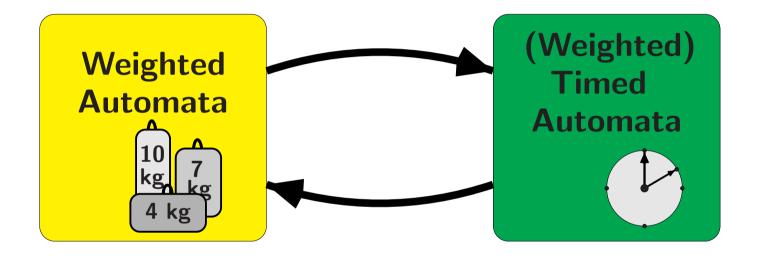
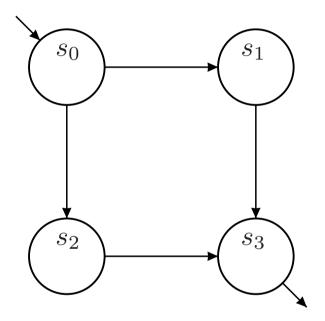
The Fruitful Interplay of Weighted Timed Automata and Weighted Automata

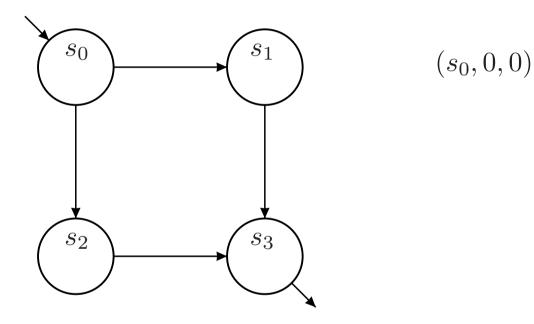
Karin Quaas

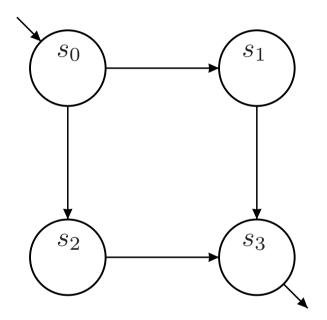
31st of May, 2012

A Fruitful Interplay?



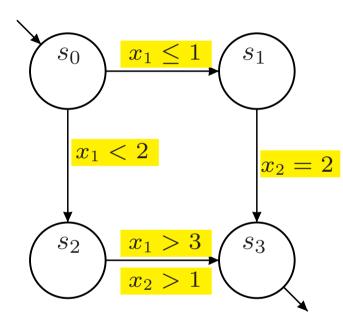




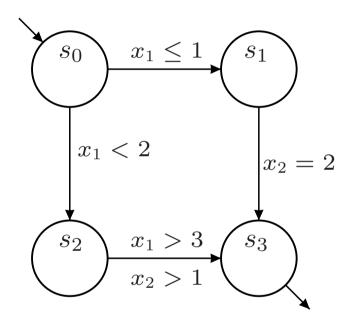


 $(s_0, 0, 0) \xrightarrow{0.8} (s_0, 0.8, 0.8)$

Timed transition

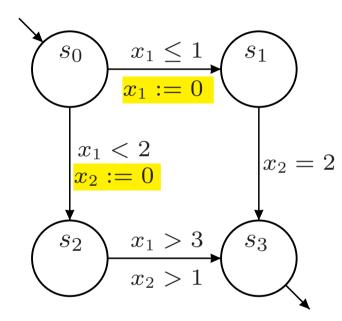


$$(s_0, 0, 0) \xrightarrow{0.8} (s_0, 0.8, 0.8)$$



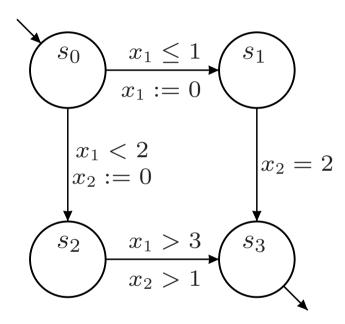
$$(s_0, 0, 0) \xrightarrow{0.8} (s_0, 0.8, 0.8) \longrightarrow (s_2, 0.8, 0.8)$$

Discrete transition

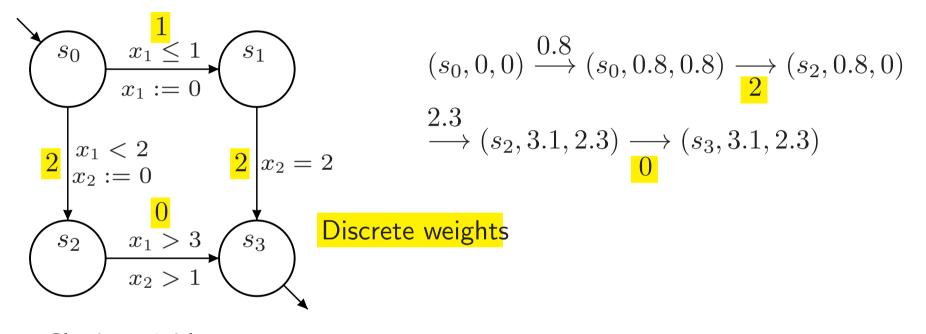


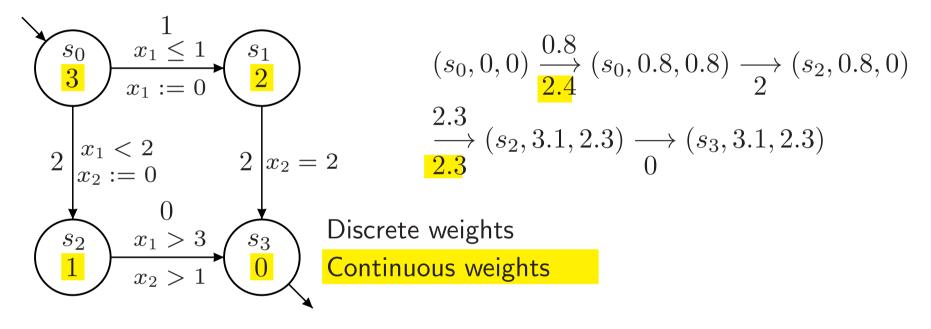
$$(s_0, 0, 0) \xrightarrow{0.8} (s_0, 0.8, 0.8) \longrightarrow (s_2, 0.8, 0)$$

