Logik Vorlesung 6: Resolution

Andreas Maletti

28. November 2014

Uberblick

Inhalt

- Motivation und mathematische Grundlagen
- Aussagenlogik
 - Syntax und Semantik
 - Aquivalenz und Normalformen
 - Weitere Eigenschaften
 - Resolution
- Prädikatenlogik
 - Syntax und Semantik
 - Aquivalenz und Normalformen
 - HERBRAND-Theorie
 - Unifikation und Resolution
- Ausblick

Vorlesungsziele

heutige Vorlesung

- Anwendung Resolution
- Vollständigkeit
- Oeduktion
- Zusammenfassung Aussagenlogik

Bitte Fragen direkt stellen!

Aussagenlogik

Wiederholung: Resolution

Aussagenlogik

Inhalt

- Motivation und mathematische Grundlagen
- Aussagenlogik
 - Syntax und Semantik
 - Aquivalenz und Normalformen
 - Weitere Eigenschaften
 - Resolution
- Prädikatenlogik
 - Syntax und Semantik
 - Äquivalenz und Normalformen
 - HERBRAND-Theorie
 - Unifikation und Resolution
- Ausblick

Aussagenlogik — Mengendarstellung

Definition

• statt $\bigvee_{i=1}^{n} L_i$ für Literale L_1, \ldots, L_n schreiben wir auch einfach $\{L_1, \ldots, L_n\}$

Aussagenlogik — Mengendarstellung

Definition

- statt $\bigvee_{i=1}^{n} L_i$ für Literale L_1, \ldots, L_n schreiben wir auch einfach $\{L_1, \ldots, L_n\}$
- statt $\bigwedge_{i=1}^n M_i$ für Mengen $M_1, \ldots, M_n \subseteq \mathcal{L}$ schreiben wir auch einfach $\{M_1, \ldots, M_n\}_{\wedge}$ (normale Menge; ' $\}_{\wedge}$ ' dient nur als Gedankenstütze)

Aussagenlogik — Mengendarstellung

Definition

- statt $\bigvee_{i=1}^{n} L_i$ für Literale L_1, \ldots, L_n schreiben wir auch einfach $\{L_1, \ldots, L_n\}$
- statt $\bigwedge_{i=1}^n M_i$ für Mengen $M_1, \ldots, M_n \subseteq \mathcal{L}$ schreiben wir auch einfach $\{M_1, \ldots, M_n\}_{\wedge}$ (normale Menge; ' $\}_{\wedge}$ ' dient nur als Gedankenstütze)

Wichtiger Unterschied

- ∅ (leere Disjunktion) ist <u>unerfüllbar</u>
- \bullet $\{\}_{\wedge}$ (leere Konjunktion) ist allgemeingültig

Definition

Sei $F \subseteq Pow(\mathcal{L})$ eine konjunktive Normalform.

Ein Disjunktionsglied $R \subseteq \mathcal{L}$ ist Resolvent von F gdw. zwei Disjunktionsglieder $\{D_1, D_2\} \subseteq F$ und ein Atom A_i existieren, so dass

- $P = (D_1 \setminus \{A_i\}) \cup (D_2 \setminus \{\neg A_i\})$

resolvent(F) ist die Menge aller Resolventen von F.

• Sei $Res(F) = F \cup resolvent(F)$ und für alle $n \in \mathbb{N}$ sei

$$Res^{0}(F) = F$$
 $Res^{n+1}(F) = Res(Res^{n}(F))$

• Resolutionshülle von F ist $\operatorname{Res}^*(F) = \bigcup_{n \in \mathbb{N}} \operatorname{Res}^n(F)$

$$F = \big\{ \{A_0, \neg A_1\}, \ \{\neg A_1, \ A_2\}, \ \{\neg A_0, \neg A_1\}, \ \{\neg A_2, A_1\} \big\}_{\wedge}$$

$$Res^*(F) = \{ \{A_0, \neg A_1\}, \{ \neg A_1, A_2\}, \{ \neg A_0, \neg A_1\}, \{ \neg A_2, A_1\},$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{ \{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\},$$

$$F = \left\{ \{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\} \right\}_{\wedge}$$

$$Res^*(F) = \left\{ \{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\},$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{\neg A_1\}, \{\neg A_1\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_1\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_1\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_2\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_2\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_2\}, \{\neg A_2\}, \{\neg A_1\}, \{\neg A_2\}, \{\neg A_$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\},$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, A_2\}, \{\neg A_1, A_2\}, \{\neg A_2, \neg A_2\}, \{\neg A_2, \neg A_2\}, \{\neg A_1, A_2\}, \{\neg A_2, \neg A_$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, A_2\}, \{\neg A_2, \neg A_2\}, \{\neg A_3, \neg A_2\}, \{\neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3, \neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3\}, \{\neg A_3, \neg A$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, A_2\}, \{\neg A_2, \neg A_2\}, \{\neg A_3, \neg A_2\}, \{\neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3, \neg A_3, \neg A_3\}, \{\neg A_3, \neg A_3$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, A_2\}, \{\neg A_2, \neg A_2\}, \{\neg A_1, A_2\}, \{\neg A_2, \neg A_2\}, \{\neg$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_1, A_2\}, \{\neg A_1, A_1\}, \{\neg A_1, A_2\}, \{\neg A_2, A_2\}, \{\neg$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\land}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \}_{\land}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \{\neg A_2\}\}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \{\neg A_2\}\}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \{\neg A_2\}\}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \{\neg A_2\}\}_{\wedge}$$

$$F = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}\}_{\wedge}$$

$$Res^*(F) = \{\{A_0, \neg A_1\}, \{\neg A_1, A_2\}, \{\neg A_0, \neg A_1\}, \{\neg A_2, A_1\}, \{\neg A_1\}, \{A_0, \neg A_2\}, \{A_2, \neg A_2\}, \{\neg A_1, A_1\}, \{\neg A_0, \neg A_2\}, \{\neg A_1, \neg A_2\}, \{\neg A_2\}\}_{\wedge}$$

