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Abstract. We aim to generalize Büchi’s fundamental theorem on the
coincidence of recognizable and MSO-definable languages to a weighted
timed setting. For this, we investigate subclasses of weighted timed au-
tomata and show how we can extend existing timed MSO logics with
weights. Here, we focus on the class of weighted event-recording automata
and define a weighted extension of the full logic MSOer(Σ) introduced
by D’Souza. We show that every weighted event-recording automaton
can effectively be transformed into a corresponding sentence of our logic
and vice versa. The methods presented in the paper can be adopted to
weighted versions of timed automata and Wilke’s logic of relative dis-
tance. The results indicate the robustness of weighted timed automata
models and may be used for specification purposes.

Introduction

Recently, the model of weighted timed automata has received much attention in
the real-time community as it can be used to model continuous consumption
of resources [2, 3, 6, 5, 12]. The goal of this paper is to generalize Büchi’s and
Elgot’s fundamental theorems about the coincidence of languages recognizable
by finite automata and languages definable by sentences in a monadic second-
order (MSO) logic [7, 16] to weighted timed automata. For this, we introduce a
weighted timed MSO logic, which may be used for specifying quantitative aspects
of timed automata, e.g. how often a certain property is satisfied by the system.

In this paper, we focus on a weighted version of event-recording automata,
a subclass of timed automata introduced by Alur et al. [1]. Recent results on
event-recording automata include works on alternative characterizations using
regular expressions [8] and MSO logic [15], real-time logics [25, 18], and infer-
ence/learning [17]. The main advantage of event-recording automata is that they
- as opposed to timed automata - always can be determinized. This simpli-
fies some of our constructions compared to the ones necessary for the class of
weighted timed automata.

Our work is motivated by recent works on weighted logics by Droste and
Gastin [9, 11]. The authors introduce a weighted MSO logic for characterizing the
behaviour of weighted automata defined over a semiring. They extend classical



MSO logic with formulas of the form k (for k an element of the semiring), which
may be used to define the weight of a transition of a weighted automaton. They
show that the behaviour of weighted automata coincides with the semantics of
sentences of a fragment of the logic. Recently, this result has been generalized
to weighted settings of infinite words [13], trees [14], pictures [21], traces [22],
texts [19] and nested words [20].

Here, we aim to generalize the result to a weighted timed setting. The basis
of our work is the MSO logic MSOer(Σ) introduced by D’Souza and used for the
logical characterization of event-recording automata [15]. We extend it with two
kinds of weighted formulas whose semantics correspond to the weights of edges
and locations, respectively, in weighted event-recording automata. For proving
a Büchi-type theorem we show that for every sentence ϕ in our logic there
is a weighted event-recording automaton whose behaviour corresponds to the
semantics of ϕ and vice versa.

For this, we use parts of the proofs presented by Droste and Gastin [11].
However, in the weighted timed setting we are faced with two new problems.
First, due to the weights assigned to locations, the Hadamard product, which is
used for defining the semantics of conjunction in our logic, does not preserve rec-
ognizability. Second, there are formulas ϕ such that there are no weighted event-
recording automata whose behaviours correspond to the semantics of ∀x.ϕ and
∀X.ϕ, respectively. To overcome these problems, we define a suitable fragment
of our logic, for which, with the support of some new notions and techniques,
we are able to show the result.

1 (Weighted) Event-Recording Automata

LetΣ,N and R≥0 denote an alphabet, the natural numbers and the positive reals,
respectively. A timed word is a non-empty finite sequence (a1, t1)...(ak, tk) ∈
(Σ×R≥0)

+ such that the sequence t̄ = t1...tk of timestamps is non-decreasing1.
Sometimes we denote a timed word as above by (ā, t̄), where ā ∈ Σ+. We write
TΣ+ for the set of timed words over Σ. A set L ⊆ TΣ+ is called a timed
language. With Σ we associate a set CΣ = {xa|a ∈ Σ} of event-recording clock
variables ranging over R≥0. The variable xa measures the time distance between
the current event in a timed word and the last occuring a. Formally, given a
timed word w = (a1, t1)...(ak, tk), we let dom(w) be the set {1, ..., k} and define
for every i ∈ dom(w) a clock valuation function γwi : CΣ → R≥0 ∪ {⊥} by

γwi (xa) =





ti − tj if there exists a j such that 1 ≤ j < i and aj = a,

and for all m with j < m < i, we have am 6= a

⊥ otherwise.

We define clock constraints φ over CΣ to be conjunctions of formulas of the form
x = ⊥ or x ∼ c, where x ∈ CΣ , c ∈ N, and ∼∈ {<,≤,=,≥, >}. We use Φ(CΣ) to

1 We assume a timed word to be non-empty for technical simplicity.
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denote the set of all clock constraints over CΣ . A clock valuation γwi satisfies φ,
written γwi |= φ, if φ evaluates to true according to the values given by γwi . We
further use |w| to denote the length of w. An event-recording automaton (ERA)
over Σ is a tuple A = (S, S0, Sf , E), where

– S is a finite set of locations (states),
– S0 ⊆ S is a set of initial locations,
– Sf ⊆ S is a set of final locations,
– E ⊆ S ×Σ × Φ(CΣ)× S is a finite set of edges.

For w as above, we let a run of A on w be a finite sequence

s0
a1,φ1
−→ s1

a2,φ2
−→ ...

ak,φk
−→ sk of edges ei = (si−1, ai, φi, si) ∈ E such that γwi |= φi

for all 1 ≤ i ≤ k. We say that r is successful if s0 ∈ S0 and sk ∈ Sf . We define
the timed language L(A) = {w ∈ TΣ+| there is a successful run of A on w}.
We say that a timed language L ⊆ TΣ+ is ERA-recognizable over Σ if there is
an ERA A over Σ such that L(A) = L.

Remark 1. The methods presented in this paper can easily be extended to event-
clock automata additionally equipped with event-predicting clock variables [1] of
the form ya measuring the time distance to the next occuring a.

Next, we recall the notion of quasi-event-recording automata introduced by
D’Souza [15]. First we give the background on why we need this notion. In
this paper, we want to give a Büchi-type theorem for the class of weighted
event-recording automata. So let us recall how Büchi’s theorem is proved in the
classical setting (see e.g. Thomas [26]). One part is to show that for every sen-
tence ϕ in the MSO logic there is a finite automaton recognizing L(ϕ). This
is done by induction on the structure of the logic. For the induction base one
shows that for every atomic formula of the logic there is a corresponding finite
automaton. Recall that such a finite automaton is defined over a so-called ex-
tended alphabet which encodes the current assignments of the free variables (see
Sect.2). In the induction step one shows that recognizable timed languages are
closed under the constructs of the logic, i.e., under negation, disjunction and
existential quantification. For showing these closure properties, one makes use
of projections. First and foremost, existential quantification corresponds to the
operation of projection. So closure of recognizable languages under existential
quantification follows from the fact that recognizable languages are closed under
projection. Unfortunately, this is not the case for the class of ERA-recognizable
timed languages [1]. However, D’Souza showed that existential quantification
in his logic MSOer(Σ) corresponds to closure under projection of a subclass of
ERA-recognizable timed languages, namely the class of quasi-event-recording
automata-recognizable timed languages.

Let U be a (possibly infinite) set of letters, called the universe. Consider a
finite partition of this universe, given by a function g from U to a finite indexing
set C. In the following, we fix (U, g, C) and let Γ ⊆ U . A quasi-event-recording
automaton (qERA) over Γ is defined in the same way as ERA except that for
every a ∈ Γ , the event-recording clock variable xa records the time to the last
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event b ∈ Γ such that g(b) = g(a). The definition of the clock valuation function
γ is changed accordingly. A timed language L ⊆ TU+ is qERA-recognizable w.r.t.
(U, g, C) if there is a qERA A over Γ for some Γ ⊆ U such that L(A) = L.

A qERA A is deterministic if |S0| = 1 and whenever (s, a, φ1, s1) and
(s, a, φ2, s2) are two different edges in A, then for all clock valuations γ we have
γ 6|= φ1 ∧φ2. A is unambiguous if for every accepted timed word w ∈ L(A) there
is exactly one successful run of A on w. A timed language is called deterministi-
cally qERA-recognizable (unambiguously qERA-recognizable, respectively) w.r.t.
(U, g, C) if there is a deterministic (unambiguous, respectively) qERA over Γ for
some Γ ⊆ U recognizing it.

Let Γ,∆ ⊆ U be finite and π : Γ → ∆ be a mapping. The renaming π(w) of a
timed wordw ∈ TΓ+ is the timed word w′ ∈ T∆+ such that dom(w′) = dom(w),
a′i = π(ai) and t′i = ti for all i ∈ dom(w). We say that π is valid w.r.t. (U, g, C)
if for each a ∈ Γ we have g(a) = g(π(a)).

Proposition 1. [1, 15] The class of qERA-recognizable timed languages is closed
under boolean operations and equal to the class of deterministically qERA-
recognizable timed languages. The class of qERA-recognizable timed languages
is closed under valid renamings.