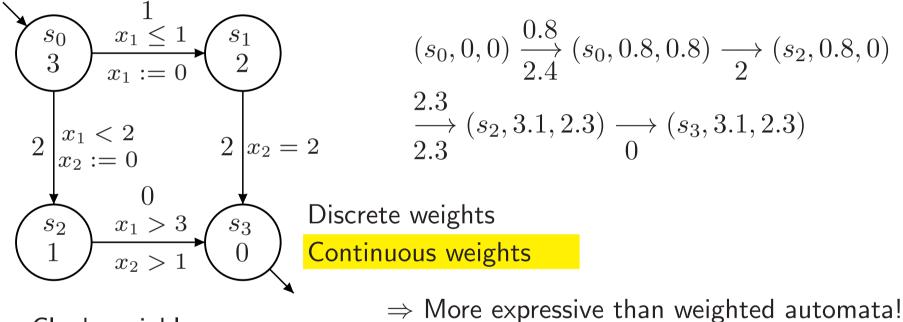
Discrete transition



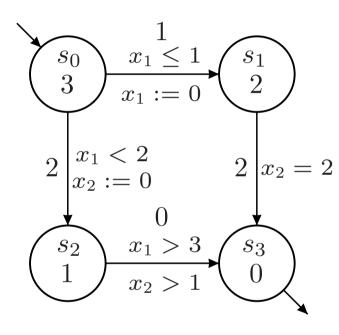
$$(s_0, 0, 0) \xrightarrow{0.8} (s_0, 0.8, 0.8) \longrightarrow (s_2, 0.8, 0)$$
$$\xrightarrow{2.3} (s_2, 3.1, 2.3) \longrightarrow (s_3, 3.1, 2.3)$$







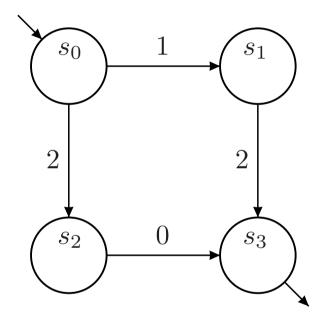
The Optimal Reachability Problem (ORP) for WTA



What is the cheapest path from one given state to some other?

- Alur, La Torre, Pappas (2001)
- Behrmann, Brinksma, Fehnker, Hune, Larsen, Pettersson, Romijn (2001)
- Bouyer, Brihaye, Bruyère, Raskin (2007)

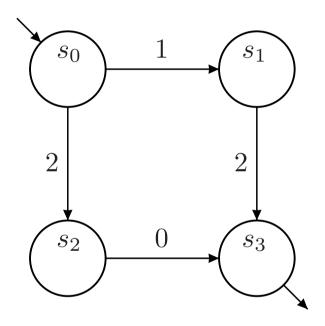
The ORP for Weighted Automata



Weighted automata with weights in $\mathbb{N}~(\mathbb{Z})$ summed up along the run:

- Dijkstra (Bellman-Ford) Algorithm

The ORP for Weighted Automata

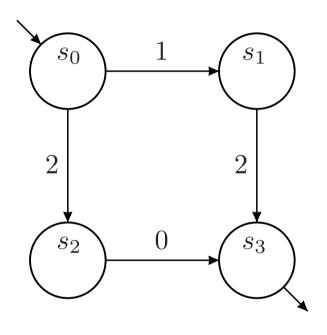


Weighted automata with weights in $\mathbb{N}(\mathbb{Z})$ summed up along the run:

- Dijkstra (Bellman-Ford) Algorithm
- Not applicable to WTA:

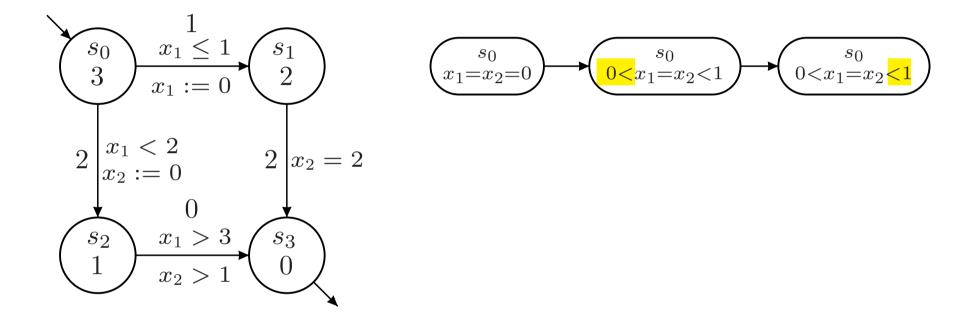
induce infinite weighted automaton

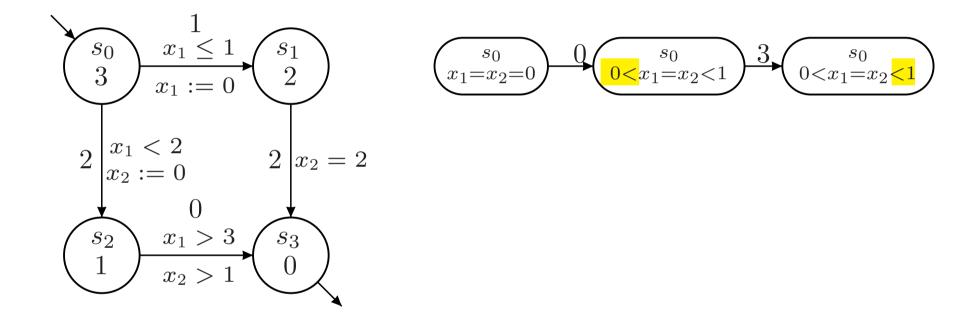
The ORP for Weighted Automata

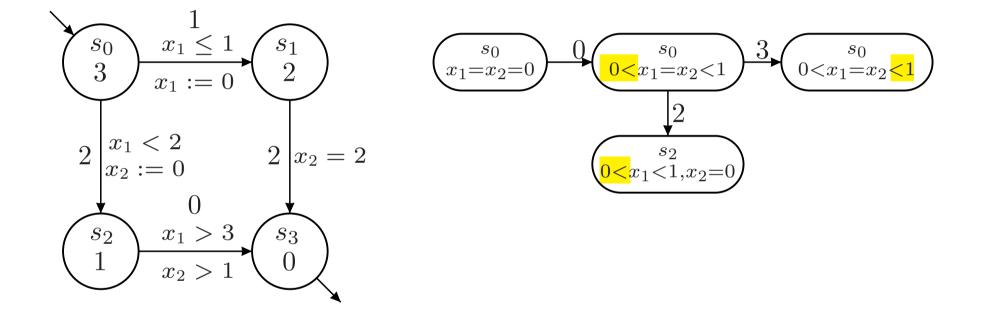


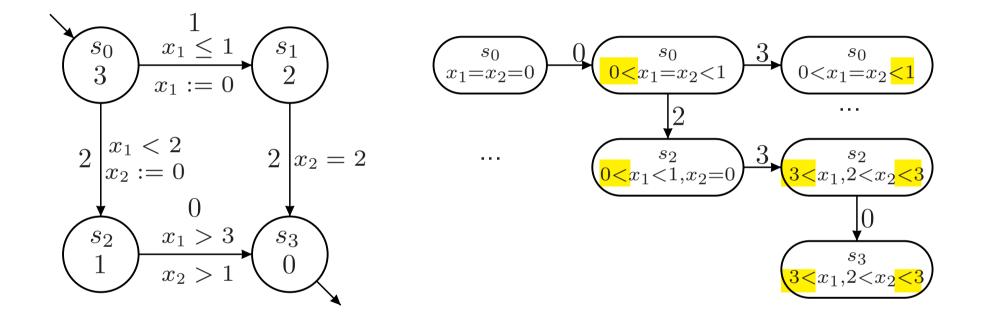
Weighted automata with weights in $\mathbb{N}(\mathbb{Z})$ summed up along the run:

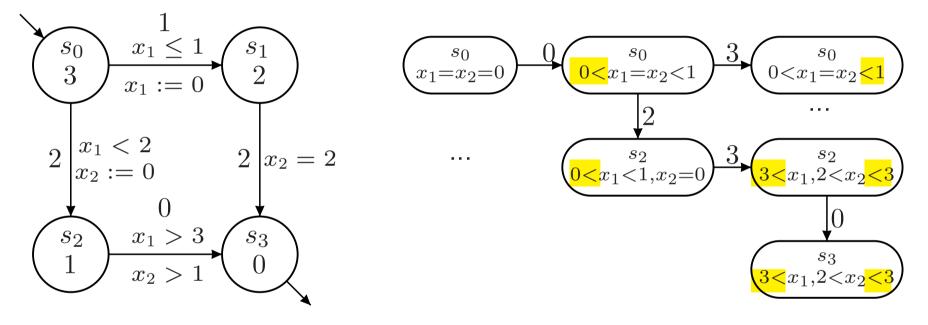
- Dijkstra (Bellman-Ford) Algorithm
- Not applicable to WTA: induce infinite weighted automaton
- Is there some discrete abstraction (= a weighted automaton) that is sound and complete with respect to optimal reachability?





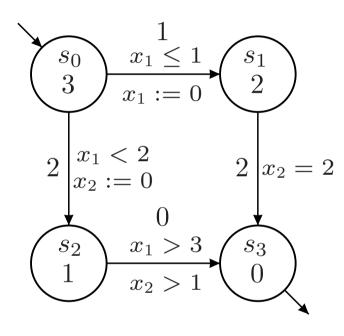






⇒ Sound and complete with respect to ORP (Bouyer, Brihaye, Bruyère and Raskin, 2007)

Optimal Reachability Problem (ORP) for WTA



What is the cheapest path from one given state to some other?

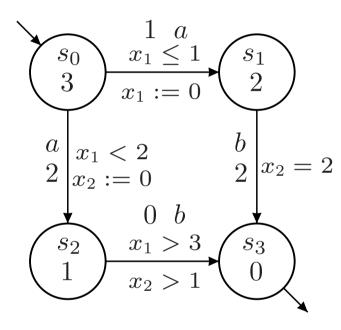
The optimal reachability problem for weighted timed automata is PSPACE-complete. (Bouyer, Brihaye, Bruyère and Raskin, 2007)

WTA - State of the Art

- WTA over different weight structures:
 - \cdot positive / negative / multiple weights
 - \cdot linear / exponential growth rates
 - · along a run, weights are summed up / discounted / mean valued...

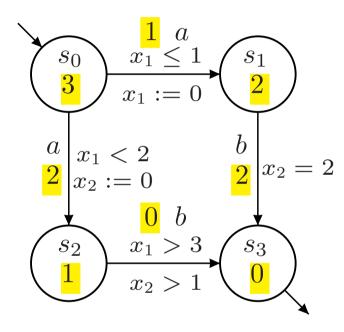
WTA - State of the Art

- WTA over different weight structures:
 - \cdot positive / negative / multiple weights
 - \cdot linear / exponential growth rates
 - · along a run, weights are summed up / discounted / mean valued...
- Problems considered:
 - · Optimal Reachability / Scheduling
 - · Model Checking weighted timed extensions of temporal logics
 - \cdot Games...



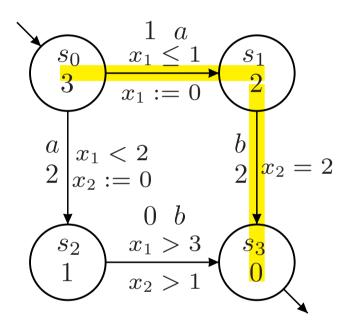
Droste, Quaas (2008)

WTA defined over



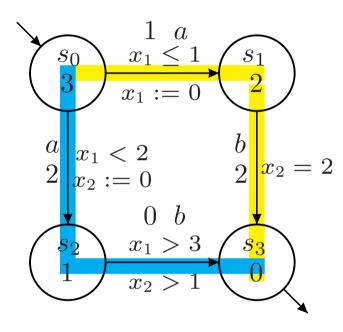
Droste, Quaas (2008)

WTA defined over



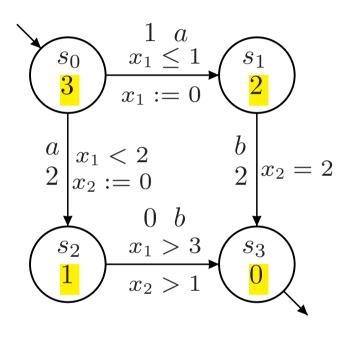
Droste, Quaas (2008)

WTA defined over



Droste, Quaas (2008)

WTA defined over

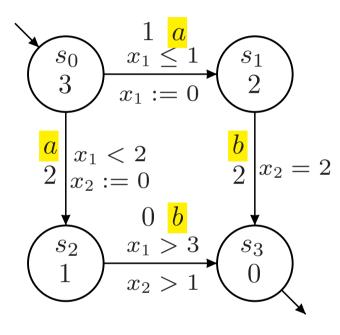


Droste, Quaas (2008)

WTA defined over

- Semiring:
$$(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$$

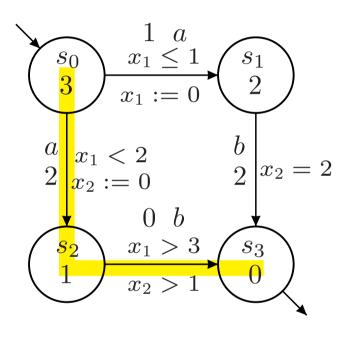
$$\mathsf{LIN} = \{ f \in (\mathbb{R}_{\geq 0} \cup \{\infty\})^{\mathbb{R}_{\geq 0}} \mid f \text{ is linear} \}$$



