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The Optimal Reachability Problem (ORP) for WTA
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What is the cheapest path from one given state
to some other?

- Alur, La Torre, Pappas (2001)

- Behrmann, Brinksma, Fehnker, Hune, Larsen,
Pettersson, Romijn (2001)

- Bouyer, Brihaye, Bruyere, Raskin (2007)
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The ORP for Weighted Automata
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Weighted automata with weights in N (Z)
summed up along the run:
- Dijkstra (Bellman-Ford) Algorithm
- Not applicable to WTA:
induce infinite weighted automaton
- Is there some discrete abstraction (= a weighted
automaton) that is sound and complete with

respect to optimal reachability?
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Discrete Abstraction? - Weighted Cornerpoint-Region Graph!

I < 1 50
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= Sound and complete with respect to ORP
(Bouyer, Brihaye, Bruyere and Raskin, 2007)




Optimal Reachability Problem (ORP) for WTA
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What is the cheapest path from one given state
to some other?

The optimal reachability problem for weighted
timed automata is PSPACE-complete.

(Bouyer, Brihaye, Bruyere and Raskin, 2007)
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WTA - State of the Art

- WTA over different weight structures:

- positive / negative / multiple weights

- linear / exponential growth rates

- along a run, weights are summed up / discounted / mean valued...
- Problems considered:

- Optimal Reachability / Scheduling

- Model Checking weighted timed extensions of temporal logics

- Games...
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Unifying Definition for WTA

1 a Droste, Quaas (2008)
o 2
3 ) wii=0 WTA defined over

Aly <2 bl - Semiring: (R>o U {00}, min, +, 00, 0)

- Function Family:

0 b LIN = {f € (Rx»o U {oo})R20 | f is linear}

- Alphabet: {a,b}

Timed Words, e.g. (a,1.5)(b,3.1)

Timed Series: map timed words to elements in
semiring

= WTA recognize timed series



WTA as Recognizers of Timed Series

- Kleene-Schutzenberger theorem for recognizable timed series:
Timed series are recognizable if, and only if, they are rational

(Droste and Quaas, 2008).



WTA as Recognizers of Timed Series

- Kleene-Schutzenberger theorem for recognizable timed series:
Timed series are recognizable if, and only if, they are rational

(Droste and Quaas, 2008).

- Buchi theorem for recognizable timed series:

Timed series are recognizable, if, and only if, they are definable
in restricted weighted timed MSO logic (Quaas, 2009).



WTA as Recognizers of Timed Series

- Kleene-Schutzenberger theorem for recognizable timed series:
Timed series are recognizable if, and only if, they are rational

(Droste and Quaas, 2008).
- Buchi theorem for recognizable timed series:
Timed series are recognizable, if, and only if, they are definable

in restricted weighted timed MSO logic (Quaas, 2009).

- Some further results, e.g., decidability of the equivalence
problem of WTA over (R, +,-,0,1) and LIN (Quaas, 2009)
(Compare with undecidability of equivalence problem for timed automata)



A Unifying Framework for WTA

Using this unifying framework for WTA, can we generalize some of the
(un)decidability results of specific WTA to WTA over certain classes
of semirings?
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A Unifying Framework???

- Bouyer, Brinksma, Larsen, 2004

- Multiweighted timed automata over N? and LIN
- Weights are not summed up componentwise, but:

sum of values of 1st weight variable
sum of values of 2nd weight variable

ratio(run) =

- No semiring operation!!!
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A Unifying Framework!!!

- Droste and Meinecke, 2010, proposed a unifying framework:
weighted automata over valuation monoids

(D, +,Val,0), where (D,+,0) is a monoid, Val : DT — D

- Ratio operation cannot be modelled using valuation monoids
- Ratio operation can be modelled using valuation magmas

(Perevoshchikov, 2012)
- Open problem: Is there such a unifying framework for WTA?
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Energy Problems for WTA over Z and LIN

(Bouyer, Fahrenberg, Larsen, Markey, Srba, 2008)

Instance: A WTA over Z and LIN, b€ N, « € I\.
Question: Is there an infinite run such that the value
of the weight variable is always within [0, b]?

Special case: value always within [0, oo],

= Lower bound energy problem.
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Lower Bound Energy Problem for Weighted Automata over /Z

Instance: A weighted automaton over Z, + € N.
Question: Is there an infinite run such that the value
of the weight variable is always within [0, c0)?