We extend (q)ERA to be equipped with weights taken from a commuta-
tive semiring. For this, we let K be a commutative semiring, i.e., an algebraic
structure K = (K,+, ·, 0, 1) such that (K,+, 0) and (K, ·, 1) are commutative
monoids, multiplication distributes over addition and 0 is absorbing. As exam-
ples consider the semiring of natural numbers (N,+, ·, 0, 1), the Boolean semiring
({0, 1},∨,∧, 0, 1) and the tropical semiring (R≥0 ∪ {∞},min,+,∞, 0). Further-
more, we let F be a family of functions from R≥0 to K. For instance, if K
is the tropical semiring, F may be the family of linear functions of the form
f(δ) = k · δ mapping every δ ∈ R≥0 to the value k · δ in K (for some k ∈ R≥0).
Given f1, f2 ∈ F , we define the pointwise product f1 ⊙ f2 of f1 and f2 by
(f1 ⊙ f2)(δ) = f1(δ) · f2(δ).

A weighted event-recording automaton (WERA) over Σ, K and F is a
tuple A = (S, S0, Sf , E, C) such that (S, S0, Sf , E) is an ERA over Σ and
C = {CE} ∪ {Cs|s ∈ S} is a cost function, where CE : E → K assigns a weight
to each edge, and Cs ∈ F gives us the weight for staying in location s per
time unit for each s ∈ S. Similarly, if Σ ⊆ U , we define weighted quasi-event-
recording automata (qWERA) over K, Σ and F . A (q)WERA A maps to each
timed word w ∈ TΣ+ a weight in K as follows: first, we define the running
weight rwt(r) of a run r as above to be

∏
i∈dom(w)Csi−1 (ti − ti−1) · CE(ei),

where t0 = 0. Then, the behaviour ‖A‖ : TΣ+ → K of A is given
by (‖A‖, w) =

∑
{rwt(r) : r is a successful run of A on w}. A function

T : TΣ+ → K is called a timed series. A timed series T is said to be
WERA-recognizable over K, Σ and F if there is a WERA A over K, Σ and
F such that ‖A‖ = T . Equivalently, a timed series T : TU+ → K is said to
be qWERA-recognizable over K and F w.r.t. (U, g, C) if there is a qWERA A
over K, Σ and F for some Σ ⊆ U such that ‖A‖ = T . We define the function
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1 : R≥0 → K by δ 7→ 1 for every δ ∈ R≥0. In the following, we fix a commutative
semiring K and a family F of cost functions from R≥0 to K containing 1.

For L ⊆ TU+, the characteristic series 1L is defined by (1L, w) = 1 if w ∈ L,
0 otherwise. Notice that a qERA A over Σ can be seen as a qWERA over
the Boolean semiring, Σ and the family of constant functions. The timed series
recognized by such a qWERA is the characteristic series 1L(A). However, due
to the determinizability of qERA, 1L(A) can also be recognized over arbitrary
semirings:

Lemma 1. If L ⊆ TU+ is qERA-recognizable w.r.t. (U, g, C), then 1L is
qWERA-recognizable over K and F w.r.t. (U, g, C).

Proof. Let L ⊆ TU+ be qERA-recognizable w.r.t. (U, g, C). By Prop.1, there is
a deterministic qERA A = (S, S0, Sf , E) over Σ such that L(A) = L for some
Σ ⊆ U . We define a cost function C by CE(e) = 1 ∈ K for every e ∈ E and
Cs = 1 for every s ∈ S. Then for the qWERA A′ = (S, S0, Sf , E, C) over K,
Σ and F we have ‖A′‖ = 1L. Thus, 1L is qWERA-recognizable over K and F
w.r.t. (U, g, C). ⊓⊔

Given timed series T , T1, T2 and k ∈ K, we define the sum T1 + T2, the Hadamard
product T1 ⊙ T2 and the scalar products k · T and T · k pointwise, i.e., by (T1 +
T2, w) = (T1, w) + (T2, w), (T1 ⊙ T2, w) = (T1, w) · (T2, w), (k · T , w) = k · (T , w)
and (T · k, w) = (T , w) · k respectively. If K is the Boolean semiring, then +
and ⊙ correspond to the union and intersection of timed languages, respectively.
Let π : Γ → ∆ be a renaming and T : TΓ+ → K a timed series. We define
the renaming π̄(T ) : T∆+ → K of T by (π̄(T ), u) =

∑
π(w)=u(T , w) for all

u ∈ T∆+. Notice that the sum in the equation is finite. A renaming π̄ is valid
w.r.t. (U, g, C) if the underlying renaming π is valid w.r.t. (U, g, C). For the
timed series T : T∆+ → K we define the inverse renaming π̄−1(T ) : TΓ+ → K
by (π̄−1(T ), w) = (T , π(w)) for each w ∈ TΓ+. An inverse renaming π̄−1 is valid
w.r.t. (U, g, C) if the underlying renaming π is valid w.r.t. (U, g, C).

Later in the paper, we need closure properties of qERA-recognizable timed
series under these operations. We will show that sum, scalar products and
valid (inverse) renamings preserve recognizability of timed series. In contrast
to this, in general both qWERA- and WERA-recognizable timed series are not
closed under the Hadamard product. We illustrate this in the next example for
WERA-recognizable timed series, but notice that the same holds for qWERA-
recognizable timed series.

Example 1. Let K = (R≥0∪{∞},min,+,∞, 0), Σ = {a} and F be the family of
linear functions of the form C : R≥0 → R≥0. We define two WERA Ai over K, Σ
and F for each i = 1, 2 by Ai = ({pi, qi}, {pi}, {qi}, {(pi, a, true, qi)}, Ci) with
CiE((pi, a, true, qi)) = 0, Ciqi arbitrary, C1

p1(δ) = 2 · δ and C2
p2(δ) = 3 · δ for each

δ ∈ R≥0. Let w ∈ TΣ+. If w 6= (a, t) for some t ∈ R≥0, then (‖Ai‖, w) = 0 for
each i = 1, 2 and thus (‖A1‖⊙ ‖A2‖, w) = 0. So let w = (a, t) for some t ∈ R≥0.
Then we have (‖A1‖ ⊙ ‖A2‖, w) = 2 · t+ 3 · t = 5 · t. Clearly, this timed series is
WERA-recognizable over the family of linear functions. If K and F are as above,

5



for building a WERA recognizing the Hadamard product of the behaviours of
two given WERA, we can use the usual product automaton construction together
with defining a cost function such that the cost of each edge and location equals
the pointwise product of the costs of the two corresponding edges and locations
in the original WERA. This can be done since the pointwise product of each
pair of linear functions is a linear function and thus in F . However, this is not
always the case. For instance, assume that Ai are WERA over the semiring
(R≥0,+, ·, 0, 1). Then, we have (‖A1‖ ⊙ ‖A2‖, w) = 2 · t · 3 · t = 6 · t2. It can be
easily seen that there is no WERA A over the family F of linear functions such
that ‖A‖ = ‖A1‖ ⊙ ‖A2‖.

For this reason, we define the notion of non-interfering timed series. So for i =
1, 2, let Ai = (Si, Si0, S

i
f , E

i, Ci) be two qWERA over K, Σ and F for some Σ ⊆

U . We say that A1 and A2 are non-interfering if for all pairs (s1, s2) ∈ S
1 × S2,

whenever there is a run from (s1, s2) into S1
f × S

2
f , then C1

s1 = 1 or C2
s2 = 1.

Observe that this implies C1
s1 ⊙ C2

s2 ∈ F . This enables us to use a product
automaton construction for building a qWERA over K, Σ and F recognizing
‖A1‖ ⊙ ‖A2‖. Also notice that the premise of the condition is decidable for the
whole class of weighted timed automata including qWERA [2]. Two timed series
T1, T2 : TU+ → K are non-interfering over K and F w.r.t. (U, g, C) if there are
qWERA A1 and A2 over K, Σ and F for some Σ ⊆ U such that ‖Ai‖ = Ti for
i = 1, 2 and A1 and A2 are non-interfering.

Lemma 2. 1. If for all f1, f2 ∈ F we have f1 ⊙ f2 ∈ F , then qWERA-
recognizable timed series over K and F w.r.t. (U, g, C) are closed under ⊙.

2. If T1 and T2 are non-interfering over K and F w.r.t. (U, g, C), then T1 ⊙T2
is qWERA-recognizable over K and F w.r.t. (U, g, C).

Proof. We show the proof for 2. Let T1, T2 : TU+ → K be two non-interfering
series over K and F w.r.t. (U, g, C). By definition, there exist two qWERA
Ai = (Si, Si0, S

i
f , E

i, Ci) (i = 1, 2) over K, Σ and F for some Σ ⊆ U such that

Ai = Ti for i = 1, 2 and A1 and A2 are non-interfering. Define S′ = {(s1, s2) ∈
S1 × S2|Cs1 6= 1 and Cs2 6= 1} and put A = (S, S0, Sf , E, C), where

– S = (S1 × S2)\S′

– S0 = (S1
0 × S

2
0)\S′

– S0 = (S1
f × S

2
f )\S

′

– ((s1, s2), a, φ1 ∧ φ2, (s
′
1, s

′
2)) ∈ E iff (s1, a, φ1, s

′
1) ∈ E

1, (s2, a, φ2, s
′
2) ∈ E

2

and (s1, s2), (s
′
1, s

′
2) 6∈ S

′

– CE(((s1, s2), a, φ1 ∧ φ2, (s
′
1, s

′
2))) = C1

E((s1, a, φ1, s
′
1)) · C

2
E((s2, a, φ2, s

′
2))

– C(s1,s2) = C1
s1 ⊙ C

2
s2 for every (s1, s2) ∈ S.