Droste, Quaas (2008)

WTA defined over

- Semiring: $(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$
- Function Family:
 - $\mathsf{LIN} = \{ f \in (\mathbb{R}_{\geq 0} \cup \{\infty\})^{\mathbb{R}_{\geq 0}} \mid f \text{ is linear} \}$
- Alphabet: $\{a, b\}$

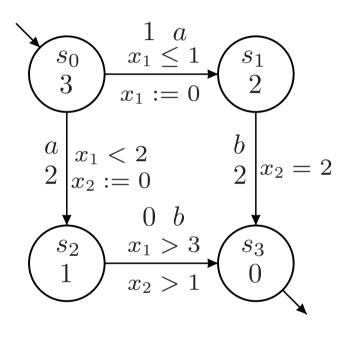


Droste, Quaas (2008)

WTA defined over

- Semiring: $(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$
- Function Family: $LIN = \{ f \in (\mathbb{R}_{\geq 0} \cup \{\infty\})^{\mathbb{R}_{\geq 0}} \mid f \text{ is linear} \}$ - Alphabet: $\{a, b\}$

Timed Words, e.g. (a, 1.5)(b, 3.1)



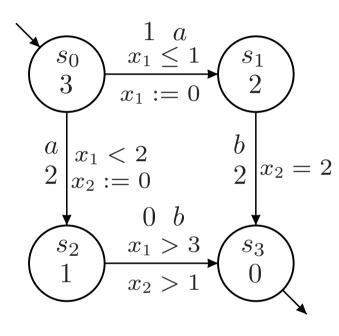
Droste, Quaas (2008)

WTA defined over

- Semiring:
$$(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$$

- Function Family: $LIN = \{ f \in (\mathbb{R}_{\geq 0} \cup \{\infty\})^{\mathbb{R}_{\geq 0}} \mid f \text{ is linear} \}$ - Alphabet: $\{a, b\}$

Timed Words, e.g. (a, 1.5)(b, 3.1)Timed Series: map timed words to elements in semiring



Droste, Quaas (2008)

WTA defined over

- Semiring: $(\mathbb{R}_{\geq 0} \cup \{\infty\}, \min, +, \infty, 0)$
- Function Family: $LIN = \{ f \in (\mathbb{R}_{\geq 0} \cup \{\infty\})^{\mathbb{R}_{\geq 0}} \mid f \text{ is linear} \}$ - Alphabet: $\{a, b\}$

Timed Words, e.g. (a,1.5)(b,3.1)

Timed Series: map timed words to elements in semiring

 \Rightarrow WTA recognize timed series

WTA as Recognizers of Timed Series

 Kleene-Schützenberger theorem for recognizable timed series: Timed series are recognizable if, and only if, they are rational (Droste and Quaas, 2008).

WTA as Recognizers of Timed Series

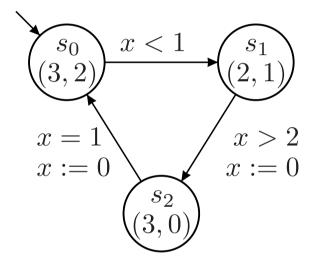
- Kleene-Schützenberger theorem for recognizable timed series: Timed series are recognizable if, and only if, they are rational (Droste and Quaas, 2008).
- Büchi theorem for recognizable timed series:
 Timed series are recognizable, if, and only if, they are definable in restricted weighted timed MSO logic (Quaas, 2009).

WTA as Recognizers of Timed Series

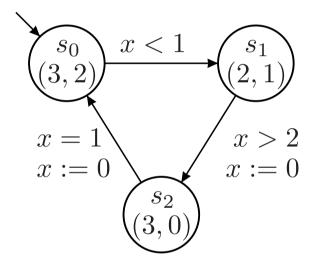
- Kleene-Schützenberger theorem for recognizable timed series: Timed series are recognizable if, and only if, they are rational (Droste and Quaas, 2008).
- Büchi theorem for recognizable timed series:
 Timed series are recognizable, if, and only if, they are definable in restricted weighted timed MSO logic (Quaas, 2009).
- Some further results, e.g., decidability of the equivalence problem of WTA over (R, +, ·, 0, 1) and LIN (Quaas, 2009)
 (Compare with undecidability of equivalence problem for timed automata)

A Unifying Framework for WTA

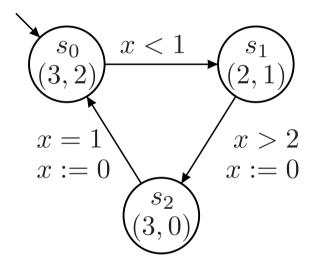
Using this unifying framework for WTA, can we generalize some of the (un)decidability results of specific WTA to WTA over certain classes of semirings?



- Bouyer, Brinksma, Larsen, 2004
- Multiweighted timed automata over \mathbb{N}^2 and LIN

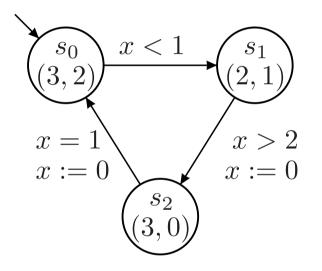


- Bouyer, Brinksma, Larsen, 2004
- Multiweighted timed automata over \mathbb{N}^2 and LIN
- Weights are not summed up componentwise, but:



- Bouyer, Brinksma, Larsen, 2004
- Multiweighted timed automata over \mathbb{N}^2 and LIN
- Weights are not summed up componentwise, but:

 $ratio(run) = \frac{\text{sum of values of 1st weight variable}}{\text{sum of values of 2nd weight variable}}$



- Bouyer, Brinksma, Larsen, 2004
- Multiweighted timed automata over \mathbb{N}^2 and LIN
- Weights are not summed up componentwise, but:

 $ratio(run) = \frac{\text{sum of values of 1st weight variable}}{\text{sum of values of 2nd weight variable}}$

- No semiring operation!!!