Aussagenlogik — Resolution

Beispiel

$$F = \big\{ \{A_0,\, \neg A_1\},\, \{\neg A_1,\, A_2\},\, \{\neg A_0, \neg A_1\},\, \{\neg A_2, A_1\} \big\}_{\wedge}$$

$$\begin{split} \mathsf{Res}^*(\textit{\textbf{F}}) &= \big\{ \{A_0, \, \neg A_1\}, \, \{\neg A_1, \, A_2\}, \, \{\neg A_0, \neg A_1\}, \, \{\neg A_2, A_1\}, \\ &\quad \{\neg A_1\}, \, \{A_0, \neg A_2\}, \, \{A_2, \, \neg A_2\}, \, \{\neg A_1, \, A_1\}, \, \{\neg A_0, \, \neg A_2\}, \\ &\quad \{\neg A_1, \, \neg A_2\}, \, \{\neg A_2\}\big\}_{\wedge} \end{split}$$

Problem

Was nun?

(leere Menge nicht herleitbar)

Aussagenlogik

 $Vollst \"{a}ndigke it$

Theorem (Vollständigkeit)

Sei $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ eine (evtl. unendliche) konjunktive Normalform. Falls \mathcal{F} unerfüllbar ist, dann ist $\emptyset \in \mathsf{Res}^*(\mathcal{F})$.

Theorem (Vollständigkeit)

Sei $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ eine (evtl. unendliche) konjunktive Normalform. Falls \mathcal{F} unerfüllbar ist, dann ist $\emptyset \in \mathsf{Res}^*(\mathcal{F})$.

Beweis (1/4).

Sei \mathcal{F} unerfüllbar. Aufgrund Kompaktheit existiert eine unerfüllbare endliche Teilmenge $F \subseteq \mathcal{F}$. Wir beweisen $\emptyset \in \mathsf{Res}^*(F) \subseteq \mathsf{Res}^*(\mathcal{F})$ per vollständiger Induktion über $|\mathsf{Atome}(F)|$.

Theorem (Vollständigkeit)

Sei $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ eine (evtl. unendliche) konjunktive Normalform. Falls \mathcal{F} unerfüllbar ist, dann ist $\emptyset \in \mathsf{Res}^*(\mathcal{F})$.

Beweis (1/4).

Sei \mathcal{F} unerfüllbar. Aufgrund Kompaktheit existiert eine unerfüllbare endliche Teilmenge $F \subseteq \mathcal{F}$. Wir beweisen $\emptyset \in \mathsf{Res}^*(F) \subseteq \mathsf{Res}^*(\mathcal{F})$ per vollständiger Induktion über $|\mathsf{Atome}(F)|$.

• IA: Sei |Atome(F)| = 0. Da $F \neq \{\}_{\land}$, denn dies wäre eine Tautologie, existiert $D \in F$. Da $Atome(F) = \emptyset$, muss $D = \emptyset$ sein und damit $\emptyset \in F \subseteq Res^*(F)$.

Theorem (Vollständigkeit)

Sei $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ eine (evtl. unendliche) konjunktive Normalform. Falls \mathcal{F} unerfüllbar ist, dann ist $\emptyset \in \mathsf{Res}^*(\mathcal{F})$.

Beweis (1/4).

Sei \mathcal{F} unerfüllbar. Aufgrund Kompaktheit existiert eine unerfüllbare endliche Teilmenge $F \subseteq \mathcal{F}$. Wir beweisen $\emptyset \in \mathsf{Res}^*(F) \subseteq \mathsf{Res}^*(\mathcal{F})$ per vollständiger Induktion über $|\mathsf{Atome}(F)|$.

- IA: Sei |Atome(F)| = 0. Da $F \neq \{\}_{\land}$, denn dies wäre eine Tautologie, existiert $D \in F$. Da $Atome(F) = \emptyset$, muss $D = \emptyset$ sein und damit $\emptyset \in F \subseteq Res^*(F)$.
- IS: Sei |Atome(F)| = n + 1 und A ∈ Atome(F) beliebig. Wir definieren zwei neue Formeln:

$$F_0 = \{ D \setminus \{A\} \mid D \in F, \neg A \notin D \}$$

$$F_1 = \{ D \setminus \{\neg A\} \mid D \in F, A \notin D \}$$

Beweis (2/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

 IS: F₀ bzw. F₁ erhält man aus F, indem man A als falsch bzw. wahr annimmt (und vereinfacht). Insb. gelten A ∉ Atome(F₀) und A ∉ Atome(F₁).

Beweis (2/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F₀ bzw. F₁ erhält man aus F, indem man A als falsch bzw. wahr annimmt (und vereinfacht). Insb. gelten A ∉ Atome(F₀) und A ∉ Atome(F₁).
 - Zunächst zeigen wir, dass auch F_0 und F_1 unerfüllbar sind.
 - Sei F₀ erfüllbar und I |= F₀. Dann sei J = I \ {A}.
 Z.zg. J |= F. Da F in konjunktiver Normalform vorliegt, muss J |= D für alle D ∈ F gelten.