- Is there some reachable cycle that is not energy losing?

- Bellman-Ford algorithm
- Lower bound energy problem for weighted automata

over Z is in P.
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Lower Bound Energy Problem for WTA over Z and LIN

The lower bound energy problem for
WTA over 7 and LIN is in P (BFLMS, 2008).




Lower Bound Energy Problem for WTA over Z and LIN

The lower bound energy problem for
WTA over 7 and LIN is in P (BFLMS, 2008)
if the WTA does not have any discrete weights.
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Another Discrete Abstraction: Energy Automata

- Weighted refined region graph is not complete
2 —3 with respect to energy problem for weighted
a—a timed automata with discrete weights
=0 - New discrete abstraction: energy automata

- Lower bound energy problem for EA is decidable,

- Sound and complete with respect to energy problem
(Bouyer, Fahrenberg, Markey, Larsen, 2010)

L / - Energy automata are weighted automata over the
0 semiring of energy functions

= non-obvious reduction from WTA over /Z
and LIN to weighted automata over semiring
of energy functions
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- Further decidability results for WTA over Z and LIN: Kim Larsen’s talk
- Open problem: energy problem [0, b] for such WTA with one clock
- Further decidability results for multiweighted automata
(Fahrenberg, Juhl, Larsen and Srba, 2011)
- Open: Energy problem for other weight structures?
- Open: Energy problem for other kinds of weighted automata?
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MTL Model Checking

(Koymans, 1990)
pu=a|-p|leVelXipl|eUrp
(a € X, I CRTU{oo} with endpoints in N U {oc})
Let w = (al,tl)(ag,tg)(ag,t3)(&4,t4) ... be atimed word, 1 > 1.

(w,1) = X1 if (w,i+1)Epandt;y1—t; €1

(w,7) = e1Urpe  if 35 > i(w,j) =2 and t; —1t; € I and
Vi <k <j(wk)E @l
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MTL Model Checking of Timed Automata

- dp eMTL: L(¢p) is not recognizable by timed automaton!!!

- Finitary model checking of timed automata is decidable
(Ouaknine and Worrell, 2005)
- Vo eMTL 3 alternating 1-clock timed automaton A,
such that L(A,) = L(p)
- Language inclusion of timed automata and alternating

1-clock timed automata is decidable
- Infinitary model checking is undecidable (OW, 2006)
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wMTL Model Checking of WTA over N and LIN

- Bouyer and Markey, 2007:
- Finitary model checking of WTA with one clock and one stopwatch
is decidable
- Finitary model checking is undecidable for WTA with
- two clocks, one stopwatch
- one clock, two stopwatches
- one clock, one weight variable with arbitrary rates
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wMTL Model Checking of Weighted Automata

- Meinecke and Quaas, 2012
- wMTL over ordered monoids, interval constraints at X and U
- wMTL model checking of weighted automata over
bounded locally finite monoids is decidable
- Vo ewMTL 3 unweighted Biichi automaton A, such
that L(A,) = L(p)
- Emptiness problem for synchronized product of weighted
automata and A, is decidable

e (QF,4,0,<), (N\{0Y,-,1,<), (QU {oo}, min, 0o, >)
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wMTL Model Checking of Weighted Automata over 7/

- (Z,+,0,<) is not a bounded locally finite monoid
- wMTL model checking is undecidable (Quaas, 2012)

Open problem:
Can we restrict the logic in such a way that it is still
reasonably expressive and model checking is decidable?



MTL Model Checking Timed Automata + VASS

-wMTL model checking for WTA over Z and LIN is undecidable

Open problem:

Is MTL model checking decidable for timed automata extended
with weight variable ranging over N, but whose

value can be increased and decreased in a discrete manner?
(Transitions which decrease the value below zero are blocked.)
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A Fruitful Interplay!

Weighted
Automata

Model Checking MTL-like temporal logics



Future Research

- Unifying frameworks for non-semiring WTA
- Generalizing known results for WTA
- Energy Problems:
- [0, b]-problem for 1-clock WTA
- for other weight structures
- for other kinds of weighted automata
- Model checking restriction of weighted LTL over 7

- Model checking MTL of timed automata + VASS