- Similar situation: weighted automata vs. quantitative automata (Chatterjee, Doyen, Henzinger, 2008)

- Similar situation: weighted automata vs. quantitative automata (Chatterjee, Doyen, Henzinger, 2008)
- Quantitative automata use operations that do not form a semiring, e.g., average to compute weight along a path

- Similar situation: weighted automata vs. quantitative automata (Chatterjee, Doyen, Henzinger, 2008)
- Quantitative automata use operations that do not form a semiring, e.g., average to compute weight along a path
- Droste and Meinecke, 2010, proposed a unifying framework: weighted automata over valuation monoids

(D, +, Val, 0), where (D, +, 0) is a monoid, $Val : D^+ \to D$

- Büchi-type theorem for weighted automata over valuation monoids

- Droste and Meinecke, 2010, proposed a unifying framework: weighted automata over valuation monoids

 $(D, +, \mathsf{Val}, 0)$, where (D, +, 0) is a monoid, $\mathsf{Val} : D^+ \to D$

- Ratio operation cannot be modelled using valuation monoids

- Droste and Meinecke, 2010, proposed a unifying framework: weighted automata over valuation monoids

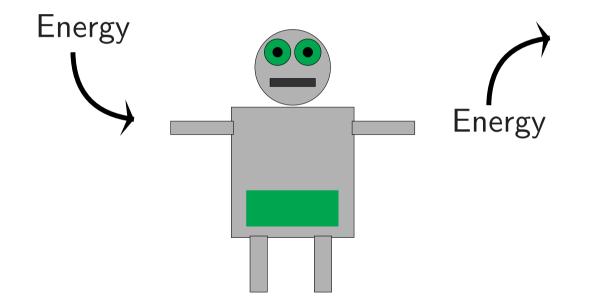
 $(D, +, \mathsf{Val}, 0)$, where (D, +, 0) is a monoid, $\mathsf{Val} : D^+ \to D$

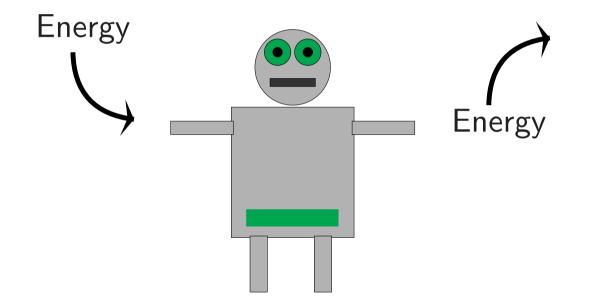
- Ratio operation cannot be modelled using valuation monoids
- Ratio operation can be modelled using valuation magmas (Perevoshchikov, 2012)

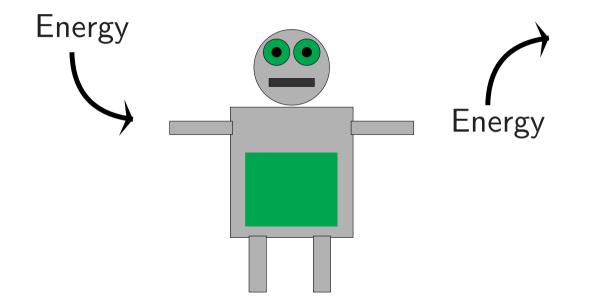
- Droste and Meinecke, 2010, proposed a unifying framework: weighted automata over valuation monoids

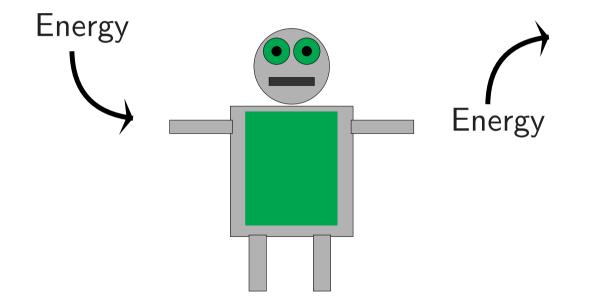
 $(D, +, \mathsf{Val}, 0)$, where (D, +, 0) is a monoid, $\mathsf{Val} : D^+ \to D$

- Ratio operation cannot be modelled using valuation monoids
- Ratio operation can be modelled using valuation magmas (Perevoshchikov, 2012)
- Open problem: Is there such a unifying framework for WTA?

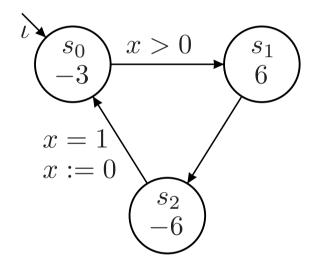








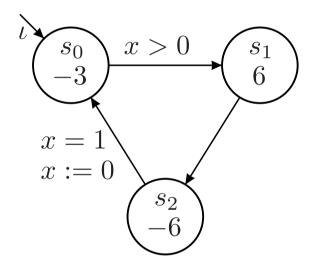
Energy Problems for WTA over $\mathbb Z$ and LIN



(Bouyer, Fahrenberg, Larsen, Markey, Srba, 2008)

Instance: A WTA over \mathbb{Z} and LIN, $b \in \mathbb{N}$, $\iota \in \mathbb{N}$. Question: Is there an infinite run such that the value of the weight variable is always within [0, b]?

Energy Problems for WTA over $\mathbb Z$ and LIN

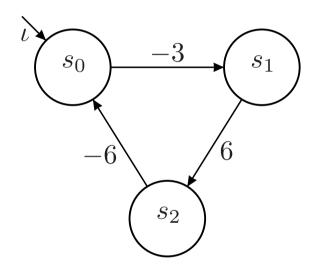


(Bouyer, Fahrenberg, Larsen, Markey, Srba, 2008)

Instance: A WTA over \mathbb{Z} and LIN, $b \in \mathbb{N}$, $\iota \in \mathbb{N}$. Question: Is there an infinite run such that the value of the weight variable is always within [0, b]?

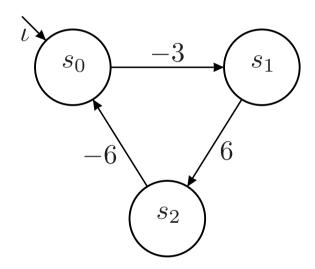
Special case: value always within $[0, \infty]$, \Rightarrow Lower bound energy problem.

Lower Bound Energy Problem for Weighted Automata over $\mathbb Z$



Instance: A weighted automaton over \mathbb{Z} , $\iota \in \mathbb{N}$. Question: Is there an infinite run such that the value of the weight variable is always within $[0, \infty)$?

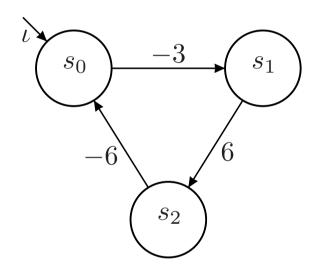
Lower Bound Energy Problem for Weighted Automata over $\ensuremath{\mathbb{Z}}$



Instance: A weighted automaton over \mathbb{Z} , $\iota \in \mathbb{N}$. Question: Is there an infinite run such that the value of the weight variable is always within $[0, \infty)$?