Beweis (2/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F₀ bzw. F₁ erhält man aus F, indem man A als falsch bzw. wahr annimmt (und vereinfacht). Insb. gelten A ∉ Atome(F₀) und A ∉ Atome(F₁).
 - Zunächst zeigen wir, dass auch F_0 und F_1 unerfüllbar sind.
 - Sei F₀ erfüllbar und I |= F₀. Dann sei J = I \ {A}.
 Z.zg. J |= F. Da F in konjunktiver Normalform vorliegt, muss J |= D für alle D ∈ F gelten.
 - Sei $D \in F$, so dass $\neg A \in D$. Da $(\neg A)^J = 1$ gilt $D^J = 1$.

Beweis (2/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F₀ bzw. F₁ erhält man aus F, indem man A als falsch bzw. wahr annimmt (und vereinfacht). Insb. gelten A ∉ Atome(F₀) und A ∉ Atome(F₁).
 - Zunächst zeigen wir, dass auch F_0 und F_1 unerfüllbar sind.
 - Sei F₀ erfüllbar und I |= F₀. Dann sei J = I \ {A}.
 Z.zg. J |= F. Da F in konjunktiver Normalform vorliegt, muss J |= D für alle D ∈ F gelten.
 - Sei $D \in F$, so dass $\neg A \in D$. Da $(\neg A)^J = 1$ gilt $D^J = 1$.
 - Sei $D \in F$, so dass $\neg A \notin D$. Dann ist $D \setminus \{A\} \in F_0$ und da $F_0^I = 1$ gilt auch $(D \setminus \{A\})^I = 1$. Wie bereits bemerkt gilt $A \notin \operatorname{Atome}(D \setminus \{A\})$ und damit $(D \setminus \{A\})^J = (D \setminus \{A\})^I = 1$. Also auch $D^J = 1$.

Also ist $J \models F$. Gemäß Annahme ist F aber unerfüllbar \rightarrow Widerspruch. Also ist F_0 unerfüllbar.

Beweis (2/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F₀ bzw. F₁ erhält man aus F, indem man A als falsch bzw. wahr annimmt (und vereinfacht). Insb. gelten A ∉ Atome(F₀) und A ∉ Atome(F₁).
 - Zunächst zeigen wir, dass auch F_0 und F_1 unerfüllbar sind.
 - Sei F₀ erfüllbar und I |= F₀. Dann sei J = I \ {A}.
 Z.zg. J |= F. Da F in konjunktiver Normalform vorliegt, muss J |= D für alle D ∈ F gelten.
 - Sei $D \in F$, so dass $\neg A \in D$. Da $(\neg A)^J = 1$ gilt $D^J = 1$.
 - Sei $D \in F$, so dass $\neg A \notin D$. Dann ist $D \setminus \{A\} \in F_0$ und da $F_0^I = 1$ gilt auch $(D \setminus \{A\})^I = 1$. Wie bereits bemerkt gilt $A \notin \operatorname{Atome}(D \setminus \{A\})$ und damit $(D \setminus \{A\})^J = (D \setminus \{A\})^I = 1$. Also auch $D^J = 1$.

Also ist $J \models F$. Gemäß Annahme ist F aber unerfüllbar \rightarrow Widerspruch. Also ist F_0 unerfüllbar.

• Analog für F_1 .

Beweis (3/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F_0 bzw. F_1 sind also unerfüllbar und $A \notin Atome(F_0)$ und $A \notin Atome(F_1)$. Damit können wir die Induktionshypothese auf F_0 und F_1 anwenden und erhalten $\emptyset \in Res^*(F_0)$ und $\emptyset \in Res^*(F_1)$. Also existieren $D_1, \ldots, D_m \subseteq \mathcal{L}$, so dass
 - $D_m = \emptyset$ und (die Herleitung des leeren Disjunktionsgliedes)
 - für jedes $1 \le i \le m$ gilt $D_i \in F_0$ oder D_i ist Resolvent von $\{D_j, D_\ell\}$ bzgl. $A_k \ne A$ mit $j, \ell < i$.

Beweis (3/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F_0 bzw. F_1 sind also unerfüllbar und $A \notin Atome(F_0)$ und $A \notin Atome(F_1)$. Damit können wir die Induktionshypothese auf F_0 und F_1 anwenden und erhalten $\emptyset \in Res^*(F_0)$ und $\emptyset \in Res^*(F_1)$. Also existieren $D_1, \ldots, D_m \subseteq \mathcal{L}$, so dass
 - $D_m = \emptyset$ und (die Herleitung des leeren Disjunktionsgliedes)
 - für jedes $1 \le i \le m$ gilt $D_i \in F_0$ oder D_i ist Resolvent von $\{D_j, D_\ell\}$ bzgl. $A_k \ne A$ mit $j, \ell < i$.

Wir konstruieren $D'_1, \ldots, D'_m \subseteq \mathcal{L}$, so dass $D'_i = D_i$ oder $D'_i = D_i \cup \{A\}$.

- 3 D_i' ist Resolvent von $\{D_j', D_\ell'\}$ bzgl. A_k für alle D_i die als Resolvent von $\{D_j, D_\ell\}$ bzgl. A_k mit $j, \ell < i$ entstanden.