Intuitively, A is the classical product automaton, but we remove all “bad” pairs
of locations both of whose cost functions do not equal 1. As a consequence,
we obtain C(p,q) ∈ F for every (p, q) ∈ S. The removing of “bad” pairs of
locations can be done since by assumption from every such pair there is no run
to S1

f × S
2
f anyway. Subsequently, we show that ‖A‖ = ‖A1‖ ⊙ ‖A2‖. We start
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by proving that there is a weight-preserving bijective correspondence between
the set of successful runs of A and the set of pairs of successful runs of A1

and A2. Let w ∈ TΣ+. Suppose there is a successful run r = (p0, q0)
a1,φ1
−→

(p1, q1)
a2,φ2
−→ ...

a|w|,φ|w|
−→ (p|w|, q|w|) of A on w. The construction of A implies

that there are edges e1i = (pi−1, ai, φ
1
i , pi) ∈ E

1 and e2i = (qi−1, ai, φ
2
i , qi) ∈ E

2

such that φ1
i ∧ φ

2
i = φi for every i ∈ {1, ..., |w|}. Hence, there are successful runs

r1 = p0
a1,φ

1
1−→ p1

a2,φ
1
2−→ ...

a|w|,φ
1
|w|

−→ p|w| and r2 = q0
a1,φ

2
1−→ q1

a2,φ
2
2−→ ...

a|w|,φ
2
|w|

−→ q|w| of
A1 and A2, respectively, on w. Using the definition of C and commutativity of K,
we obtain rwt(r) = rwt(r1)·rwt(r2). We can use the same lines of argumentation
to show that for every pair of successful runs of A1 and A2 on w, there is a
successful run of A on w such that the equation rwt(r) = rwt(r1) · rwt(r2) also
holds. Hence, we have established the weight-preserving bijective correspondence
mentioned above, which finally can be used to show ‖A‖ = ‖A1‖ ⊙ ‖A2‖. ⊓⊔

For the other operations, the proofs can be done similarly to the untimed setting.

Lemma 3. qWERA-recognizable timed series over K and F w.r.t. (U, g, C) are
closed under sum, scalar products, valid renamings and valid inverse renamings.

Proof. Sum. The proof can be done similarly to the untimed setting, see the
corresponding proof for weighted timed automata [12].

Scalar products Let T : TU+ → K be qWERA-recognizable over K and F w.r.t.
(U, f, C). Hence, there is a qWERA A over K, Σ and F for some Σ ⊆ U such
that ‖A‖ = T . Let k ∈ K. We define a qWERA Ak = (S, S0, Sf , E, C) over K,
Σ and F by

– S = {p1, p2}
– S0 = {p1}
– Sf = {p2}
– E = {(p1, a, true, p2), (p2, a, true, p2)|a ∈ Σ}
– CE(e) = k if e = (p1, a, true, p2) for some a ∈ Σ, CE(e) = 1 otherwise
– Cp = 1 for every p ∈ S

Let w ∈ TΣ+. Then there is exactly one sucessful run of Ak on w with a
running weight of k. Hence, ‖Ak‖ = k · 1TU+ . Now, since in general we have
k ·T = (k ·1TΣ+)⊙T , and the fact that Ak is non-interfering with every qWERA
over K, Σ and F , in particular with A, by Lemma 2 k ·T is qWERA-recognizable
over K and F w.r.t. (U, f, C).

Renamings Let Γ,∆ ⊆ U be finite and π : Γ → ∆ be a renaming valid w.r.t.
(U, f, C). Further, let A = (S, S0, Sf , E, C) be a qWERA over K, Γ and F .
Define E′ = {(s, π(a), π(φ), s′)|(s, a, φ, s′) ∈ E}, where π(φ) is obtained from φ
by replacing each event-recording clock variable xa by xπ(a). Now, define C′

E :
E′ → K by

C′
E((s, a′, φ′, s′)) =

∑

(s,a,φ,s′)∈E

π(a)=a′,π(φ)=φ′

CE((s, a, φ, s′))
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and put A′ = (S, S0, Sf , E
′, C′). Clearly, A′ is a qWERA over K, ∆ and F .

Next, we show that ‖A′‖ = π̄(‖A‖).

Let v ∈ T∆+ be of the form (b1, t1)...(bk, tk) and R be the set of successful
runs of A on w ∈ TΓ+ such that π(w) = v. Let r, r′ ∈ R be of the form

r = s0
a1,φ1
−→ ...

a|w|,φ|w|
−→ s|w| and r′ = s′0

a′1,φ
′
1−→ ...

a′|w|,φ
′
|w|

−→ s′|w|. We say that r

and r′ are equivalent, written r ≡ r′, if s0 = s′0, si = s′i and π(φi) = π(φ′i)
for 1 ≤ i ≤ |w|. Notice that π(ai) = π(a′i) = bi owing to the assumption that
r, r′ ∈ R. Intuitively, r ≡ r′ if the runs only differ in the labels or the clock
variables appearing in the clock constraints of an edge, provided that π maps
both of them to the same image. We use R/≡ to denote the set of all equivalence
classes induced by ≡. From the fact that ≡ induces a partition of R, we obtain

∑

w∈TΓ+

π(w)=v

(‖A‖, w) =
∑

X∈R/≡

∑

r∈X

rwt(r).

Next, let X ∈ R/≡ and r ∈ X be of the form r = s0
a1,φ1
−→ ...

a|w|,φ|w|
−→ s|w|. We

define rX to be the sequence that is obtained from r by replacing each edge ei =
(si−1, ai, φi, si) ∈ E by the corresponding edge e′i = (si−1, π(ai), π(φi), si) ∈ E

′,

obtaining the run rX = s0
π(a1),π(φ1)
−→ ...

π(a|w|),π(φ′
|w|)

−→ s|w|. In the following, we
show that rX is a successful run of A′ on v.

We start with proving γvi |= π(φi) for every i ∈ {1, ..., |w|}. Assume (xa ∼
c) ∈ φi for some i ∈ {1, ..., |w|}, a ∈ Γ , c ∈ N and ∼∈ {<,≤,=,≥, >}. Since
r is a run of A on w, we have γwi |= φi for each i ∈ {1, ..., |w|}. Hence there
exists some j such that 1 ≤ j < i with g(aj) = g(a) and ti − tj ∼ c, and for
all m with j < m < i, we have g(am) 6= g(a). By assumption, π is valid w.r.t.
(U, g, C). Thus we can infer g(π(aj)) = g(π(a)) and ti − tj ∼ c and we have
g(π(am)) 6= g(π(a)) for all m with j < m < i. But this immediately implies
γvi |= xπ(a) ∼ c. Since φi is a conjunction of clock constraints of the form xa ∼ c,
we obtain γvi |= π(φi) for every i ∈ {1, ..., |v|}. Hence, together with the fact
that we still have s0 ∈ S0 and s|w| ∈ Sf , it follows that rX is a successful run.
Moreover, the set of successful runs of A′ on v is precisely the set of such runs
rX for each X ∈ R/≡, i.e.,

(‖A′‖, v) =
∑

X∈R/≡

rwt(rX ),

where rX is the run of A′ on v obtained from an arbitrary run r ∈ R as described
above. Next, we show that for every X ∈ R/≡, rwt(rX ) =

∑
r∈X rwt(r), which,

with the help of the two equations above, leads us to the desired result. Let X ∈
R/≡ and r ∈ X as above. Then, the following equation holds by distributivity
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of K:

rwt(rX ) =
∏

1≤i≤|v|

(C′
si−1

(ti − ti−1) · C
′
E(e′i))

=
∏

1≤i≤|v|

(Csi−1 (ti − ti−1) ·
∑

(s,a,φ,s′)∈E

π(a)=a′
i
,π(φ)=φ′

i

CE((s, a, φ, s′)))

=
∑

(s,a,φ,s′)∈E

π(a)=a′
i
,π(φ)=φ′

i

∏

1≤i≤|v|

(Csi−1 (ti − ti−1) · CE((s, a, φ, s′))

=
∑

r∈X

rwt(r)

Hence, (‖A′‖, v) =
∑

X∈R/≡
rwt(rX ) =

∑
X∈R/≡

∑
r∈X rwt(r) =∑

w∈T Γ+

π(w)=v

(‖A‖, w), and thus ‖A′‖ = π̄(‖A‖).

Inverse Renamings Let Γ,∆ ⊆ U be finite and π : Γ → ∆ be a renaming
valid w.r.t. (U, f, C). Further, let A = (S, S0, Sf , E, C) be a qWERA over K,
∆ and F . Define E′ = {(s, a, φ, s′)|(s, π(a), π(φ), s′) ∈ S} and C′

E((s, a, φ, s′)) =
CE((s, π(a), π(φ), s′)). Then, one can easily check that the behaviour of the qW-
ERAA′ = (S, S0, Sf , E

′, C′) overK, Γ andF precisely corresponds to π̄−1(‖A‖).
⊓⊔

Finally, we investigate closure properties of non-interfering timed series.

Lemma 4. Let T1, T2, T3 be pairwise non-interfering over K and F w.r.t.
(U, f, C). Then the following holds:

1. T1 + T2 and T3 are non-interfering over K and F w.r.t. (U, f, C).
2. T1 ⊙ T2 and T3 are non-interfering over K and F w.r.t. (U, f, C).