- Is there some reachable cycle that is not energy losing?

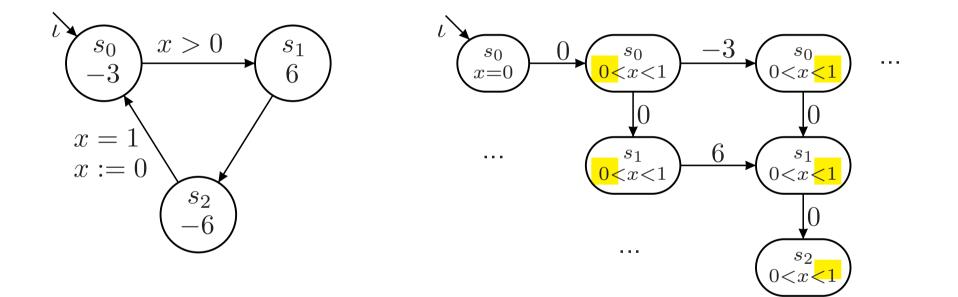
Lower Bound Energy Problem for Weighted Automata over $\mathbb Z$



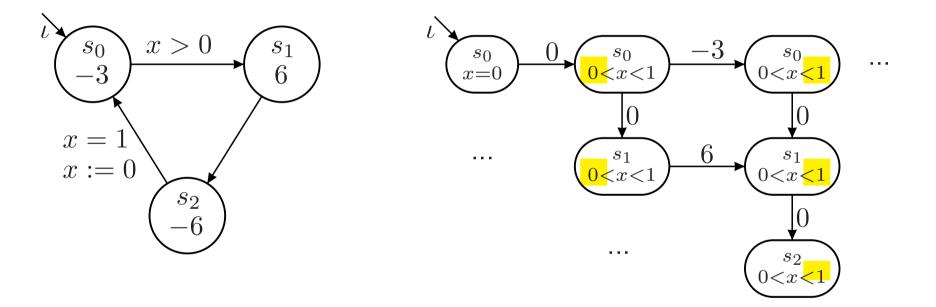
Instance: A weighted automaton over \mathbb{Z} , $\iota \in \mathbb{N}$. Question: Is there an infinite run such that the value of the weight variable is always within $[0, \infty)$?

- Is there some reachable cycle that is not energy losing?
- Bellman-Ford algorithm
- Lower bound energy problem for weighted automata over $\mathbb Z$ is in P.

Discrete Abstraction? - Weighted Cornerpoint-Region Graph!

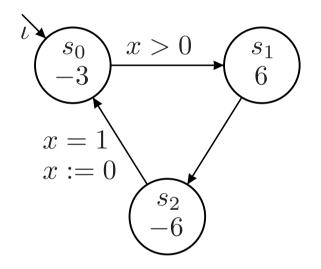


Discrete Abstraction? - Weighted Cornerpoint-Region Graph!



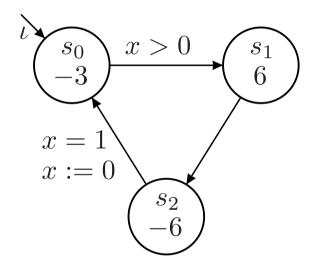
 \Rightarrow Sound and complete with respect to energy problem $[0,\infty)$ (BFLMS, 2008)

Lower Bound Energy Problem for WTA over $\mathbb Z$ and LIN

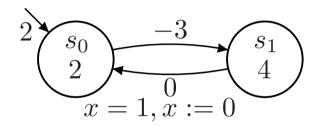


The lower bound energy problem for WTA over \mathbb{Z} and LIN is in P (BFLMS, 2008).

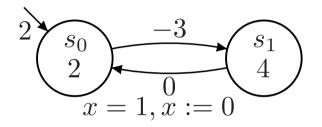
Lower Bound Energy Problem for WTA over $\mathbb Z$ and LIN



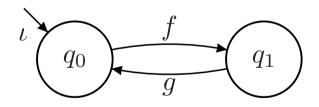
The lower bound energy problem for WTA over \mathbb{Z} and LIN is in P (BFLMS, 2008) if the WTA does not have any discrete weights.

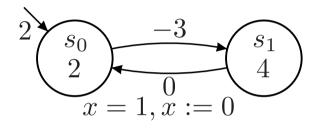


- Weighted refined region graph is not complete with respect to energy problem for weighted timed automata with discrete weights

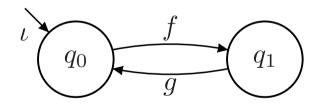


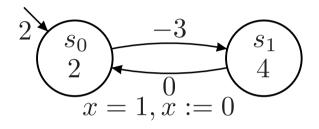
- Weighted refined region graph is not complete with respect to energy problem for weighted timed automata with discrete weights
- New discrete abstraction: energy automata

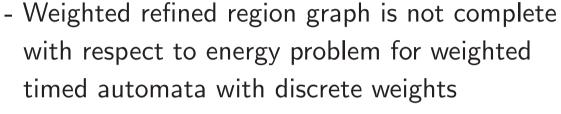




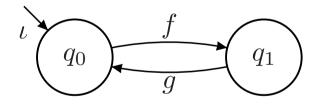
- Weighted refined region graph is not complete with respect to energy problem for weighted timed automata with discrete weights
- New discrete abstraction: energy automata
- Lower bound energy problem for EA is decidable,

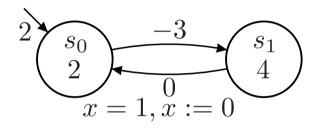


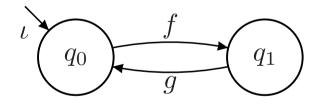




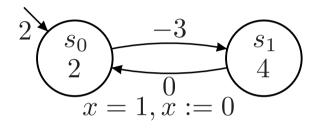
- New discrete abstraction: energy automata
- Lower bound energy problem for EA is decidable,
- Sound and complete with respect to energy problem (Bouyer, Fahrenberg, Markey, Larsen, 2010)

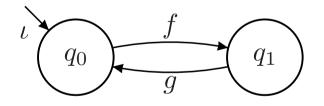






- Weighted refined region graph is not complete with respect to energy problem for weighted timed automata with discrete weights
- New discrete abstraction: energy automata
- Lower bound energy problem for EA is decidable,
- Sound and complete with respect to energy problem (Bouyer, Fahrenberg, Markey, Larsen, 2010)
- Energy automata are weighted automata over the semiring of energy functions