Beweis (3/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

- IS: F_0 bzw. F_1 sind also unerfüllbar und $A \notin Atome(F_0)$ und $A \notin Atome(F_1)$. Damit können wir die Induktionshypothese auf F_0 und F_1 anwenden und erhalten $\emptyset \in Res^*(F_0)$ und $\emptyset \in Res^*(F_1)$. Also existieren $D_1, \ldots, D_m \subseteq \mathcal{L}$, so dass
 - $D_m = \emptyset$ und (die Herleitung des leeren Disjunktionsgliedes)
 - für jedes $1 \le i \le m$ gilt $D_i \in F_0$ oder D_i ist Resolvent von $\{D_j, D_\ell\}$ bzgl. $A_k \ne A$ mit $j, \ell < i$.

Wir konstruieren $D'_1, \ldots, D'_m \subseteq \mathcal{L}$, so dass $D'_i = D_i$ oder $D'_i = D_i \cup \{A\}$.

- ① $D'_i = D_i$ für alle $D_i \in F_0$ und $D_i \in F$.
- 2 $D'_i = D_i \cup \{A\}$ für alle $D_i \in F_0$ und $D_i \notin F$.
- ③ D_i' ist Resolvent von $\{D_j', D_\ell'\}$ bzgl. A_k für alle D_i die als Resolvent von $\{D_i, D_\ell\}$ bzgl. A_k mit $j, \ell < i$ entstanden.

Dies ist eine gültige Herleitung von D'_m , denn $D'_i \in F$ in den Fällen **1** und **2**.

Beweis (4/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

• IS: Betrachten wir D'_m . Es gilt entweder $D'_m = \emptyset$ oder $D'_m = \{A\}$, da $D_m = \emptyset$. Also gilt

$$\emptyset \in \operatorname{Res}^*(F)$$
 oder $\{A\} \in \operatorname{Res}^*(F)$

Beweis (4/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

• IS: Betrachten wir D'_m . Es gilt entweder $D'_m = \emptyset$ oder $D'_m = \{A\}$, da $D_m = \emptyset$. Also gilt

$$\emptyset \in \operatorname{\mathsf{Res}}^*(F)$$
 oder $\{A\} \in \operatorname{\mathsf{Res}}^*(F)$

Nun wiederholen wir diese Konstruktion analog für F_1 und erhalten

$$\emptyset \in \operatorname{Res}^*(F)$$
 oder $\{\neg A\} \in \operatorname{Res}^*(F)$

Beweis (4/4).

Sei F unerfüllbar. Wir beweisen die Aussage per vollständiger Induktion über |Atome(F)|.

• IS: Betrachten wir D'_m . Es gilt entweder $D'_m = \emptyset$ oder $D'_m = \{A\}$, da $D_m = \emptyset$. Also gilt

$$\emptyset \in \operatorname{\mathsf{Res}}^*(F)$$
 oder $\{A\} \in \operatorname{\mathsf{Res}}^*(F)$

Nun wiederholen wir diese Konstruktion analog für F_1 und erhalten

$$\emptyset \in \mathsf{Res}^*(F)$$
 oder $\{\neg A\} \in \mathsf{Res}^*(F)$

Damit gilt $\emptyset \in \text{Res}^*(F)$ (entweder direkt oder durch einen weiteren Resolutionsschritt).

Illustration

Sei ${\it F}$ die konjunktive Normalform

$$\{\{A_0\}, \{\neg A_1, A_3\}, \{\neg A_0, A_1, A_3\}, \{A_2, \neg A_3\}, \{\neg A_0, \neg A_2, \neg A_3\}\}_{\wedge}$$

Wir wählen Atom A_3 und konstruieren F_0 und F_1 :

Illustration

```
Sei F die konjunktive Normalform \left\{\{A_0\}, \{\neg A_1, A_3\}, \{\neg A_0, A_1, A_3\}, \{A_2, \neg A_3\}, \{\neg A_0, \neg A_2, \neg A_3\}\right\}_{\wedge} Wir wählen Atom A_3 und konstruieren F_0 und F_1: F_0 = \left\{\{A_0\}, \{\neg A_1\}, \{\neg A_0, A_1\}\right\}_{\wedge}
```

Illustration

```
Sei F die konjunktive Normalform \left\{\{A_0\}, \{\neg A_1, A_3\}, \{\neg A_0, A_1, A_3\}, \{A_2, \neg A_3\}, \{\neg A_0, \neg A_2, \neg A_3\}\right\}_{\wedge} Wir wählen Atom A_3 und konstruieren F_0 und F_1: F_0 = \left\{\{A_0\}, \{\neg A_1\}, \{\neg A_0, A_1\}\right\}_{\wedge} F_1 = \left\{\{A_0\}, \{A_2\}, \{\neg A_0, \neg A_2\}\right\}_{\wedge}
```

Illustration Sei F die konjunktive Normalform $\{\{A_0\}, \{\neg A_1, A_3\}, \{\neg A_0, A_1, A_3\}, \{A_2, \neg A_3\}, \{\neg A_0, \neg A_2, \neg A_3\}\}_{\land}$ Wir wählen Atom A_3 und konstruieren F_0 und F_1 : $F_0 = \{\{A_0\}, \{\neg A_1\}, \{\neg A_0, A_1\}\}_{\land}$ $F_1 = \{\{A_0\}, \{A_2\}, \{\neg A_0, \neg A_2\}\}_{A_1}$ $\{\neg A_1 \} \{\neg A_0, A_1 \} \{A_0\}$ $\{A_2$

