantage of the fact that
every such timed language is deterministically TA-recognizable.

The notion of bounded variability of timed words has been introduced by
Wilke [29]. Intuitively, the variability of a timed word corresponds to the max-
imum number of events that may occur within one time unit. When bounding
the variability of timed words, we can always construct deterministic timed au-

tomata. Using this, Wilke showed that L
←−
d (Σ) is fully decidable over the class of

timed languages with bounded variability (as opposed to the class of all timed
languages) [29]. The restriction to timed languages with bounded variability is
a reasonable assumption as practically any system can only handle a bounded
number of tasks within a time unit. Recently, another positive decidability re-
sult concerning MTL model checking was shown for this particular class of timed
languages [18].

Let M ⊆ TΣ+ be a set of timed words. We say that L ⊆ TΣ+ is TA-
recognizable over Σ relatively to M if there is a timed automaton A over Σ such
that L = L(A) ∩M . Let w = (a1, t1)...(ak, tk) ∈ TΣ+. The variability of w,
denoted by var(w), is defined as sup{b + 1 : ∃i.1 ≤ i ≤ k− b and ti+b − ti < 1}.
Intuitively, the variability of a timed word gives the maximum number of events
in a unit time interval. Let b ∈ N. We say that w is of bounded variability b
if the variability of w is less than or equal to b. We use TbΣ

+ to denote the
set {w ∈ TΣ+ : var(w) ≤ b} of all timed words of bounded variability b. By
bounding the variability of a timed word we fix the maximum number of events
in a unit time interval.

Remark 31 In the literature, there are also other restrictions on the occurence
of events within timed words, the most known of which is the restriction of being
non-Zeno. A timed word is non-Zeno if the sequence of timestamps of the word
is diverging. Hence, every finite word is non-Zeno and thus this notion is weaker
than that of bounded variability. The restriction of being non-Berkeley for some
positive real number δ has been introduced by Furia and Rossi [18] and means
that between any two events more than δ time units must pass. For a comparison
between these three restrictions see the paper of Furia and Rossi.

In the following, we fix a bound b ∈ N.

Proposition 32 ([28]) 1. If L ⊆ TΣ+ is TA-recognizable over Σ, we can
effectively construct a deterministic timed automaton A over Σ such that
L(A) = L ∩ TbΣ

+.
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2. The class of TA-recognizable timed languages over Σ relatively to TbΣ
+ is

closed under boolean operations, renamings and inverse renamings.

3. The set TbΣ
+ is L

←−
d (Σ)-definable.

We let ∃D1...∃Db.ϕb denote a sentence in L
←−
d (Σ) defining TbΣ

+. For instance,
ϕb may be the formula

ϕb =




(1 ∈ D1 ∧ 2 ∈ D2 ∧ ... ∧ b ∈ Db)
∧∧

1≤i≤b ∀y.(y ∈ Di ←→ (y + b) ∈ Di)

∧∧
1≤i≤b ∀y.(y ∈ Di −→

←−
d (Di, y) < 1)




where 1, 2, ..., b stand for the first, second,..., b-th position in w, and (y + b)
stands for the b-th position in w after y. These terms can easily expressed in
MSO(TΣ+).

In the following, we define syntactically unambiguous formulas. Recall that if
the semiring is idempotent, each unweighted formula evaluates each timed word
to either 0 or 1. This is no longer the case if the semiring is not idempotent. For
instance, the formula ∃y.Pa(y) over the semiring of the natural numbers counts
the number of a’s in a timed word. However, we will show that each unweighted
formula ϕ ∈ MSO(K, TΣ+,F) can be transformed into a language equivalent
formula ψ that has at most one assignment evaluating a timed word to 1, and
thus ψ evaluates each timed word to either 0 or 1 even if the semiring is not
idempotent. Since in general there may be more than one such assignment, we
choose the first such assignment, in the following sense: if y is a free first-order
variable, then we choose the smallest position with a one in the y-row; if X is a
free second-order variable, then we choose the set of the smallest positions with
a one in the X-row.

Let ϕ, ξ ∈ MSO(K, TΣ+,F) be unweighted. We define the formulas ϕ+, ϕ−,

ϕ
+
−→ ξ and ϕ

+
←→ ξ inductively as follows.