Proof. We give the proof for 2. Let T1, T2, T3 be pairwise non-interfering over K
and F w.r.t. (U, f, C). Then, there are qWERA A1, A2 and A3 over K, Γ and
F for some Γ ⊆ U such that ‖Ai‖ = Ti for each i ∈ {1, 2, 3} and Ai and Aj

are non-interfering for each i, j ∈ {1, 2, 3} such that i 6= j. So let A1,2 be the
qWERA recognizing T1⊙T2 (see the proof of Lemma 2). Now assume there is a
location (s1, s2) in A1,2 and s3 in A3 such that C(s1,s2) 6= 1 and Cs3 6= 1 and in
the product qWERA of A1,2 and A3 there is a successful run from ((s1, s2), s3).

Let this successful run be of the form ((s1, s2), s3)
a1,φ1
−→ ...

an,φn
−→ ((s1n, s

2
n), s

3
n)

(for some n ∈ N). By construction of the product qWERA, there must also be

successful runs (s1, s2)
a1,φ

1,2
1−→ ...

an,φ
1,2
n−→ (s1n, s

2
n) in A1,2 and s3

a1,φ
3
1−→ ...

an,φ
3
n−→ s3n in

A3 such that φ1,2
i ∧ φ

3
i = φi for each i ∈ {1, ..., n}. Since C(s1,s2) 6= 1, we must

have either Cs1 6= 1 or Cs2 6= 1. Without loss of generality, we assume Cs1 6= 1.
Again, by construction of the product qWERA, there must be a successful run

s1
a1,φ

1
1−→ ...

an,φ
1
n−→ s1n in A1. But then, there is also a successful run of the product

qWERA A1,3 recognizing T1 ⊙ T3 of the form (s1, s3)
a1,φ

1,3
1−→ ...

an,φ
1,3
n−→ (s1n, s

3
n),
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where φ1,3
i = φ1

i ∧ φ
3
i for each i ∈ {1, ..., n}. However, we also have Cs1 6= 1 and

Cs3 6= 1, which contradicts the assumption that A1 and A3 are non-interfering.
Thus, A1,2 and A3 must be non-interfering. ⊓⊔

2 Weighted Timed MSO Logic

Next, we introduce a weighted timed MSO logic for specifying properties of timed
series. Our logic is an extension of the logic MSOer(Σ) introduced by D’Souza for
characterizing the behaviour of event-recording automata [15], which we briefly
recall here. Formulas of MSOer(Σ) are built inductively from atomic formulas
Pa(x), x = y, x < y, x ∈ X , ⊳a(x) ∼ c using the connectives ∨, ¬, ∃x. and ∃X.,
where x, y are first-order variables, X is a second-order variable, a ∈ Σ, c ∈ N
and ∼∈ {<,≤,=,≥, >} or (∼ c) = (= ⊥). As usual, we may also use →, ↔,
∧, ∀x. and ∀X. as abbreviations. Formulas of MSOer(Σ) are interpreted over
timed words. For this, we associate with w = (a1, t1)...(ak, tk) the relational
structure consisting of the domain dom(w) together with the unary relations
Pa = {i ∈ dom(w)|ai = a} and ⊳a(.) ∼ c = {i ∈ dom(w)|γwi (xa) ∼ c} as well as
the usual < and = relations on dom(w). Now, for ϕ ∈ MSOer(Σ), let Free(ϕ)
be the set of free variables, V ⊇ Free(ϕ) be a finite set of first- and second-order
variables, and σ be a (V , w)-assignment mapping first-order (second-order, resp.)
variables to elements (subsets, resp.) of dom(w). For i ∈ dom(w), we let σ[x→ i]
be the assignment that maps x to i and agrees with σ on every variable V\{x}.
Similarly, we define σ[X → I] for any I ⊆ dom(w). A timed word (ā, t̄) and a
(V , (ā, t̄))-assignment σ is encoded as timed word over the extended alphabetΣV .
A timed word over ΣV is written as ((ā, σ), t̄), where ā is the projection over Σ
and σ is the projection over {0, 1}V. Then, σ represents a valid assignment over V
if for each first-order variable x ∈ V , the x-row of σ contains exactly one 1. In this
case, σ is identified with the (V , (ā, t̄))-assignment such that for every first-order
variable x ∈ V , σ(x) is the position of the 1 in the x-row, and for each second-
order variable X ∈ V , σ(X) is the set of positions with a 1 in the X-row. We
define NV = {((ā, σ), t̄) ∈ T (ΣV)+|σ is a valid (V , (ā, t̄))-assignment}. The def-
inition that ((ā, σ), t̄) satisfies ϕ, written ((ā, σ), t̄) |= ϕ, is as usual. We let
LV(ϕ) = {((ā, σ), t̄) ∈ NV |((ā, σ), t̄) |= ϕ}. The formula ϕ defines the timed lan-
guage L(ϕ) = LFree(ϕ)(ϕ). A timed language L ⊆ TΣ+ is MSOer(Σ)-definable
if there exists a sentence ϕ ∈MSOer(Σ) such that L(ϕ) = L.

Theorem 1. [15] A timed language L ⊆ TΣ+ is MSOer(Σ)-definable if and
only if L is ERA-recognizable over Σ. If ϕ ∈ MSOer(Σ), then L(ϕ) is qERA-
recognizable w.r.t. (U, f, C).

Now, we turn to the weighted logic MSOer(K, Σ,F), defined inductively as fol-
lows. The atomic formulas are formulas of the form Pa(x), x = y, x < y, x ∈ X ,
⊳a(x) ∼ c and their negations, where x, y,X, a, c,∼ are as above. Additionaly, we
define weighted atomic formulas to be formulas of the form k and Cf (x), where
k ∈ K and f ∈ F . Complex formulas can be built from atomic and weighted
atomic formulas using the connectives ∧, ∨, ∃x., ∀x., ∃X. and ∀X . Notice that
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we only allow to apply negation to atomic formulas. This is because for arbi-
trary semirings it is not clear what the negation of a weighted atomic formula
should mean. Let ϕ ∈ MSOer(K, Σ,F) and V ⊇ Free(ϕ). The V-semantics of
ϕ is a timed series [[ϕ]]V : T (ΣV)+ → K. Let (ā, t̄) ∈ TΣ+. If σ is a valid
(V , (ā, t̄))-assignment, [[ϕ]]V ((ā, σ), t̄) ∈ K is defined inductively as follows:

[[ϕ]]V ((ā, σ), t̄) = 1LV(ϕ)((ā, σ), t̄) if ϕ is atomic

[[k]]V((ā, σ), t̄) = k

[[Cf (x)]]V((ā, σ), t̄) = f(tσ(x) − tσ(x)−1)

[[ϕ ∨ ϕ′]]V((ā, σ), t̄) = [[ϕ]]V ((ā, σ), t̄) + [[ϕ′]]V((ā, σ), t̄)

[[ϕ ∧ ϕ′]]V((ā, σ), t̄) = [[ϕ]]V ((ā, σ), t̄) · [[ϕ′]]V((ā, σ), t̄)

[[∃x.ϕ]]V((ā, σ), t̄) =
∑

i∈dom((ā,t̄))

[[ϕ]]V∪{x}((ā, σ[x→ i]), t̄)

[[∀x.ϕ]]V((ā, σ), t̄) =
∏

i∈dom((ā,t̄))

[[ϕ]]V∪{x}((ā, σ[x→ i]), t̄)

[[∃X.ϕ]]V((ā, σ), t̄) =
∑

I⊆dom((ā,t̄))

[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

[[∀X.ϕ]]V((ā, σ), t̄) =
∏

I⊆dom((ā,t̄))

[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

For σ not a valid (V , (ā, t̄))-assignment, we define [[ϕ]]V ((ā, σ), t̄) = 0. We write
[[ϕ]] for [[ϕ]]Free(ϕ). We say that two formulas ϕ and ψ are equivalent, written
ϕ ≡ ψ, if [[ϕ]] = [[ψ]].

Remark 2. If we let K be the Boolean semiring, then MSOer(K, Σ,F) corre-
sponds to MSOer(Σ) as every formula in MSOer(Σ) is equivalent to a formula
where negation is applied to atomic subformulas only. Also, every such formula
ϕ ∈ MSOer(Σ) can be seen to be a formula of our logic.

Example 2. Consider the formula ϕ = ∃x. ⊳a (x) < 2 and let w =
(a, 1.7)(b, 3.0)(a, 3.6)(a, 6.0). If we interpret ϕ as an MSOer(K, Σ,F)-formula
over the Boolean semiring or, equivalently, as an MSOer(Σ)-formula, we have
[[ϕ]](w) = 1. If on the other hand, we let K be the semiring over the natural
numbers with ordinary addition and multiplication, we have [[ϕ]](w) = 2, i.e., we
count the number of positions i in w where γwi (xa) < 2 is satisfied. Counting
how often a certain property holds gives rise to interesting applications in the
field of verification.

Let L ⊆ MSOer(K, Σ,F). A timed series T : TΣ+ → K is called L-definable
if there is a sentence ϕ ∈ L such that [[ϕ]] = T . The goal of this paper is to
find a suitable fragment L of MSOer(K, Σ,F) such that L-definable timed series
precisely correspond to WERA-recognizable timed series over K, Σ and F , i.e.,
we want to generalize Theorem 1 to the weighted setting. It is not surprising
that MSOer(K, Σ,F) does not constitute a suitable candidate for L since this is
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already not the case in the untimed setting [10]. In the next section, we explain
the problems that occur when we do not restrict the logic and step by step
develop solutions resulting in the logic sRMSOer(K, Σ,F) for which we are able
to give the following Büchi-type theorem.