Illustration Sei F die konjunktive Normalform $\{\{A_0\}, \{\neg A_1, A_3\}, \{\neg A_0, A_1, A_3\}, \{A_2, \neg A_3\}, \{\neg A_0, \neg A_2, \neg A_3\}\}_{\land}$ Wir wählen Atom A_3 und konstruieren F_0 und F_1 : $F_0 = \{\{A_0\}, \{\neg A_1\}, \{\neg A_0, A_1\}\}_{A_0}$ $F_1 = \{\{A_0\}, \{A_2\}, \{\neg A_0, \neg A_2\}\}_{A_1}$ $\{A_2, \neg A_3\}$ $\{\neg A_0, \neg A_2, \neg A_3\}$ $\{\neg A_1, A_3\}$ $\{\neg A_0, A_1, A_3\}$ $\{A_0\}$ $\{\neg A_0, \neg A_3\}$ $\{A_3\}$ $\neg A_3$

Korollar (Korrektheit und Vollständigkeit)

Sei $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ eine (evtl. unendliche) konjunktive Normalform. Dann ist \mathcal{F} unerfüllbar gdw. $\emptyset \in \mathsf{Res}^*(\mathcal{F})$ ist.

Aussagenlogik

Deduktion

Motivation

- Res*(F) kann sehr groß werden
- Beweis der Vollständigkeit zeigt Weg ohne (vollständige)
 Berechnung von Res*(F)
- ullet denn es reicht <u>eine</u> Herleitung von \emptyset

Definition

Sei $F \subseteq Pow(\mathcal{L})$ eine konjunktive Normalform.

Eine Sequenz $D_1, \ldots, D_m \subseteq \mathcal{L}$ heißt $\overline{\text{Deduktion}}$ gdw.

(auch: Herleitung oder Widerspruchsbeweis)

- $D_m = \emptyset$ und
- für jedes $1 \le i \le m$ gilt
 - $D_i \in F$ oder
 - es existieren $j, \ell < i$ und $k \in \mathbb{N}$, so dass D_i die Resolvente von $\{D_i, D_\ell\}$ bzgl. A_k ist

Intuition

- \bullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

Beispiel

$$F = \big\{ \{A_0,\, \neg A_1\},\, \{A_2,\, A_1\},\, \{\neg A_0\},\, \{\neg A_2\} \big\}_{\wedge}$$

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

$$F = \big\{ \{A_0,\, \neg A_1\},\, \{A_2,\, A_1\},\, \{\neg A_0\},\, \{\neg A_2\} \big\}_{\wedge}$$

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

$$F = \big\{ \{A_0,\, \neg A_1\},\, \{A_2,\, A_1\},\, \{\neg A_0\},\, \{\neg A_2\} \big\}_{\wedge}$$

- $\bullet \{\neg A_1\}$ Resolvent von $\{\bullet, \bullet\}$

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

- $\bullet \{ \neg A_1 \}$ Resolvent von $\{ \bullet, \bullet \}$

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

$$F = \{\{A_0, \neg A_1\}, \{A_2, A_1\}, \{\neg A_0\}, \{\neg A_2\}\}_{\land}$$

$$\{A_0, \neg A_1\}$$
Element von F

$$\{\neg A_0\}$$
Element von F

$$\bullet$$
 $\{A_2\}$ Resolvent von $\{\bullet, \bullet\}$

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

Intuition

- ullet Deduktion ist Folge von Disjunktionsgliedern endend mit \emptyset
- jedes Folgenglied (inkl. ∅) ist
 - ein Disjunktionsglied der Formel oder
 - ergibt sich per Resolution aus vorhergehenden Folgengliedern

Theorem

Eine konjunktive Normalform $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ ist unerfüllbar gdw. es eine Deduktion gibt.

Anmerkungen

- Resolution zeigt bei Erfolg (Deduktion) Unerfüllbarkeit
- Resolution benötigt konjunktive Normalform

Theorem

Eine konjunktive Normalform $\mathcal{F} \subseteq \mathsf{Pow}(\mathcal{L})$ ist unerfüllbar gdw. es eine Deduktion gibt.

Anmerkungen

- Resolution zeigt bei Erfolg (Deduktion) Unerfüllbarkeit
- Resolution benötigt konjunktive Normalform
- soll F allgemeingültig gezeigt werden, dann
 - Negation von F; also ¬F
 (F Tautologie gdw. ¬F unerfüllbar)
 - ullet Transformation von $\neg F$ in konjunktive Normalform
 - Konstruktion Deduktion Anwendung Resolution
 - ullet existiert diese, dann ist $\neg F$ unerfüllbar und damit F Tautologie

Beispiel

Tautologie-Beweis für $((\neg \mathsf{Probe} \to \mathsf{Regen}) \land \neg \mathsf{Regen}) \to \mathsf{Probe}$

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- $\blacksquare \ \, \mathsf{Negation} \,\, \neg \Big(\big((\neg \mathsf{Probe} \rightarrow \mathsf{Regen}) \land \neg \mathsf{Regen} \big) \rightarrow \mathsf{Probe} \Big)$
- 2 Negationsnormalform (Probe \lor Regen) $\land \neg$ Regen $\land \neg$ Probe

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- $\textbf{ Negations normal form (Probe \lor Regen)} \land \neg Regen \land \neg Probe$
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- 2 Negationsnormalform (Probe \lor Regen) $\land \neg$ Regen $\land \neg$ Probe
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$
- 4 Konstruktion Deduktion:
 - {Probe, Regen}

Element von F

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- $② Negations normal form (Probe \lor Regen) \land \neg Regen \land \neg Probe$
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$
- Monstruktion Deduktion:
 - {Probe, Regen}
 - ② {¬Probe}