1. If ϕ is of the form Pa(y), y < z, y = z, y ∈ X ,
←−
d (D, y) ∼ c, then ϕ+ = ϕ

and ϕ− = ¬ϕ.
2. If ϕ = ¬ψ, then ϕ+ = ψ− and ϕ− = ψ+.
3. If ϕ = ψ ∨ ζ, then ϕ+ = ψ+ ∨ (ψ− ∧ ζ+) and ϕ− = ψ− ∧ ζ−.
4. If ϕ = ψ ∧ ζ, then ϕ− = ψ− ∨ (ψ+ ∧ ζ−) and ϕ+ = ψ+ ∧ ζ+.
5. If ϕ = ∃y.ψ, then ϕ+ = ∃y.(ψ+(y) ∧ ∀z.(z < y ∧ ψ(z))−) and ϕ− = ∀y.ψ−.
6. If ϕ = ∀y.ψ, then ϕ− = ∃y.(ψ−(y) ∧ ∀z.(y ≤ z ∨ ψ(z))+) and ϕ+ = ∀y.ψ+.

7. ϕ
+
−→ ξ = ϕ− ∨ (ϕ+ ∧ ξ+)

8. ϕ
+
←→ ξ = (ϕ+ ∧ ξ+) ∨ (ϕ− ∧ ξ−)

9. For second-order variables X,Y , we define

X = Y = ∀y.(y ∈ X
+
←→ y ∈ Y ),

X < Y = ∃y.(y ∈ Y ∧ ¬(y ∈ X) ∧ ∀z.[z < y
+
−→ (z ∈ X

+
←→ z ∈ Y )]),

X ≤ Y = (X = Y ) ∨ (X < Y ).
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10. If ϕ = ∃X.ψ, then ϕ+ = ∃X.(ψ+(X) ∧ ∀Y.(Y < X ∧ ψ(Y ))−) and ϕ− =
∀X.ψ−.

11. If ϕ = ∀X.ψ, then ϕ− = ∃X.(ψ−(X) ∧ ∀Y.(X ≤ Y ∨ ψ(Y ))+) and ϕ+ =
∀X.ψ+.

We define the class of syntactically unambiguous formulas in MSO(K, TΣ+,F)
as the smallest class of formulas containing all formulas of the form

– ϕ+, ϕ−, ϕ
+
−→ ξ and ϕ

+
←→ ξ if ϕ, ξ ∈ MSO(K, TΣ+,F) are unweighted,

and
– ∀y.ϕ, ∀X.ϕ or ϕ ∧ ψ if it contains ϕ and ψ.

Example 33 Let K be the semiring of the natural numbers and let w =
(a, 0.7)(a, 1.5)(b, 3.0) be a timed word. As stated above, the formula ϕ =
∃y.Pa(y) counts the number of a’s in w, i.e., we have ([[ϕ]], w) = 2. In contrast to
this, we have ([[ϕ+]], w) = 1, where ϕ+ = ∃y.Pa(y)∧∀z.[z ≥ y∨(z < y∧¬Pa(z))].

�

By induction it is easy to show:

Lemma 34 Let ϕ ∈ MSO(K, TΣ+,F) be unweighted. Then we have

1. L(ϕ+) = L(ϕ) and L(ϕ−) = L(¬ϕ),
2. [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).

Lemma 35 Let ψ1, ψ2 ∈ MSO(K, TΣ+,F) be unweighted. Then the following
equivalences hold.

1. ψ−1 ≡ (ψ−1 )+,
2. ψ+

1 ∧ ψ
+
2 ≡ (ψ1 ∧ ψ2)

+.

We say that a formula ϕ ∈ MSO(K, TΣ+,F) is syntactically unambiguous of
bounded variability b if it is of the form ψ ∧ (ϕb)

+ for some syntactically unam-
biguous formula ψ. Similarly, we say that ϕ is almost unambiguous over y of
bounded variability b if it is in the disjunctive and conjunctive closure of syn-
tactically unambiguous formulas of bounded variability b, constants k ∈ K and
formulas f (y) for some f ∈ F , such that f (y) may appear at most once in every
subformula of ϕ of the form ϕ1 ∧ ϕ2. Similarly to Lemma 19, we can prove the
following lemma.

Lemma 36 Let y be a first-order variable and ψ ∈ MSO(K, TΣ+,F) be al-
most unambiguous over y of bounded variability b. Then there is a formula
ζ ∈ MSO(K, TΣ+,F) such that ζ is of the form

∨
1≤i≤n fi(y) ∧ ki ∧ ψ

+
i ∧ (ϕb)

+

for some n ∈ N, fi ∈ F , ki ∈ K and unweighted ψi ∈ MSO(K, TΣ+,F) for each
i ∈ {1, ..., n}, and ζ ≡ ψ.