Theorem 2. A timed series T : TΣ+ → K is WERA-recognizable over K, Σ
and F if and only if T is definable by some sentence in sRMSOer(K, Σ,F). The
respective transformations can be done effectively provided that the operations of
K and F are given effectively.

3 From Logic To Automata

In this section, we want to prove the direction from right to left in Theorem 2
and show that for every sentence ϕ of our weighted timed MSO logic, [[ϕ]] is a
WERA-recognizable timed series. We do this similarly to the corresponding proof
for the classical setting [27], i.e., by induction over the structure of the logic. As
already mentioned, due to the non-closure of WERA-recognizable timed series
under renaming operations, we adopt the approach proposed by D’Souza [15]
and work with qWERA rather than WERA. However, in the last step, when
there are no free variables left, we will see that the resulting qWERA is nothing
else than a WERA.

Let n ∈ N\{0}. We define Σ(n) = Σ × {1, ..., n}. Similarly to timed words
over an extended alphabets of the form ΣV for some finite set of variables V ,
we write ((ā, µ), t̄) to denote a timed word over Σ(n), where (ā, t̄) ∈ TΣ+ and
µ ∈ {1, ..., n}dom((ā,t̄)). We let (U, g, C) such that U contains all elements of
Σ, ΣV , Σ(n) and (Σ(n))V for every finite set of variables V and every n ∈N\{0}, respectively, and C = Σ. The function f , restricted to Σ,ΣV , Σ(n) and
(Σ(n))V , maps every a ∈ Σ, (a, σ) ∈ ΣV , (a, µ) ∈ Σ(n) and (a, µ, σ) ∈ (Σ(n))V ,
respectively, to a.

For the induction base, we show that for every atomic formula ϕ in
MSOer(K, Σ,F) there is a qWERA over K and F w.r.t. (U, f,Σ) recognizing
[[ϕ]]. For ϕ of the form Pa(x), x = y, x < y, x ∈ X and its negations, this can
be done as in the classical setting [27]. For instance, for ϕ = Pa(x) the idea
is to construct a qWERA over K, the extended alphabet Σ{x} and F that (1)
verifies that whenever there is a 1 on the x-row, then an a must be read and
(2) assigns to all edges weight 1 and all locations the cost function 1. This idea
can easily be extended to the remaining atomic formulas of our logic (see Fig.2).
For ϕ = ⊳a(x) ∼ c, we build a qWERA that verifies that whenever an edge is
labeled by a 1 in the x-row, the time distance to the last event that is mapped
by f to a satisfies ∼ c. We do this by adding a corresponding guard to this edge.
Similarly to the untimed setting, all edges are assigned 1 and all location cost
functions equal 1. The qWERA recognizing the timed series [[k]] has already been
described formally in the proof of Lemma 3. For ϕ = Cf (x), the qWERA verifies
that whenever an edge is labeled with a 1 in the x-row, the source location of
this edge must be assigned the cost function f . All the other locations must have
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the cost function 1. The qWERA recognizing the semantics of the negations of
these formulas can be constructed in a similar way.
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Figure 2. qWERA with behaviours [[⊳a(x) ∼ c]], [[k]] and [[Cf (x)]]

For the induction step, we need to show closure properties of qWERA-
recognizable timed series under the constructs of the logic. For disjunction and
existential quantification, we give proofs very similar to the classical case [26, 10,
11]. Before, we need to show that for each formula ϕ of our logic, the semantics
for every finite set V of variables containing Free(ϕ) are consistent with each
other.

Lemma 5. Let ϕ ∈ MSOer(K, Σ,F) and V a finite set of variables containing
Free(ϕ). Then

[[ϕ]]V ((ā, σ), t̄) = [[ϕ]]((ā, σ|Free(ϕ)), t̄)

for each ((ā, σ), t̄) ∈ T (ΣV)+ such that σ is a valid (V , (ā, t̄))-assignment. In
particular, [[ϕ]] is qWERA-recognizable over K and F w.r.t. (U, f,Σ) if and only
if [[ϕ]]V is qWERA-recognizable over K and F w.r.t. (U, f,Σ).

Proof. The first claim can be shown by induction on the structure of
MSOer(K, Σ,F). For the second claim, let ϕ ∈MSOer(K, Σ,F) and V ⊇ Free(ϕ)
be a finite set of variables. Consider the projection π : ΣV → ΣFree(ϕ) : (a, σ) 7→
(a, σ|Free(ϕ)) and notice that this is a valid renaming w.r.t. (U, f,Σ). First, as-
sume that [[ϕ]] is qWERA-recognizable over K and F w.r.t. (U, f,Σ). One can
show that [[ϕ]]V = π̄−1([[ϕ]]) ⊙ 1NV . Recall that NV is qERA-recognizable w.r.t.
(U, f,Σ), and thus, by Lemma 1, 1NV is qWERA-recognizable over K and F
w.r.t. (U, f,Σ). Also, by Lemma 3, π̄−1([[ϕ]]) is qWERA-recognizable over K
and F w.r.t. (U, f,Σ). Furthermore, all the conditions for applying Lemma 2 are
satisfied, and thus, [[ϕ]]V is qWERA-recognizable over K and F w.r.t. (U, f,Σ).

Conversely, let [[ϕ]]V be qWERA-recognizable over K and F w.r.t. (U, f,Σ).
Define F = {((ā, σ), t̄) ∈ T (ΣV)+|∀x,X ∈ V\Free(ϕ).σ(x) = 1, σ(X) =
1}. Clearly, F is qERA-recognizable w.r.t. (U, f,Σ). Furthermore, for each
((ā, σ′), t̄) ∈ T (ΣFree(ϕ))

+ there is a unique ((ā, σ), t̄) ∈ F such that
π(((ā, σ), t̄)) = ((ā, σ′), t̄). Then, we obtain [[ϕ]] = π([[ϕ]]V ⊙ 1F ). Hence, by
Lemmas 1, 2 and 3, [[ϕ]] is qWERA-recognizable over K and F w.r.t. (U, f,Σ).

⊓⊔

Lemma 6. Let ϕ, ψ ∈ MSOer(K, Σ,F). If [[ϕ]] and [[ψ]] are qWERA-recognizable
over K and F w.r.t. (U, f,Σ), then [[ϕ ∨ ψ]] is qWERA-recognizable over K and
F w.r.t. (U, f,Σ).

13



Proof. Let [[ϕ]] and [[ψ]] be qWERA-recognizable over K and F w.r.t. (U, f,Σ).
Since Free(ϕ ∨ ψ) = Free(ϕ) ∪ Free(ψ) and thus Free(ϕ) ⊆ Free(ϕ ∨ ψ), we can
apply Lemma 5 and conclude that [[ϕ]]Free(ϕ∨ψ) is qWERA-recognizable over
K and F w.r.t. (U, f,Σ). The same holds for [[ψ]]Free(ϕ∨ψ). The semantics of
MSOer(K, Σ,F) produce the following equation:

[[ϕ ∨ ψ]] = [[ϕ ∨ ψ]]Free(ϕ∨ψ)

= [[ϕ]]Free(ϕ∨ψ) + [[ψ]]Free(ϕ∨ψ)

By Lemma 3, [[ϕ ∨ ψ]] is qWERA-recognizable over K and F w.r.t. (U, f,Σ). ⊓⊔

Lemma 7. Let ϕ ∈ MSOer(K, Σ,F). If [[ϕ]] is qWERA-recognizable over K and
F w.r.t. (U, f,Σ), then [[∃x.ϕ]] and [[∃X.ϕ]] are qWERA-recognizable over K and
F w.r.t. (U, f,Σ).

Proof. Let ϕ ∈ MSOer(K, Σ,F) be such that [[ϕ]] is qWERA-recognizable over
K and F w.r.t. (U, f,Σ). Here, we show that [[∃X.ϕ]] is qWERA-recognizable
over K and F w.r.t. (U, f,Σ). Let V = Free(∃X.ϕ). Consider the projection
π : ΣV∪{X} → ΣV which erases the X-row. Notice that π is valid w.r.t. (U, f,Σ).
In the following, with π̄ we denote the extension of π to timed series as defined
above.

First, we will show that the projection π̄ on [[ϕ]] equals [[∃X.ϕ]]. Then, we use
Lemma 5 and Lemma 3 to conclude that [[∃X.ϕ]] is qWERA-recognizable.