- Weighted refined region graph is not complete with respect to energy problem for weighted timed automata with discrete weights
- New discrete abstraction: energy automata
- Lower bound energy problem for EA is decidable,
- Sound and complete with respect to energy problem (Bouyer, Fahrenberg, Markey, Larsen, 2010)
- Energy automata are weighted automata over the semiring of energy functions
- ⇒ non-obvious reduction from WTA over Z and LIN to weighted automata over semiring of energy functions

- Further decidability results for WTA over $\mathbb Z$ and LIN: Kim Larsen's talk

- Further decidability results for WTA over $\mathbb Z$ and LIN: Kim Larsen's talk
- Open problem: energy problem [0, b] for such WTA with one clock

- Further decidability results for WTA over $\mathbb Z$ and LIN: Kim Larsen's talk
- Open problem: energy problem $\left[0,b\right]$ for such WTA with one clock
- Further decidability results for *multiweighted* automata (Fahrenberg, Juhl, Larsen and Srba, 2011)

- Further decidability results for WTA over $\mathbb Z$ and LIN: Kim Larsen's talk
- Open problem: energy problem $\left[0,b\right]$ for such WTA with one clock
- Further decidability results for *multiweighted* automata (Fahrenberg, Juhl, Larsen and Srba, 2011)
- Open: Energy problem for other weight structures?

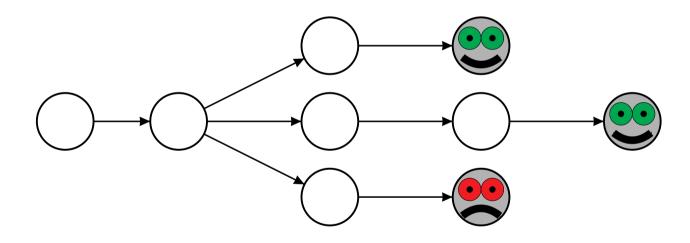
- Further decidability results for WTA over $\mathbb Z$ and LIN: Kim Larsen's talk
- Open problem: energy problem $\left[0,b\right]$ for such WTA with one clock
- Further decidability results for *multiweighted* automata (Fahrenberg, Juhl, Larsen and Srba, 2011)
- Open: Energy problem for other weight structures?
- Open: Energy problem for other kinds of weighted automata?

Model Checking Problem

Instance: An automaton \mathcal{A} , a formula φ . Question: Does \mathcal{A} satisfy φ ?

Model Checking Problem

Instance: An automaton \mathcal{A} , a formula φ . Question: Does \mathcal{A} satisfy φ ?



(Koymans, 1990)

 $\varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid X_I \varphi \mid \varphi U_I \varphi$

 $(a \in \Sigma, I \subseteq \mathbb{R}^+ \cup \{\infty\} \text{ with endpoints in } \mathbb{N} \cup \{\infty\})$

(Koymans, 1990)

 $\varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid X_I \varphi \mid \varphi U_I \varphi$

 $(a \in \Sigma, I \subseteq \mathbb{R}^+ \cup \{\infty\} \text{ with endpoints in } \mathbb{N} \cup \{\infty\})$

Let $w = (a_1, t_1)(a_2, t_2)(a_3, t_3)(a_4, t_4) \dots$ be a timed word, $i \ge 1$.

(Koymans, 1990)

 $\varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid X_I \varphi \mid \varphi U_I \varphi$

 $(a \in \Sigma, I \subseteq \mathbb{R}^+ \cup \{\infty\} \text{ with endpoints in } \mathbb{N} \cup \{\infty\})$

Let $w = (a_1, t_1)(a_2, t_2)(a_3, t_3)(a_4, t_4) \dots$ be a timed word, $i \ge 1$. $(w, i) \models X_I \varphi$ if $(w, i + 1) \models \varphi$ and $t_{i+1} - t_i \in I$

(Koymans, 1990)

 $\varphi ::= a \mid \neg \varphi \mid \varphi \lor \varphi \mid X_I \varphi \mid \varphi U_I \varphi$

 $(a \in \Sigma, I \subseteq \mathbb{R}^+ \cup \{\infty\} \text{ with endpoints in } \mathbb{N} \cup \{\infty\})$

Let $w = (a_1, t_1)(a_2, t_2)(a_3, t_3)(a_4, t_4) \dots$ be a timed word, $i \ge 1$. $(w, i) \models X_I \varphi$ if $(w, i + 1) \models \varphi$ and $t_{i+1} - t_i \in I$ $(w, i) \models \varphi_1 U_I \varphi_2$ if $\exists j \ge i(w, j) \models \varphi_2$ and $t_j - t_i \in I$ and $\forall i \le k < j.(w, k) \models \varphi_1$

- $\exists \varphi \in \mathsf{MTL}: L(\varphi)$ is not recognizable by timed automaton!!!

- $\exists \varphi \in MTL: L(\varphi)$ is not recognizable by timed automaton!!!
- Finitary model checking of timed automata is decidable (Ouaknine and Worrell, 2005)

- $\exists \varphi \in MTL: L(\varphi)$ is not recognizable by timed automaton!!!
- Finitary model checking of timed automata is decidable (Ouaknine and Worrell, 2005)
 - $\forall \varphi \in \mathsf{MTL} \exists$ alternating 1-clock timed automaton \mathcal{A}_{φ} such that $L(\mathcal{A}_{\varphi}) = L(\varphi)$

- $\exists \varphi \in MTL: L(\varphi)$ is not recognizable by timed automaton!!!
- Finitary model checking of timed automata is decidable (Ouaknine and Worrell, 2005)
 - $\forall \varphi \in \mathsf{MTL} \exists$ alternating 1-clock timed automaton \mathcal{A}_{φ} such that $L(\mathcal{A}_{\varphi}) = L(\varphi)$
 - Language inclusion of timed automata and alternating 1-clock timed automata is decidable

- $\exists \varphi \in MTL: L(\varphi)$ is not recognizable by timed automaton!!!
- Finitary model checking of timed automata is decidable (Ouaknine and Worrell, 2005)
 - $\forall \varphi \in \mathsf{MTL} \exists$ alternating 1-clock timed automaton \mathcal{A}_{φ} such that $L(\mathcal{A}_{\varphi}) = L(\varphi)$
 - Language inclusion of timed automata and alternating
 1-clock timed automata is decidable
- Infinitary model checking is undecidable (OW, 2006)

wMTL Model Checking of WTA over $\mathbb N$ and LIN

- Bouyer and Markey, 2007:
- Finitary model checking of WTA with one clock and one stopwatch is decidable

wMTL Model Checking of WTA over $\mathbb N$ and LIN

- Bouyer and Markey, 2007:
- Finitary model checking of WTA with one clock and one stopwatch is decidable
- Finitary model checking is undecidable for WTA with
 - two clocks, one stopwatch
 - one clock, two stopwatches
 - one clock, one weight variable with arbitrary rates