We define the syntactically restricted auxiliary logic of bounded vari-
ability b sRMSOb(K, TΣ+,F) to be the smallest class of formulas generated by
the following rules.
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1. If ϕ ∈ MSO(K, TΣ+,F) is an atomic or a weighted atomic formula, then
ϕ ∈ sRMSOb(K, TΣ+,F).

2. If ϕ, ψ ∈ sRMSOb(K, TΣ+,F), then ϕ ∨ ψ, ∃y.ϕ, ∃X.ϕ ∈
sRMSOb(K, TΣ+,F).

3. If ϕ ∈ sRMSOb(K, TΣ+,F) is syntactically unambiguous of bounded vari-
ability b, then ∀X.ϕ ∈ sRMSOb(K, TΣ+,F).

4. If ϕ ∈ sRMSOb(K, TΣ+,F) is almost unambiguous over y of bounded vari-
ability b, then ∀y.ϕ ∈ sRMSOb(K, TΣ+,F).

5. If ϕ, ψ ∈ sRMSOb(K, TΣ+,F) and at least one of the following conditions
holds

– Vf (ϕ) = ∅,
– Vf (ψ) = ∅,
– Vf (ϕ) ∩ Vf (ψ) = ∅, Vf (ϕ) ⊆ Free(ϕ), and Vf (ψ) ⊆ Free(ψ),

then ϕ ∧ ψ ∧
∧

y∈Vf (ϕ),z∈Vf (ψ)

y 6=z

¬(y = z) ∈ sRMSOb(K, TΣ+,F).

Note that the definition of sRMSOb(K, TΣ+,F) differs from the definition of
sRMSO(K, TΣ+,F) only in rules 3. and 4. Next, we want to prove the following
theorem, the analogon to Theorem 21.

Theorem 37 Let ϕ ∈ sRMSOb(K, TΣ+,F). Then for each finite set V ⊇
Free(ϕ) there is some weighted timed automaton Aϕ over K, ΣV and F such
that

1. ‖Aϕ‖ = [[ϕ]]V ,
2. Func(Aϕ) ⊆ Func(ϕ) ∪ {1},
3. for each formula f (y) occurring in ϕ with y ∈ Free(ϕ), whenever lwt(l) = f

for some location l in Aϕ, then for each edge (l , (a, σ), φ, λ, l ′) in Aϕ we have
σ(y) = 1.

The proof is along the lines of the proof of Theorem 21. However, we have to
give new proofs for both universal quantifiers.

Second-Order Universal Quantification Let ψ ∈ MSO(K, TΣ+,F) be syn-
tactically unambiguous of bounded variability b and assume ϕ = ∀X.ψ. Hence,
ψ is of the form ζ ∧ (ϕb)

+ for some syntactically unambiguous ζ. Note that X
does not occur in ϕb. Hence, we have ∀X.(ζ∧(ϕb)

+) ≡ ∀X.ζ∧(ϕb)
+, and thus ϕ

is also syntactically unambiguous of bounded variability b. We consider the case
where ζ is of the form η+ for some unweighted η ∈ MSO(K, TΣ+,F). The other
cases can be reduced to this case. By definition of syntactically unambiguity and
Lemma 35, we obtain

∀X.η+ ∧ (ϕb)
+ ≡ (∀X.η)+ ∧ (ϕb)

+ ≡ (∀X.η ∧ ϕb)
+.

By Lemma 34, [[(∀X.η ∧ ϕb)
+]] = 1L(∀X.η∧ϕb). We also have

L(∀X.η ∧ ϕb) = L(∀X.η) ∩ L(ϕb) = L(∀X.η) ∩ TbΣ
+.
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By Theorem 10, L(∀X.ζ) is TA-recognizable over ΣFree(ϕ). Hence, by the first
claim of Prop. 32, there is a deterministic timed automaton A such that L(A) =
L(∀X.ζ ∧ ϕb). Let Aϕ be the weighted timed automaton obtained from A as
defined in the proof of Lemma 3.1. Then Aϕ satisfies conditions 1. to 3. of
Theorem 37.

For proving Theorem 37 for first-order universal quantification, we have to
consider a modification of Lemma 26.