Let ((ā, σ), t̄) ∈ T (ΣV)+. By definition of π̄, we obtain

(
π̄([[ϕ]]V∪{X}), ((ā, σ), t̄)

)
=

∑

((ā,σ′),t̄)∈T (ΣV∪{X})+

π(((ā,σ′),t̄))=((ā,σ),t̄)

(
[[ϕ]]V∪{X}((ā, σ

′), t̄)
)

However, using the equivalences

π(((ā, σ′), t̄)) = ((ā, σ), t̄) iff σ′ = σ[X → I] for some I ⊆ dom((ā, t̄))

and

σ is a valid (V , (ā, t̄)) iff σ[X → I] is a valid (V ∪ {X}, (ā, t̄))

-assignment for every I ⊆ {1, ..., |w|},

we obtain

=
∑

I⊆dom((ā,t̄))

(
[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

)

= [[∃X.ϕ]]V((ā, σ), t̄)

Now, as [[ϕ]] is qWERA-recognizable over K and F w.r.t. (U, f,Σ), we obtain
qWERA-recognizability over K and F w.r.t. (U, f,Σ) of [[ϕ]]V∪{X} by Lemma 5.
By Lemma 3, π̄([[ϕ]]V∪{X}) is qWERA-recognizable overK and F w.r.t. (U, f,Σ),
which finishes the proof. ⊓⊔
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Altogether, the proofs for disjunction and existential quantification are very
similar to the corresponding proofs for the classical setting. However, we will see
that for the remaining operators of our logic, we cannot give such easy extensions
of the classical proofs.

First of all, in Sect.1 we have seen that recognizable timed series in general
are not closed under the Hadamard product. Since the semantics of conjunc-
tion is defined using the Hadamard product, we have to restrict the usage of
conjunction. More precisely, we either have to require that F is such that for
all f1, f2 ∈ F we have f1 ⊙ f2 ∈ F , or we have to formulate a syntactical re-
striction implying that whenever two formulas ϕ1 and ϕ2 are combined by a
conjunction, then [[ϕ1]] and [[ϕ2]] are non-interfering. We make the following ob-
servations. Consider the formula Cf1 (x1)∧Cf2(x2) and let Ai be a WERA such
that ‖Ai‖ = [[Cfi(xi)]] for each i = 1, 2 (see Fig.2). We use s1 (s2, resp.) to
denote the location in A1 (A2, resp.) with cost function f1 (f2, resp.). We want
to enforce that in the product automaton of A1 and A2, from the pair (s1, s2)
there is no run to a final location. This is the case if from s1 and s2 no common
letter can be read. Observe that from s1 (s2, resp.) every outgoing edge is labeled
with (a, σ) such that σ(x1) = 1 (σ(x2) = 1, resp.) for every a ∈ Σ. Hence, in
the product automaton every edge from (s1, s2) must be labeled with a letter
of the form (a, σ) such that σ(x1) = σ(x2) = 1 for every a ∈ Σ. By requiring
x1 and x2 to refer to different positions in a timed word, we can exclude that
reading a letter of this form leads to a final location. This is done by conjoining
the formula above with ¬(x1 = x2).

Lemma 8. Let ϕ1, ϕ2 ∈ MSOer(K, Σ,F) such that [[ϕ1]] and [[ϕ2]] are qWERA-
recognizable over K and F w.r.t. (U, f, C). Assume that whenever ϕ1 contains
the subformula Cf1(x1) and ϕ2 contains Cf2(x2), then x1, x2 are free in both
ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the form ψ ∧ ¬(x1 = x2) for some ψ ∈
MSOer(K, Σ,F). Then [[ϕ1]] and [[ϕ2]] are non-interfering over K and F w.r.t.
(U, f, C).

Proof. The proof is rather technical and we only present a sketch of it. Let
ϕ1, ϕ2 ∈ MSOer(K, Σ,F) such that [[ϕ1]] and [[ϕ2]] are qWERA-recognizable
over K and F w.r.t. (U, f, C). Assume that whenever ϕ1 contains the subformula
Cf1(x1) and ϕ2 contains Cf2(x2), then x1, x2 are free in both ϕ1 and ϕ2, and
either ϕ1 or ϕ2 is of the form ψ ∧ ¬(x1 = x2) for some ψ ∈ MSOer(K, Σ,F).

Assume ϕ2 is of the form Cf2 (x2). Let ϕ1 be one of the formulas k, Pa(x),
x = y, x < y or its negation. Then [[ϕ1]] is recognizable by a qWERA over K, Γ
and F for some Γ ⊆ U such that for all locations s we have Cs = 1. Thus [[ϕ1]] is
non-interfering with every qWERA-recognizable timed series, in particular with
[[ϕ2]].

Now let ϕ1 = Cf1 (x1) ∧ ¬(x1 = x2). In Fig.3, we show the qWERA A1 and
A2 recognizing [[ϕ1]] and [[ϕ2]], respectively, both over the extended alphabet
Σ{x1,x2}.
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1 f1 11 1 f1 11 f1 1 1
1 f2 11 f2 11 1 f2 11 f2 1 1

Fig. 3. qWERA over Σ{x1,x2} with behaviours [[Cf1 (x1) ∧ ¬(x1 = x2)]] and [[Cf2(x2)]]
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Clearly, A1 and A2 are non-interfering: from each location s1 in A1 such that
C1
s1 = f1 there are only edges labeled with (a, 1, 0) for every a ∈ Σ, whereas

from every location s2 in A2 such that C2
s2 = f2 there are only edges labeled

with either (a, 1, 1) or (a, 0, 1) for every a ∈ Σ. Hence, in the product automaton
of A1 and A2, there is no successful run starting in (s1, s2).

Now assume ϕ1 = ψ1 ∧ ψ2 such that both [[ψ1]] and [[ψ2]] are non-interfering
over K and F w.r.t. (U, f,Σ) with [[ϕ2]]. Then by Lemma 4 [[ψ1 ∧ ψ2]] is non-
interfering with [[ϕ2]], too. The same applies if ϕ1 = ψ1 ∨ ψ2. Now observe that
if ϕ1 = ∃x.ψ or ϕ1 = ∀x.ψ such that [[ψ]] is non-interfering with [[ϕ2]], we must
have x 6= x1, x2. This implies that the qWERA recognizing [[ϕ1]] and [[ϕ2]] do not
change in the crucial parts that we used for proving non-interference. The same
holds for ϕ1 to be of the form ∀X.ψ or ∃X.ψ. ⊓⊔

Lemma 9. Let ϕ1, ϕ2 ∈ MSOer(K, Σ,F) such that [[ϕ1]] and [[ϕ2]] are qWERA-
recognizable over K and F w.r.t. (U, f, C). Assume that whenever ϕ1 contains
the subformula Cf1(x1) and ϕ2 contains Cf2(x2), then x1, x2 are free in both
ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the form ψ ∧ ¬(x1 = x2) for some ψ ∈
MSOer(K, Σ,F). Then [[ϕ1 ∧ ϕ2]] is qWERA-recognizable over K and F w.r.t.
(U, f, C).

Proof. The proof can be done similarly to the proof of Lemma 6 using Lemmas
8 and 2. ⊓⊔

Besides conjunction, we have problems with universal quantification. Examples
show that unrestricted application of ∀x. and ∀X. do not preserve recognizability.
For instance, let K = (N,+, ·, 0, 1) be the semiring of the natural numbers and F
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be the family of constant functions. We consider the formula ϕ = ∀y.∃x.C1(x).
Then we have [[ϕ]](w) = |w||w|. However, this cannot be recognized by any qW-
ERA over K and F as this timed series grows too fast (see [10] for a detailed
proof which can also be applied to the timed setting). Similar examples can be
given for ∀X . Hence, we need to restrict both the usage of ∀x. and ∀X. in our
logic. We adopt the approach of Droste and Gastin [11].

For dealing with ∀X., the idea is to restrict the application of ∀X. to so-
called syntactically unambiguous formulas. These are formulas ϕ ∈ MSOer(Σ)
such that - even though interpreted over a semiring - the semantics [[ϕ]] of ϕ
always equals 0 or 12. We define the set of syntactically unambiguous formulas
ϕ+ and ϕ− for ϕ ∈MSOer(Σ) inductively as follows:

1. If ϕ is of the form Pa(x), x < y, x = y, x ∈ X , ⊳a(x) ∼ c, then ϕ+ = ϕ and
ϕ− = ¬ϕ.

2. If ϕ = ¬ψ then ϕ+ = ψ− and ϕ− = ψ+.
3. If ϕ = ψ ∨ ζ then ϕ+ = ψ+ ∨ (ψ− ∧ ζ+) and ϕ− = ψ− ∧ ζ−

4. If ϕ = ∃x.ψ then ϕ+ = ∃x.ψ+ ∧ ∀y.(y < x ∧ ψ(y))− and ϕ− = ∀x.ψ−

5. If ϕ = ∃X.ψ then ϕ+ = ∃X.ψ+ ∧ ∀Y.(Y < X ∧ ψ(Y ))− and ϕ− = ∀X.ψ−

where X < Y = ∃y.y ∈ Y ∧ ¬(y ∈ X) ∧ ∀z.[z < y −→ (z ∈ X ←→ z ∈ Y )]+.
Notice that for each ϕ ∈MSOer(Σ) we have [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).

Lemma 10. Let ϕ be a syntactically unambiguous formula. Then [[ϕ]] is
qWERA-recognizable over K and F w.r.t. (U, f,Σ).

Proof. Let ϕ be syntactically unambiguous. Hence, ϕ is of the form ψ+ or ψ− for
some ψ ∈MSOer(Σ). So assume that ϕ = ψ+ for some ψ ∈ MSOer(Σ). Then, we
have [[ψ+]] = 1L(ψ). By Theorem 1, L(ψ) is qERA-recognizable w.r.t. (U, f,Σ).
But then Lemma 1 implies that [[ψ+]] is qWERA-recognizable over K and F
w.r.t. (U, f,Σ). Now let ϕ be of the form ψ− for some ψ ∈ MSOer(Σ). Then, we
have (ψ)− = (¬ψ)+ and thus we can reduce this case to the case above. ⊓⊔

Corollary 1. Let ϕ be syntactically unambiguous. Then [[∀X.ϕ]] is qWERA-
recognizable over K and F w.r.t. (U, f,Σ).