Element von F

Element von F

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- 2 Negationsnormalform (Probe \lor Regen) $\land \neg$ Regen $\land \neg$ Probe
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$
- Monstruktion Deduktion:
 - {Probe, Regen}
 - ② {¬Probe}
 - {Regen}

- Flement von F
 - Element von F
- Resolvent von $\{0, 2\}$

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- 2 Negationsnormalform (Probe \lor Regen) $\land \neg$ Regen $\land \neg$ Probe
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$
- Monstruktion Deduktion:
 - {Probe, Regen}
 - ② {¬Probe}

- Flement von F
- Element von F
- Resolvent von $\{0, 2\}$
 - Element von F

Beispiel

 $\underline{\mathsf{Tautologie}}\mathsf{-}\mathsf{Beweis}\;\mathsf{für}\;\big((\neg\mathsf{Probe}\to\mathsf{Regen})\land\neg\mathsf{Regen}\big)\to\mathsf{Probe}$

- 2 Negationsnormalform (Probe \lor Regen) $\land \neg$ Regen $\land \neg$ Probe
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$
- Monstruktion Deduktion:
 - {Probe, Regen}
 - \bigcirc {¬Probe}
 - {Regen}

 - **5**

- Element von F
- Element von F
- Resolvent von {0, 0}
 - Element von F
 - Resolvent von $\{ \mathbf{0}, \mathbf{0} \}$

Beispiel

Tautologie-Beweis für $((\neg Probe \rightarrow Regen) \land \neg Regen) \rightarrow Probe$

- **2** Negationsnormalform (Probe \vee Regen) $\wedge \neg$ Regen $\wedge \neg$ Probe
- **3** konjunktive Normalform $F = \{\{\text{Probe}, \text{Regen}\}, \{\neg \text{Probe}\}\}_{\land}$
- Monstruktion Deduktion:

```
\{Probe, Regen\}Element von F\{\neg Probe\}Element von F
```

- \bullet {Regen}Resolvent von { \bullet , \bullet } \bullet {¬Regen}Element von F
- Schlussfolgerung (hier: Tautologiebeweis erbracht)

Aussagenlogik

Kalküle

Definition

Ein Kalkül ist eine Menge von syntaktischen Umformungsregeln, mit der man semantische Eigenschaften einer Teilmenge aller Formeln nachweisen kann

Definition

Ein Kalkül ist eine Menge von syntaktischen Umformungsregeln, mit der man semantische Eigenschaften einer Teilmenge aller Formeln nachweisen kann

Beispiel

Resolutionskalkül:

- Teilmenge: Formeln in konjunktiver Normalform
- Umformungsregeln:
 - Resolventenbildung und Hinzufügen zur Formelmenge
 - Erfolg bei leerem Disjunktionsglied
- Eigenschaft: Unerfüllbarkeit

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - Distributivgesetze für ∨
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - ullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

$$(A_1 \vee \neg A_2 \vee A_2) \wedge (A_0 \vee A_3 \vee \neg A_0 \vee A_1) \wedge (A_1 \vee \neg A_1)$$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - ullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

$$(A_1 \vee \neg A_2 \vee A_2) \wedge (A_0 \vee A_3 \vee \neg A_0 \vee A_1) \wedge (A_1 \vee \neg A_1)$$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - \bullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

$$(A_1 \vee \neg A_2 \vee A_2) \wedge (A_0 \vee A_3 \vee \neg A_0 \vee A_1) \wedge (A_1 \vee \neg A_1)$$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - ullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

$$(A_0 \lor A_3 \lor \neg A_0 \lor A_1) \land (A_1 \lor \neg A_1)$$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - ullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

$$(A_0 \lor A_3 \lor \neg A_0 \lor A_1) \land (A_1 \lor \neg A_1)$$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - Distributivgesetze für ∨
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

 $(A_1 \vee \neg A_1)$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - ullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

$$(A_1 \vee \neg A_1)$$

Beispiel

Transformation in konjunktive Normalform und Tautologietest:

- Teilmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - ullet Distributivgesetze für \lor
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Anwendung

Erfolg!

Beispiel

HORN-Kalkül:

- Teilmenge: HORN-Formeln
- Umformungsregeln:

 - ullet Erfolg bei Implikation $\widetilde{1} o \widetilde{0}$ (oder () o A)
- Eigenschaft: Unerfüllbarkeit

Beispiel

HORN-Kalkül:

- Teilmenge: HORN-Formeln
- Umformungsregeln:

 - ullet Erfolg bei Implikation $\widetilde{1} \to \widetilde{0}$ (oder () \to A)
- Eigenschaft: Unerfüllbarkeit

Anwendung

$$\frac{\left(\widetilde{1} \to A_{1}\right) \wedge \left(\left(A_{1} \wedge A_{2}\right) \to A_{0}\right) \wedge \left(\left(A_{1} \wedge A_{4} \wedge A_{0}\right) \to A_{3}\right) \wedge \left(\left(A_{1} \to A_{2}\right) \wedge \left(\left(A_{0} \wedge A_{1} \wedge A_{4}\right) \to \widetilde{0}\right)\right)}{\left(A_{1} \to A_{2}\right) \wedge \left(\left(A_{0} \wedge A_{1} \wedge A_{4}\right) \to \widetilde{0}\right)}$$

erfüllbar

Beispiel

HORN-Kalkül:

- Teilmenge: HORN-Formeln
- Umformungsregeln:
 - Finde Implikation $\widetilde{1} \to A$ und entferne sie $(oder () \to A)$ und alle Vorkommen vom A (leere Konjunktion = 1) $(oder () \rightarrow A)$
 - Erfolg bei Implikation $\widetilde{1} \to \widetilde{0}$
- Eigenschaft: Unerfüllbarkeit

Anwendung

$$\begin{array}{ccc} \left((& A_2) \rightarrow A_0 \right) \wedge \left((& & A_4 \wedge A_0) \rightarrow A_3 \right) \wedge \\ \left(& \rightarrow A_2 \right) \wedge \left((A_0 \wedge & & A_4) \rightarrow \widetilde{0} \right) \end{array}$$

erfüllbar

Beispiel

HORN-Kalkül:

- Teilmenge: HORN-Formeln
- Umformungsregeln:
 - Finde Implikation $\widetilde{1} \to A$ und entferne sie $(oder () \to A)$ und alle Vorkommen vom A (leere Konjunktion = 1) $(oder () \rightarrow A)$
 - Erfolg bei Implikation $\widetilde{1} \to \widetilde{0}$
- Eigenschaft: Unerfüllbarkeit

Anwendung

$$\begin{array}{ccc} \big((&) \rightarrow A_0 \big) \wedge \big((& A_4 \wedge A_0) \rightarrow A_3 \big) \wedge \\ \big((A_0 \wedge & A_4) \rightarrow \widetilde{0} \big) \end{array}$$

erfüllbar

Beispiel

HORN-Kalkül:

- Teilmenge: HORN-Formeln
- Umformungsregeln:
 - Finde Implikation $\widetilde{1} \to A$ und entferne sie $(oder () \to A)$ und alle Vorkommen vom A $(leere Konjunktion = \widetilde{1})$
 - ullet Erfolg bei Implikation $\widetilde{1} o \widetilde{0}$ (oder () o A)
- Eigenschaft: Unerfüllbarkeit

Anwendung

kein Erfolg erfüllbar

Definition

Ein Kalkül ist

- korrekt gdw. bei Erfolg die semantischen Eigenschaften gelten
- vollständig gdw. bei Vorliegen der semantischen Eigenschaften Erfolg erreicht wird

Definition

Ein Kalkül ist

- korrekt gdw. bei Erfolg die semantischen Eigenschaften gelten
- vollständig gdw. bei Vorliegen der semantischen Eigenschaften Erfolg erreicht wird

Beispiel

für den Resolutionskalkül:

Definition

Ein Kalkül ist

- korrekt gdw. bei Erfolg die semantischen Eigenschaften gelten
- vollständig gdw. bei Vorliegen der semantischen Eigenschaften Erfolg erreicht wird

Beispiel

für den Resolutionskalkül:

- ullet Vollständigkeit: Wenn $\underbrace{F \text{ unerfüllbar}}_{\text{semantische Eigenschaft}}$, dann $\underbrace{\emptyset \in \text{Res}^*(F)}_{\text{Erfolgsbedingung}}$

Notizen

- Korrektheit und Vollständigkeit sind einzeln sehr leicht erreichbar
 - Kalkül, der nie erfolgreich ist, ist korrekt (Vorbedingung der Implikation immer falsch)
 - Kalkül, der immer erfolgreich ist, ist vollständig (Folgerung der Implikation immer wahr)

Notizen

- Korrektheit und Vollständigkeit sind einzeln sehr leicht erreichbar
 - Kalkül, der nie erfolgreich ist, ist korrekt (Vorbedingung der Implikation immer falsch)
 - Kalkül, der immer erfolgreich ist, ist vollständig (Folgerung der Implikation immer wahr)
- nur gleichzeitig korrekte und vollständige Kalküle eine Herausforderung

Notizen

- Korrektheit und Vollständigkeit sind einzeln sehr leicht erreichbar
 - Kalkül, der nie erfolgreich ist, ist korrekt (Vorbedingung der Implikation immer falsch)
 - Kalkül, der immer erfolgreich ist, ist vollständig (Folgerung der Implikation immer wahr)
- nur gleichzeitig korrekte und vollständige Kalküle eine Herausforderung
- hier besprochene Algorithmen liefern korrekte und vollständige Kalküle

Frage

Welche Eigenschaften hat folgender Kalkül?

- Formelmenge: Formeln in Negationsnormalform
- 2 Umformungsregeln:
 - TSEITIN-Transformation (inkl. Transformation in konjunktive Normalform)
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Frage

Welche Eigenschaften hat folgender Kalkül?

- Formelmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - TSEITIN-Transformation (inkl. Transformation in konjunktive Normalform)
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- 3 Eigenschaft: Tautologie

Lösung

- korrekt:
- vollständig:

Frage

Welche Eigenschaften hat folgender Kalkül?

- Formelmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - TSEITIN-Transformation (inkl. Transformation in konjunktive Normalform)
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- 3 Eigenschaft: Tautologie

Lösung

- korrekt: ja
- vollständig:

Frage

Welche Eigenschaften hat folgender Kalkül?

- Formelmenge: Formeln in Negationsnormalform
- 2 Umformungsregeln:
 - TSEITIN-Transformation (inkl. Transformation in konjunktive Normalform)
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Lösung

korrekt: ja

vollständig: nein

Aussagenlogik — Kalkül

Frage

Welche Eigenschaften hat folgender Kalkül?