Lemma 38 For every deterministically TA-recognizable timed language L ⊆
TΣ+ over Σ, there is a timed automaton A′ over Σ such that L(A′) = L, for
each location l in A′ there is a unique a ∈ Σ such that every edge (l , a′, φ, λ, l ′) in
A′ satisfies a′ = a, and A′ is unambiguous, i.e., for each timed word w ∈ TΣ+,
there is at most one successful run of A′ on w.

Proof (sketch). The construction of A′ is very similar to that in the proof of
Lemma 26. However, for obtaining the unambiguity of A′, we let L′f be a sin-
gleton set containing a new location lf , and we add new edges of the form
(l , a, φ, λ, lf ) for each (l , a, φ, λ, l ′) such that l ′ ∈ Lf . This must be done to guar-
antee the uniqueness of the successful runs, because if we let L′f = Lf ×Σ (as
in the proof of Lemma 26), we could not conclude that the last location (l , a) of
a successful run is uniquely determined by the subsequent letter as it is for the
other locations in the run.

�

First-Order Universal Quantification The proof is along the lines of the
proof of Theorem 21. However, we have to show that L̃ is deterministically TA-
recognizable in order to apply Lemma 38.

Let ψ ∈ MSO(K, TΣ+,F) be almost unambiguous over y of bounded vari-
ability b and assume ϕ = ∀y.ψ. By Lemma 36, we may assume that ψ is of the
form

ψ =
∨

1≤j≤n

fj(y) ∧ kj ∧ ψ
+
j ∧ (ϕb)

+

where n ∈ N, kj ∈ K, fj ∈ F , unweighted ψj ∈ MSO(K, TΣ+,F) for each
j ∈ {1, ..., n}.

Let W = Free(ψ) and V = Free(ϕ) =W\{y}. For each i ∈ {1, ..., n}, we have
ψ+
j ∧ (ϕb)

+ ≡ (ψj ∧ ϕb)
+ by Lemma 35, and thus [[ψ+

j ∧ (ϕb)
+]] = 1L(ψj∧ϕb) by

Lemma 34. We define L̃ ⊆ T ((Σ(n))V )+ to be the set of timed words ((ā, µ, σ), t̄)
in T ((Σ(n))V)

+ such that ((ā, σ), t̄) ∈ NV , and for all i ∈ dom(ā, t̄) and j ∈
{1, ..., n} we have

µ(i) = j implies ((ā, σ[y → i]), t̄) |= ψj ∧ ϕb

We prove that L̃ is unambiguously TA-recognizable. For this, consider the for-
mula ζ ∈ MSO(T (Σ(n))+)

ζ = ∀y.
∧

1≤j≤n

∧

a∈Σ

(
P(a,j)(y) −→ ψ̃j ∧ ϕ̃b

)
.
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Let ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)
+ such that ((ā, σ), t̄) ∈ NV . Then we have

((ā, µ, σ), t̄) |= ζ

⇔ ∀i ∈ dom(ā, t̄), ∀j ∈ {1, ..., n}.µ(i) = j ⇒ ((ā, µ, σ[y → i]), t̄) |= ψ̃j ∧ ϕ̃b

⇔ ∀i ∈ dom(ā, t̄), ∀j ∈ {1, ..., n}.µ(i) = j ⇒ ((ā, σ[y → i]), t̄) |= ψj ∧ ϕb

⇔ ((ā, µ, σ), t̄) ∈ L̃.

Now, observe that for each i ∈ dom(ā, t̄) there exists some j ∈ {1, .., n} and some
a ∈ Σ such that P(a,j)(y) holds. This implies that ϕb always holds. Hence, ζ is

equivalent to ζ′ ∧ ϕb, where ζ′ = ∀y.
(∧

1≤j≤n

∧
a∈Σ(P(a,j)(y) −→ ψ̃j)

)
. Now,

Theorem 10 implies that L(ζ′) is TA-recognizable over (Σ(n))V . But then, by

Prop. 32, we know that there is a deterministic timed automaton Ã recognizing
L(ζ) = L̃.