Proof. Let ϕ be syntactically unambiguous. Hence, ϕ is of the form ψ+ or ψ−

for some ψ ∈ MSOer(Σ). So assume that ϕ = ψ+ for some ψ ∈ MSOer(Σ).
Then, we have ∀X.ψ+ ≡ ∀X.(¬ψ)− ≡ (∃X.¬ψ)− ≡ (¬∃X.¬ψ)+ ≡ (∀X.ψ)+.
Hence, ∀X.ϕ is syntacically unambiguous. By Lemma 10, [[∀X.ψ]] is qWERA-
recognizable over K and F w.r.t. (U, f,Σ). If ϕ = ψ−, we have (ψ)− ≡ (¬ψ)+

and thus we can reduce this case to the case above. ⊓⊔

Next, we explain how to deal with ∀x. The approach used by Droste and
Gastin [11] is to restrict the subformula ϕ in ∀x.ϕ to so-called almost unambigu-
ous formulas. Formulas of this kind can be transformed into equivalent formulas

2 Recall that every MSOer(Σ)-formula can also be seen as an MSOer(K, Σ,F)-formula
and may have a semantics different from 0 or 1; see e.g. Ex. 2
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of the form
∨

1≤i≤n ki ∧ ψ
+
i for some n ∈ N, ki ∈ K and ψi ∈ MSO(Σ) for each

i ∈ {1, ..., n}. One can easily see that the series corresponding to the semantics
of such a formula has a finite image. Moreover, closure properties of recognizable
series under sum, Hadamard- and scalar products can be used to prove that the
semantics of such a formula is recognizable by a weighted automaton. Finally,
this particular form of the formula is the base of an efficient construction of a
weighted automaton recognizing [[∀x.ϕ]]. Here, we use a very similar approach.
However, we have to redefine the notion of almost unambiguous formulas a bit
in order to include subformulas of the form Cf (x).

Let x be a first-order variable. We say that a formula ϕ is almost unam-
biguous over x if it is in the disjunctive and conjunctive closure of syntactically
unambiguous formulas, constants k ∈ K and formulas Cf (x) (for f ∈ F), such
that Cf (x) may appear at most once in every subformula of ϕ of the form ϕ1∧ϕ2.

Lemma 11. Let x be a first-order variable and ϕ ∈ MSOer(K, Σ,F) be almost
unambiguous over x. Then [[ϕ]] is qWERA-recognizable over K and F w.r.t.
(U, f,Σ).

Proof. Let x be a first-order variable and ϕ ∈ MSOer(K, Σ,F) be almost un-
ambiguous over x. Using similar methods as in [11], one can show every almost
unambiguous formala over x can be transformed into a formula ψ of the form∨

1≤i≤n Cfi(x) ∧ ki ∧ ψ
+
i for some n ∈ N, ki ∈ K, fi ∈ F and ψi ∈ MSOer(Σ) for

every i ∈ {1, ..., n} such that [[ψ]] = [[ϕ]]. For every i ∈ {1, ..., n}, [[Cfi)(x)]], [[ki]]
and [[ψ+

i ]] are (pairwise) non-interfering over K and F w.r.t. (U, f,Σ). Hence,
by Lemmas 4 and 2, for each i ∈ {1, ..., n}, [[Cfi(x) ∧ ki ∧ ψ

+
i ]] is qWERA-

recognizable over K and F w.r.t. (U, f,Σ). Then, by Lemma 3, [[ψ]] (and thus
also [[ϕ]]) is qWERA-recognizable over K and F w.r.t. (U, f,Σ). ⊓⊔

So now assume that ϕ is almost unambiguous. The main challenge of this paper
is to prove that [[∀x.ϕ]] is recognizable. Before we show how this can be done, we
introduce a new normalization technique which will be needed in the proof.

Lemma 12. For every qERA-recognizable timed language L ⊆ TU+ w.r.t.
(U, g, C) there is an unambiguous qERA A′ over Γ for some Γ ⊆ U such that
L(A′) = L and for each location s in A′ there is a unique a ∈ Γ such that every
edge (s, a′, φ, s′) in A′ satisfies a′ = a.

Proof. Let L ⊆ TU+ be qERA-recognizable w.r.t. (U, f, C). By Prop.1, there
is a deterministic qERA A = (S, {ι}, Sf , E) over Γ for some Γ ⊆ U such that
L(A) = L. Define A′ = (S′, S′

0, S
′
f , E

′) where

– S′ = (S × Γ ) ∪ {sf}

– S′
0 = {ι} × Γ

– S′
f = {sf}

– E′ = {((s, a), a, φ, (s′, a′)) |(s, a, φ, s′) ∈ E, a′ ∈ Γ} ∪
{((s, a), a, φ, sf ) |(s, a, φ, s

′) ∈ E, s′ ∈ Sf}
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First, we prove L(A′) = L(A). Let w ∈ TΓ+ and suppose w ∈ L(A). As

A is deterministic, there is exactly one successful run r = ι
a1,φ1
−→ ...

a|w|,φ|w|
−→

s|w| of A on w. By the definition of A′ it follows that there are edges e′i =
((si−1, ai), ai, φi, (si, ai+1)) ∈ E′ for each 1 ≤ i < |w| and there is an edge
e′|w| =

(
(s|w|−1, a|w|), a|w|, φ|w|, sf

)
∈ E′. Notice that we have γwi |= φi for

each 1 ≤ i ≤ |w|, as we did not change neither the labels ai nor the clock

guards φi of the edges ei. Hence, r′ = (s0, a1)
a1,φ1
−→ (s1, a2)

a2,φ2
−→ ...

a|w|−1,φ|w|−1
−→

(s|w|−1, a|w|)
a|w|,φ|w|
−→ sf is a successful run of A′ on w and we have w ∈ L(A′).

The proof for L(A′) ⊆ L(A) is very similar and for this reason left to the reader.

Next, we aim to show that A′ is unambiguous. Assume that r = (s0, u0)
a1,φ1
−→

(s1, u1)
a2,φ2
−→ ...

a|w|,φ|w|
−→ sf and r′ = (s′0, u

′
0)

a1,φ
′
1−→ (s′1, u

′
1)

a2,φ
′
2−→ ...

a|w|,φ
′
|w|

−→ sf both
are successful runs of A′ on w. Thus, we have ((si−1, ui−1), ai, φi, (si, ui)) ∈ E

′

and ((s′i−1, u
′
i−1), ai, φ

′
i, (s

′
i, u

′
i)) ∈ E′ for every i ∈ {1, ..., |w|}. Moreover, by

definition of E′, ui−1 = u′i−1 = ai for each i ∈ {1, ..., |w|}. Also, we have s0 =
s′0 = ι by definition of S′

0. Since both r and r′ are successful runs on w, it follows
that both γw1 |= φ1 and γw1 |= φ′1. Then, the determinism of A implies that
e1 = e′1 and thus s1 = s′1. The same lines of argumentation can be used to infer
ei = e′i and si = s′i for every i ∈ {2, ..., |w| − 1} and e|w| = e′|w|, respectively.

Hence, r = r′. ⊓⊔

Remark 3. Notice that in the construction we included an implicit final-location-
normalization, allowing one single final location (sf ) only. This is done to guar-
antee the uniqueness of the successful runs - and thus the unambiguity - of A′:
if we set S′

f = Sf × Γ , we could no longer assume the locations (s|w|, u|w|) and
(s′|w|, u

′
|w|) reached after the last edge to be equal, because u|w| and u′|w| is not

determined by a next letter as it is the case with ui and u′i for i ∈ {1, ..., |w|−1}.

Lemma 13. Let ϕ ∈ MSOer(K, Σ,F) be almost unambiguous. Then [[∀x.ϕ]] is
qWERA-recognizable over K and F w.r.t. (U, f,Σ).

Proof. Let ϕ ∈ MSOer(K, Σ,F) be almost unambiguous and W = Free(ϕ). In
the proof of Lemma 11 we have seen that we may assume ϕ to be of the form∨

1≤j≤n Cfj (x) ∧ kj ∧ ψ
+
j , where n ∈ N, kj ∈ K, fj ∈ F , ψj ∈ MSOer(Σ) for

each j ∈ {1, ..., n}. Let Lj = LW(ψj) for every j ∈ {1, ..., n}. We may assume
(L1, ..., Ln) to be a partition of NW . Let V = Free(∀x.ϕ) =W\{x}. Recall that

for every ((ā, σ), t̄) ∈ T (ΣW)+\NW we have [[ϕ]]((ā, σ), t̄) = 0. We define L̃ to
be the set of timed words ((ā, µ, σ), t̄) in T ((Σ(n))V)+ such that ((ā, σ), t̄) ∈ NV

and for all i ∈ dom((ā, t̄)) and j ∈ {1, ..., n} we have µ(i) = j implies ((ā, σ[x→
i]), t̄) ∈ Lj. Notice that for every ((ā, σ), t̄) ∈ NV there is a unique µ such that

((ā, µ, σ), t̄) ∈ L̃ since (L1, ..., Ln) is a partition of NW . Next, we prove that L̃ is
qERA-recognizable w.r.t. (U, f,Σ).