- Meinecke and Quaas, 2012
- wMTL over ordered monoids, interval constraints at \boldsymbol{X} and \boldsymbol{U}

- Meinecke and Quaas, 2012
- wMTL over ordered monoids, interval constraints at \boldsymbol{X} and \boldsymbol{U}
- wMTL model checking of weighted automata over bounded locally finite monoids is decidable

- Meinecke and Quaas, 2012
- wMTL over ordered monoids, interval constraints at \boldsymbol{X} and \boldsymbol{U}
- wMTL model checking of weighted automata over bounded locally finite monoids is decidable
 - $\forall \varphi \in wMTL \exists$ unweighted Büchi automaton \mathcal{A}_{φ} such that $L(\mathcal{A}_{\varphi}) = L(\varphi)$

- Meinecke and Quaas, 2012
- wMTL over ordered monoids, interval constraints at \boldsymbol{X} and \boldsymbol{U}
- wMTL model checking of weighted automata over bounded locally finite monoids is decidable
 - $\forall \varphi \in wMTL \exists$ unweighted Büchi automaton \mathcal{A}_{φ} such that $L(\mathcal{A}_{\varphi}) = L(\varphi)$
 - Emptiness problem for synchronized product of weighted automata and \mathcal{A}_{φ} is decidable

- Meinecke and Quaas, 2012
- wMTL over ordered monoids, interval constraints at \boldsymbol{X} and \boldsymbol{U}
- wMTL model checking of weighted automata over bounded locally finite monoids is decidable
 - $\forall \varphi \in wMTL \exists$ unweighted Büchi automaton \mathcal{A}_{φ} such that $L(\mathcal{A}_{\varphi}) = L(\varphi)$
 - Emptiness problem for synchronized product of weighted automata and \mathcal{A}_{φ} is decidable
- e.g. $(\mathbb{Q}^+, +, 0, \leq)$, $(\mathbb{N} \setminus \{0\}, \cdot, 1, \leq)$, $(\mathbb{Q} \cup \{\infty\}, \min, \infty, \geq)$

wMTL Model Checking of Weighted Automata over $\ensuremath{\mathbb{Z}}$

- $(\mathbb{Z},+,0,\leq)$ is not a bounded locally finite monoid

wMTL Model Checking of Weighted Automata over $\ensuremath{\mathbb{Z}}$

- $(\mathbb{Z},+,0,\leq)$ is not a bounded locally finite monoid
- wMTL model checking is undecidable (Quaas, 2012)

wMTL Model Checking of Weighted Automata over $\ensuremath{\mathbb{Z}}$

- $(\mathbb{Z},+,0,\leq)$ is not a bounded locally finite monoid

- wMTL model checking is undecidable (Quaas, 2012)

Open problem:

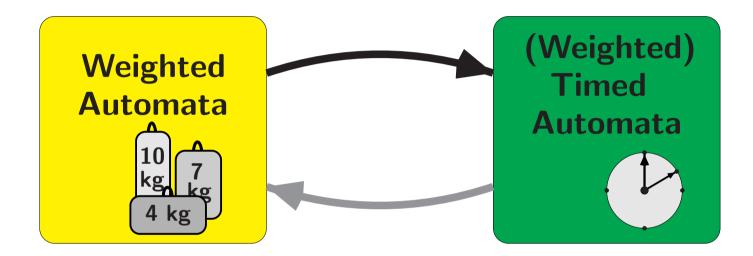
Can we restrict the logic in such a way that it is still reasonably expressive and model checking is decidable?

MTL Model Checking Timed Automata + VASS

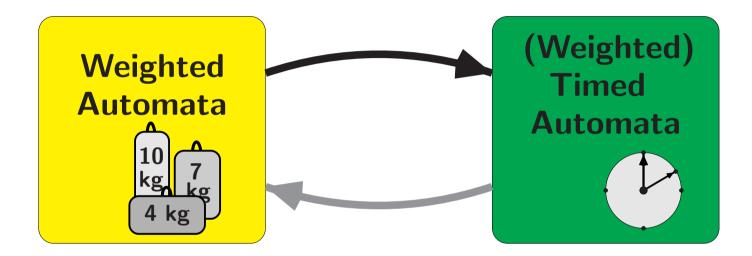
-wMTL model checking for WTA over $\mathbb Z$ and LIN is undecidable

Open problem:

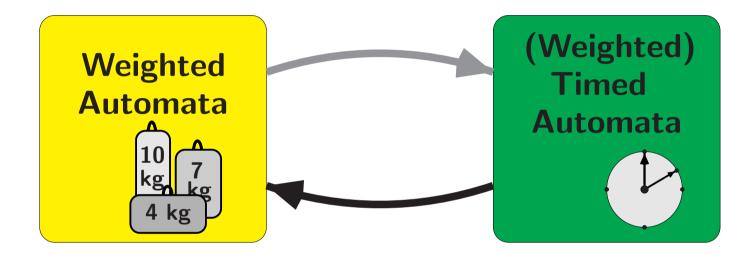
Is MTL model checking decidable for timed automata extended with weight variable ranging over \mathbb{N} , but whose value can be increased and decreased in a discrete manner? (Transitions which decrease the value below zero are blocked.)



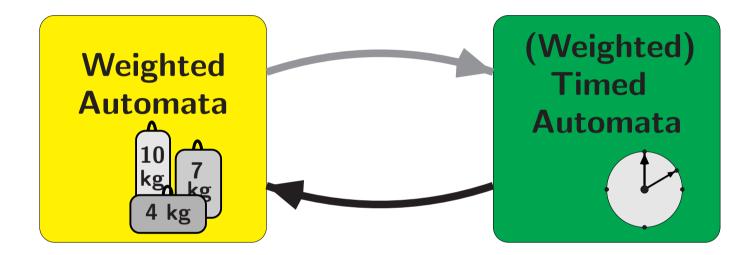
Introduction of WTA and Optimal Reachability



Unifying Definition of WTA, Timed series, Büchi, Kleene-Schützenberger, Supports...



Energy Problems, Energy Automata



Model Checking MTL-like temporal logics

Future Research

- Unifying frameworks for non-semiring WTA
- Generalizing known results for WTA
- Energy Problems:
 - $\cdot ~ [0,b] \text{-problem}$ for 1-clock WTA
 - \cdot for other weight structures
 - \cdot for other kinds of weighted automata
- Model checking restriction of weighted LTL over $\ensuremath{\mathbb{Z}}$
- Model checking MTL of timed automata + VASS