From Ã, we construct an unambiguous timed automaton A′ using Lemma
38. From this, we can define a weighted timed automaton A as described in the
proof of Theorem 21. Note that A is unambiguous, and thus we have

(
‖A‖, ((ā, µ, σ), t̄)

)
=

∏

i∈dom(ā,t̄)

fµ(i)(ti − ti−1) · kµ(i)

for each ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)
+. Then we can proceed exactly as in the proof

of Theorem 21. This finishes the proof of Theorem 37.
�

We define the syntactically restricted weighted relative distance logic

of bounded variability b, denoted by sRL
←−
d b(K, Σ,F) to be the smallest class

of formulas containing all formulas generated by the next two rules.

1. If ϕ ∈ sRMSOb(K, TΣ+,F), then ϕ ∈ sRL
←−
d b(K, Σ,F).

2. If ϕ ∈ sRL
←−
d b(K, Σ,F), then ∃D.ϕ ∈ sRL

←−
d b(K, Σ,F).

For the other direction, i.e., that every F -recognizable timed series can be

defined by a sentence in sRL
←−
d b(K, Σ,F), we can adopt the proof of Theorem

29 by

– considering the syntactically unambiguous version of ψ(D̄, Ȳ ), and

– combining formulas with ϕb whenever it is needed.

We obtain a Büchi theorem for the class of F -recognizable timed series over
commutative semirings.

Theorem 39 Let K be commutative and F contain 1. Each timed series T :
TΣ+ → K is F-recognizable if and only if T is sRL

←−
d b(K, Σ,F)-definable.

Next, we explain how we can even skip the restriction on K being commutative.
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For this, we let K be a semiring, not necessarily being commutative. We follow
the approach of Droste and Gastin [13], and only present the main ideas. Commu-
tativity of K is mainly needed for showing closure of the class of F -recognizable
timed series under the Hadamard product (Lemma 6). In the proof, we exploit
the fact that the weights occuring in the runs of A1 commute element-wise
with the weights occuring in the runs of A2. However, commutativity of K is
a sufficient but not a necessary condition for the element-wise commutativity
of weights occuring in the runs of weighted timed automata. For instance, the
weights occuring in a weighted timed automaton over K commute element-wise
with the weights occuring in a weighted timed automaton over the semiring
which is generated by {0, 1} ⊆ K.

For the proof of the following lemma we may proceed as in the proof of
Lemma 6.

Lemma 40 Let K1,K2 be two subsemirings of K such that K1 commutes
element-wise with K2. If T1 is recognizable by a weighted timed automaton A1

over K1, Σ and F , and T2 is recognizable by a weighted timed automaton A2 over
K2, Σ and F , and A1 and A2 are non-interfering, then T1⊙T2 is F-recognizable.

Let ϕ ∈ L
←−
d (K, Σ,F). We define wgt(ϕ) = wgtE(ϕ) ∪ wgtF (ϕ), where

wgtE(ϕ) = {k : k is a subformula of ϕ} and wgtF(ϕ) = {f (δ) :
f (y) is a subformula of ϕ, δ ∈ R≥0}. We define the syntactically restricted
auxiliary logic of bounded variability b for non-commutative semir-
ings sRMSObnc(K, TΣ+,F) to be the smallest class of formulas generated by
the following rules.

1. If ϕ ∈ MSO(K, TΣ+,F) is an atomic or a weighted atomic formula, then
ϕ ∈ sRMSObnc(K, TΣ+,F).

2. If ϕ, ψ ∈ sRMSObnc(K, TΣ+,F), then ϕ ∨ ψ, ∃y.ϕ, ∃X.ϕ ∈
sRMSObnc(K, TΣ+,F).

3. If ϕ ∈ sRMSObnc(K, TΣ+,F) is syntactically unambiguous of bounded vari-
ability b, then ∀X.ϕ ∈ sRMSObnc(K, TΣ+,F).

4. If ϕ ∈ sRMSObnc(K, TΣ+,F) is almost unambiguous over y of bounded
variability b, then ∀y.ϕ ∈ sRMSOb(K, TΣ+,F).

5. If ϕ, ψ ∈ sRMSObnc(K, TΣ+,F) and at least one of the following three con-
ditions hold
– Vf (ϕ) = ∅,
– Vf (ψ) = ∅,
– Vf (ϕ) ∩ Vf (ψ) = ∅, Vf (ϕ) ⊆ Free(ϕ), and Vf (ψ) ⊆ Free(ψ),

and
– ϕ and ψ are not in the scope of a universal first-order quantifier, and
– wgt(ϕ) and wgt(ψ) commute element-wise,

then ϕ ∧ ψ ∧
∧

y∈Vf (ϕ),z∈Vf (ψ)

y 6=z

¬(y = z) ∈ sRMSObnc(K, TΣ+,F).