- Formelmenge: Formeln in Negationsnormalform
- Umformungsregeln:
 - TSEITIN-Transformation (inkl. Transformation in konjunktive Normalform)
 - Entferne Disjunktionsglieder, die ein Atom und dessen
 Negation enthalten (sobald in konjunktiver Normalform)
 - Erfolg bei leerer Formel
- Eigenschaft: Tautologie

Lösung

- korrekt: ja
- vollständig: nein
 - (Tseitin-Transformation erhält nur Erfüllbarkeit)

Aussagenlogik

 ${\sf Zusammenfassung}$

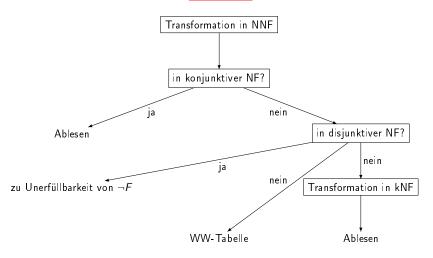
Wichtige Konzepte

- Aussagen und Formeln
- Auswertung von Formeln unter Interpretation
- Wahrheitswertetabelle
- Modelle, Widerlegungen, Tautologien, etc.
- Äquivalenz und Ersetzungstheorem
- Negationsnormalform, konjunktive und disjunktive Normalform
- HORN-Formeln und Markierungsalgorithmus
- Kompaktheit
- Problemlösungen für Erfüllbarkeit und Tautologie
- TSEITIN-Transformation und Resolution

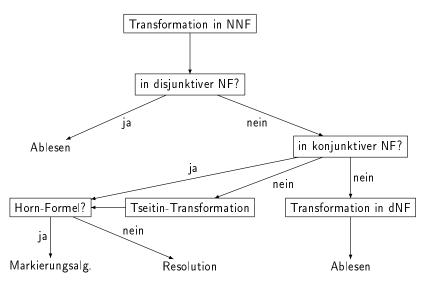
Fähigkeiten

- Modellierung
- Erkennen der verschiedenen Normalformen
- geeignete Wahl der Beweismethode
- alternativ: Wahrheitswertetabelle oder mathematischer Beweis

mögliche Beweisstrategie für Tautologie (Widerlegbarkeit):



mögliche Beweisstrategie für Erfüllbarkeit (Unerfüllbarkeit):



Aussagenlogik

 ${\sf Modellierung}$

Halten und Parken — StVO I, § 12(2) [editiert]

Wer sein Fahrzeug verlässt oder länger als drei Minuten hält, der parkt.

Halten und Parken — StVO I, § 12(2) [editiert]

Wer sein Fahrzeug verlässt oder länger als drei Minuten hält, der parkt.

 $(Verlassen \lor 3minHalten) \rightarrow Parken$

Warnzeichen — StVO I, § 16(1) [editiert]

- Schall- und Leuchtzeichen darf nur geben,
 - wer außerhalb geschlossener Ortschaften überholt oder
 - wer sich oder Andere gefährdet sieht.

Warnzeichen — StVO I, § 16(1) [editiert]

- Schall- und Leuchtzeichen darf nur geben,
 - wer außerhalb geschlossener Ortschaften überholt oder
 - wer sich oder Andere gefährdet sieht.

Warnzeichen — StVO I, § 16(1) [editiert]

- Schall- und Leuchtzeichen darf nur geben,
 - wer außerhalb geschlossener Ortschaften überholt oder
 - wer sich oder Andere gefährdet sieht.

```
\begin{array}{c} (\mathsf{Hupen} \wedge \mathsf{Blinken}) \to \\ \Big( (\mathsf{AuBerorts} \wedge \mathsf{\ddot{U}berholen}) \vee \mathsf{SelbstGef} \vee \mathsf{AndereGef} \Big) \end{array}
```

Warnzeichen — StVO I, § 16(2) [editiert]

Wer einen Linienbus oder einen Schulbus führt, muss Warnblinklicht einschalten, wenn er sich einer Haltestelle nähert <u>und</u> solange Fahrgäste ein- oder aussteigen, soweit dieses Verhalten angeordnet ist.

Warnzeichen — StVO I, § 16(2) [editiert]

Wer einen Linienbus oder einen Schulbus führt, muss Warnblinklicht einschalten, wenn er sich einer Haltestelle nähert <u>und</u> solange Fahrgäste ein- oder aussteigen, soweit dieses Verhalten angeordnet ist.

```
\begin{array}{c} \mathsf{Angeordnet} \to \\ \Big( \big( (\mathsf{Einsteigen} \lor \mathsf{Aussteigen} \lor \mathsf{AnfahrtHaltestelle}) \land \\ \big( (\mathsf{Linienbus} \lor \mathsf{Schulbus}) \big) \to \mathsf{Warnblink} \Big) \end{array}
```

Fußgängerüberwege — StVO I, § 26(1) [editiert]

An Fußgängerüberwegen haben Fahrzeuge mit Ausnahme von Schienenfahrzeugen den zu Fuß Gehenden sowie Fahrenden von Krankenfahrstühlen oder Rollstühlen, welche den Überweg erkennbar benutzen wollen, das Überqueren zu ermöglichen.

Fußgängerüberwege — StVO I, § 26(1) [editiert]

An Fußgängerüberwegen haben Fahrzeuge mit Ausnahme von Schienenfahrzeugen den zu Fuß Gehenden sowie Fahrenden von Krankenfahrstühlen oder Rollstühlen, welche den Überweg erkennbar benutzen wollen, das Überqueren zu ermöglichen.

Zusammenfassung

- Vollständigkeit Resolution
- Deduktionen
- Kalküle
- Zusammenfassung
- Modellierung

Vierte Übungsserie erscheint demnächst.