For this, we define for every ξ ∈ MSOer(Σ) the formula ξ̃ ∈ MSOer(Σ
(n))

by replacing in ξ every occurence of Pa(x) by
∨

1≤j≤n P(a,j)(x), and every oc-
currence of ⊳a(x) ∼ c by

∨
1≤j≤n ⊳(a,j)(x) ∼ c. One can easily verify that for
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every ((ā, µ, σ), t̄) ∈ T ((Σ(n))U )+ with ((ā, σ), t̄) ∈ NU we have ((ā, σ), t̄) |= ξ ⇔

((ā, µ, σ), t̄) |= ξ̃ (where U ⊇ Free(ξ)). Now, define the formula ζ ∈MSOer(Σ
(n))

as follows:
ζ = ∀x.

∧

1≤j≤n

∧

a∈Σ

(
P(a,j)(x) −→ ψ̃j

)
.

Let ((ā, µ, σ), t̄) ∈ T ((Σ(n))V)+ such that ((ā, σ), t̄) ∈ NV . Using the semantics
of MSOer(Σ

(n)), one can show that ((ā, µ, σ), t̄) |= ζ iff for every i ∈ dom((ā, t̄))

and j ∈ {1, ..., n} we have µ(i) = j implies ((ā, µ, σ[x → i]), t̄) |= ψ̃j . How-

ever, ((ā, µ, σ[x→ i]), t̄) |= ψ̃j iff ((ā, σ[x→ i]), t̄) |= ψj . Thus, ((ā, µ, σ), t̄) |= ζ

iff ((ā, µ, σ), t̄) ∈ L̃. Hence, we have L(ζ) = L̃. By Theorem 1 and Prop.1, there is

a deterministic qERA Ã = (S, {ι}, Sf , E) over (Σ(n))V such that L(Ã) = L(ζ).
Using a variant of Lemma 12, we construct a qERA A′ = (S′, S′

0, S
′
f , E

′) from

Ã such that L(A′) = L(Ã), A′ is unambiguous and the locations of A′ will be
of the form (s, b) such that every outgoing edge from (s, b) labeled with (a, b′, c)
satisfies b′ = b. For this, we define

– S′ = (S × {1, ..., n}) ∪ {sf}
– S′

0 = {ι} × {1, ..., n}
– S′

f = {sf}
– E′ = {((s, b), (a, b, c), φ, (s′, b′)) |(s, (a, b, c), φ, s′) ∈ E, b′ ∈ {1, ..., n}}
∪ {((s, b), (a, b, c), φ, sf ) |(s, (a, b, c), φ, s

′) ∈ E, s′ ∈ Sf}

The proof for L(A′) = L(Ã) and unambiguity of A′ is along the lines of the
proof of Lemma 12. Observe that this construction is crucial for the next step
in that without the uniqueness property we could not assign the cost functions
to the locations in a proper way: add a cost function C to A′, obtaining the
qWERA A = (S′, S′

0, S
′
f , E

′, C) over K, (Σ(n))V and F as follows: for every edge
((s, b), (a, b, c), φ, (s′, b′)) ∈ E′, define CE(((s, b), (a, b, c), φ, (s′, b′))) = kb, and for
every (s, b) ∈ S′, let C(s,b) = fb. Now, let ((ā, µ, σ), t̄) ∈ L(A′). Since A is unam-
biguous, we have

(
‖A‖, ((ā, µ, σ), t̄)

)
=

∏

i∈dom((ā,t̄))

fµ(i)(ti − ti−1) · kµ(i).

Moreover, we can show that [[ϕ]]W ((ā, σ[x→ i]), t̄) = fµ(i)(ti − ti−1) · kµ(i). Con-

sider the (valid) renaming π : (Σ(n))V → ΣV defined by (a, b, c) 7→ (a, c) for each
(a, b, c) ∈ (Σ(n))V . Then, for every ((ā, σ), t̄) ∈ NV and the unique µ such that

((ā, µ, σ), t̄) ∈ L̃, we have
(
π̄(‖A‖), ((ā, σ), t̄)

)
=

(
‖A‖, ((ā, µ, σ), t̄)

)

=
∏

i∈dom((ā,t̄))

[[ϕ]]W ((ā, σ[x→ i]), t̄)

= [[∀x.ϕ]]((ā, σ), t̄).

For the case ((ā, σ), t̄) 6∈ NV , we obtain 0 for both
(
π̄(‖A‖), ((ā, σ), t̄)

)
and

[[∀x.ϕ]]((ā, σ), t̄). Hence we have shown π̄(‖A‖) = [[∀x.ϕ]]. Then, by Lemma 3,
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we obtain that [[∀x.ϕ]] is qWERA-recognizable over K and F w.r.t. (U, f,Σ).
⊓⊔

Finally, we give the definition of the fragment of MSOer(K, Σ,F) used in
Theorem 2. A formula ϕ ∈ MSOer(K, Σ,F) is called syntactically restricted if it
satisfies the following conditions:

1. Whenever ϕ contains a conjunction ϕ1 ∧ ϕ2 as subformula, ϕ1 contains the
subformula Cf1(x1) and ϕ2 contains Cf2(x2), then x1, x2 are free in both
ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the form ψ ∧ ¬(x1 = x2) for some
ψ ∈ MSOer(K, Σ,F).

2. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is an almost unambiguous
formula over x.

3. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a syntactically un-
ambiguous formula.

We let sRMSOer(K, Σ,F) denote the set of all syntactically restricted formulas
of MSOer(K, Σ,F). Notice that each of these conditions can be checked for in
easy syntax tests. Hence, the logic sRMSOer(K, Σ,F) is a decidable fragment,
i.e., for each formula in MSOer(K, Σ,F) we can decide whether it is syntactically
restricted or not.

Remark 4. We may skip the restriction on K being commutative by adding a
fourth condition on the formulas in sRMSOer(K, Σ,F) concerning the element-
wise commuting of weighted formulas (see [11]). For the sake of simplicity, we
do not consider this here.

Altogether, we have proved that the semantics [[ϕ]] of every ϕ ∈
sRMSOer(K, Σ,F) is qWERA-recognizable over K and F w.r.t. (U, f,Σ). One
further can see that every sentence ϕ ∈ sRMSOer(K, Σ,F) can be recognized by
a qWERA over K, Σ and F - but this is nothing else than a WERA over K, Σ
and F . Hence, we have proven the direction from right to left in Theorem 2.

4 From Automata To Logic

For the implication from left to right of Theorem 2, we extend the proof pro-
posed by Droste and Gastin to the timed setting, briefly explained in the
following. Let A = (S, S0, S, E,C) be a WERA. We choose an enumeration
(e1, ..., em) of E with m = |E| and assume ei = (si, ai, φi, s

′
i). We define

a syntactically unambiguous formula ψ(X1, ..., Xm) without any second-order
quantifiers describing the successful runs of A (where for each i ∈ {1, ...,m},
Xi stands for the edge ei). This can be done similarly to the classical set-
ting [26]. The guards of the edges in E can be defined by a formula of the

form ∀x.
∧

1≤i≤m

(
x ∈ Xi

+
−→

∧
a∈Σ

(
∧

(xa∼c)∈φi

⊳a(x) ∼ c)
)

where ϕ
+
−→ ψ is an

abbreviation for ϕ− ∨ (ϕ+ ∧ ψ+). Then, for every timed word (ā, t̄) and valid
({X1, ..., Xm}, (ā, t̄))-assignment σ, we have [[ψ(X1, ..., Xm)]]((ā, σ), t̄) = 1, if
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there is a successful run of A on (ā, t̄), and [[ψ(X1, ..., Xm)]]((ā, σ), t̄) = 0, oth-
erwise. Notice that we need to use syntactically unambiguous formulas here in
order to avoid getting weights different from 1 or 0. Now, we “add weights” to
ψ to obtain a formula ξ whose semantics corresponds to the running weight of
a successful run of A on (ā, t̄) as follows:

ξ = ψ ∧
∧

ei∈E

∀x.
(
¬(x ∈ Xi) ∨ [x ∈ Xi ∧ CCsi

(x) ∧ CE(ei)]
)
.

Finally, we let ζ = ∃X1...∃Xm.ξ, and we obtain [[ζ]] = ‖A‖. Hence, we have
shown the second implication, which finishes the proof of Theorem 2.

5 Conclusion

We have presented a weighted timed MSO logic, which is - at least to our knowl-
edge - the first MSO logic allowing for the description of both timed and quan-
titative properties. On the one hand, we provide the real-time-community with
a new tool, because sometimes it may be easier to specify properties in terms of
logic rather than by automata devices. On the other hand, the coincidence be-
tween recognizable and definable timed series, together with a previous work on
WERA concerning a Kleene-Schützenberger Theorem [23], shows the robustness
of the notion of WERA-recognizable timed series, as they can equivalently be
characterized in terms of automata, logics and rational operations. The same ap-
plies to timed series recognizable by weighted timed automata, for which we were
successful in adapting the proofs presented in this paper using the relative dis-

tance logic L
←−
d introduced by Wilke and his results concerning timed languages

with bounded variability [28, 24]. Notice that our result generalizes correspond-
ing results on ERA-recognizable languages as well as formal power series [15, 11].
Also, we have stated conditions for closure of recognizable timed series under
the Hadamard product, which corresponds to the intersection operation in the
unweighted setting.
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