Notice that we added further restrictions on the application of conjunction.

We use sRL
←−
d bnc(K, Σ,F) to denote the smallest class of formulas containing

formulas generated by the next two rules.
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1. If ϕ ∈ sRMSObnc(K, TΣ+,F), then ϕ ∈ sRL
←−
d bnc(K, Σ,F).

2. If ϕ ∈ sRL
←−
d bnc(K, Σ,F), then ∃D.ϕ ∈ sRL

←−
d bnc(K, Σ,F).

Note that, as opposed to the other conditions, it depends on K and F whether
one can check syntactically whether two given formulas ϕ and ψ satisfy that
wgt(ϕ) and wgt(ψ) commute element-wise. If wgt(ϕ) is a finite set, which is e.g.
the case if there are no location weight functions occuring in ϕ, or F is the family
of step functions, then we can easily check syntactically whether the weights in
wgt(ϕ) commute element-wise. For other cases, this might not be so easy or even
impossible.

Using fairly the same proof methods as before, we obtain the following the-
orem, generalizing the previous Büchi-type theorems.

Theorem 41 Let F contain 1. Then a timed series T : TΣ+ → K is F-
recognizable if and only if T is sRL

←−
d bnc(K, Σ,F)-definable.

6 Conclusion

We have presented weighted timed MSO logics, which is - at least to our knowl-
edge - the first MSO logic allowing for the description of both timed and quan-
titative properties. On the one hand, our logic may be used as a new tool for
specifying properties. It sometimes may be easier to specify properties in terms
of logic rather than by automata devices. On the other hand, this logic gives
rise to some interesting new directions in future research work. For instance,
Wilke [29] showed that some real-time temporal logics are effectively embed-
dable into the relative distance logic. All his constructions for obtaining a Büchi
theorem are effective. By the decidability of the emptiness problem for timed
automata [1], one can thus conclude that these real-time temporal logics have a
decidable theory. This gives rise to the question whether one can obtain similar
results for weighted extensions of real-time temporal logics.

We also would like to mention that our logic and constructions follow the
ideas of the work of Droste and Gastin [13] and thus we keep the spirit of the
untimed theory. However, we additionally allowed functions from the family as
atomic formulas, which complicates most of the proofs, first and foremost the
proof for showing closure of the class of recognizable timed series under conjunc-
tion and first-order universal quantification. For conjunction, we have stated
conditions for closure of recognizable timed series under the Hadamard prod-
uct, which corresponds to the intersection operation in the unweighted setting.
Moreover, we had to deal with the problem that - unlike finite automata - timed
automata are not determinizable in general.

Lastly, the coincidence between recognizable and MSO-definable timed series,
together with a previous work on weighted timed automata concerning a Kleene-
Schützenberger Theorem [14], shows the robustness of the notion of recognizable
timed series, as they can equivalently be characterized in terms of automata,
logics and rational operations.
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two anonymous referees for their helpful discussions and comments.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
Theoretical Computer Science, 318:297–322, 2004.

3. R. Alur and P. Madhusudan. Decision problems for timed automata: A survey.
In M. Bernardo and F. Corradini, editors, SFM-RT, volume 3185 of LNCS, pages
1–24. Springer, 2004.

4. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In M. D. Di
Benedetto and A. Sangiovanni-Vincentelli, editors, HSCC, volume 2034 of LNCS,
pages 147–161. Springer, 2001.

5. B. Bollig and I. Meinecke. Weighted distributed systems and their logics. In
S. N. Artëmov and A. Nerode, editors, LFCS, volume 4514 of LNCS, pages 54–68.
Springer, 2007.

6. P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reacha-
bility problem on weighted timed automata. Formal Methods in System Design,
31(2):135–175, 2007.

7. P. Bouyer, T. Brihaye, and N. Markey. Improved undecidability results on weighted
timed automata. Information Processing Letters, 98(5):188–194, 2006.

8. P. Bouyer, K. G. Larsen, and N. Markey. Model checking one-clock priced timed
automata. Logical Methods in Computer Science, 4:1–28, 2008.

9. P. Bouyer and N. Markey. Costs are expensive! In J.-F. Raskin and P. S. Thia-
garajan, editors, FORMATS, volume 4763 of LNCS, pages 53–68. Springer, 2007.
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