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What is the cheapest path from one given state
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- Alur, La Torre, Pappas (2001)

- Behrmann, Brinksma, Fehnker, Hune, Larsen,

Pettersson, Romijn (2001)

- Bouyer, Brihaye, Bruyère, Raskin (2007)
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Weighted automata with weights in N (Z)
summed up along the run:

- Dijkstra (Bellman-Ford) Algorithm

- Not applicable to WTA:

induce infinite weighted automaton

- Is there some discrete abstraction (= a weighted

automaton) that is sound and complete with

respect to optimal reachability?
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⇒ Sound and complete with respect to ORP
(Bouyer, Brihaye, Bruyère and Raskin, 2007)



Optimal Reachability Problem (ORP) for WTA

x1 ≤ 1

x1 := 0

x2 = 2
x2 := 0

x1 < 2

x1 > 3

x2 > 1

s0 s1

s2 s3

1

0

2 2

3 2

1 0

What is the cheapest path from one given state

to some other?

The optimal reachability problem for weighted

timed automata is PSPACE-complete.

(Bouyer, Brihaye, Bruyère and Raskin, 2007)
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- WTA over different weight structures:

· positive / negative / multiple weights

· linear / exponential growth rates

· along a run, weights are summed up / discounted / mean valued...

- Problems considered:

· Optimal Reachability / Scheduling

· Model Checking weighted timed extensions of temporal logics

· Games...
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⇒ WTA recognize timed series
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WTA as Recognizers of Timed Series

- Kleene-Schützenberger theorem for recognizable timed series:

Timed series are recognizable if, and only if, they are rational

(Droste and Quaas, 2008).

- Büchi theorem for recognizable timed series:

Timed series are recognizable, if, and only if, they are definable

in restricted weighted timed MSO logic (Quaas, 2009).

- Some further results, e.g., decidability of the equivalence

problem of WTA over (R,+, ·, 0, 1) and LIN (Quaas, 2009)

(Compare with undecidability of equivalence problem for timed automata)



A Unifying Framework for WTA

Using this unifying framework for WTA, can we generalize some of the

(un)decidability results of specific WTA to WTA over certain classes

of semirings?
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s0
(3, 2)

s1
(2, 1)

s2
(3, 0)

x = 1

x < 1

x := 0
x > 2
x := 0

- Bouyer, Brinksma, Larsen, 2004

- Multiweighted timed automata over N2 and LIN

- Weights are not summed up componentwise, but:

ratio(run) = sum of values of 1st weight variable
sum of values of 2nd weight variable

- No semiring operation!!!
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A Unifying Framework!!!

- Droste and Meinecke, 2010, proposed a unifying framework:

weighted automata over valuation monoids

(D,+,Val, 0), where (D,+, 0) is a monoid, Val : D+ → D

- Ratio operation cannot be modelled using valuation monoids

- Ratio operation can be modelled using valuation magmas

(Perevoshchikov, 2012)

- Open problem: Is there such a unifying framework for WTA?
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s0
−3

s1
6

s2
−6

x = 1

x > 0

x := 0

ι (Bouyer, Fahrenberg, Larsen, Markey, Srba, 2008)

Instance: A WTA over Z and LIN, b ∈ N, ι ∈ N.
Question: Is there an infinite run such that the value

of the weight variable is always within [0, b]?

Special case: value always within [0,∞],

⇒ Lower bound energy problem.
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Lower Bound Energy Problem for Weighted Automata over Z
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6−6

ι
s0 s1

s2

Instance: A weighted automaton over Z, ι ∈ N.
Question: Is there an infinite run such that the value

of the weight variable is always within [0,∞)?

- Is there some reachable cycle that is not energy losing?

- Bellman-Ford algorithm

- Lower bound energy problem for weighted automata

over Z is in P.
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Lower Bound Energy Problem for WTA over Z and LIN

s0
−3

s1
6

s2
−6

x = 1

x > 0

x := 0

ι The lower bound energy problem for

WTA over Z and LIN is in P (BFLMS, 2008)

if the WTA does not have any discrete weights.
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- Weighted refined region graph is not complete

with respect to energy problem for weighted

timed automata with discrete weights

- New discrete abstraction: energy automata

- Lower bound energy problem for EA is decidable,

- Sound and complete with respect to energy problem [0

(Bouyer, Fahrenberg, Markey, Larsen, 2010)

- Energy automata are weighted automata over the

semiring of energy functions

⇒ non-obvious reduction from WTA over Z

and LIN to weighted automata over semiring

of energy functions
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Energy Problems for Weighted Automata over Z

- Further decidability results for WTA over Z and LIN: Kim Larsen’s talk

- Open problem: energy problem [0, b] for such WTA with one clock

- Further decidability results for multiweighted automata

(Fahrenberg, Juhl, Larsen and Srba, 2011)

- Open: Energy problem for other weight structures?

- Open: Energy problem for other kinds of weighted automata?
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MTL Model Checking

(Koymans, 1990)

ϕ ::= a | ¬ϕ | ϕ ∨ ϕ | XIϕ | ϕUIϕ

(a ∈ Σ, I ⊆ R+ ∪ {∞} with endpoints in N ∪ {∞})

Let w = (a1, t1)(a2, t2)(a3, t3)(a4, t4) . . . be a timed word, i ≥ 1.

(w, i) |= XIϕ if (w, i+ 1) |= ϕ and ti+1 − ti ∈ I

(w, i) |= ϕ1UIϕ2 if ∃j ≥ i(w, j) |= ϕ2 and tj − ti ∈ I and

∀i ≤ k < j.(w, k) |= ϕ1
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MTL Model Checking of Timed Automata

- ∃ϕ ∈MTL: L(ϕ) is not recognizable by timed automaton!!!

- Finitary model checking of timed automata is decidable

(Ouaknine and Worrell, 2005)

- ∀ϕ ∈MTL ∃ alternating 1-clock timed automaton Aϕ

such that L(Aϕ) = L(ϕ)

- Language inclusion of timed automata and alternating

1-clock timed automata is decidable

- Infinitary model checking is undecidable (OW, 2006)
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wMTL Model Checking of WTA over N and LIN

- Bouyer and Markey, 2007:

- Finitary model checking of WTA with one clock and one stopwatch

is decidable

- Finitary model checking is undecidable for WTA with

- two clocks, one stopwatch

- one clock, two stopwatches

- one clock, one weight variable with arbitrary rates
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wMTL Model Checking of Weighted Automata

- Meinecke and Quaas, 2012

- wMTL over ordered monoids, interval constraints at X and U

- wMTL model checking of weighted automata over

bounded locally finite monoids is decidable

- ∀ϕ ∈wMTL ∃ unweighted Büchi automaton Aϕ such

that L(Aϕ) = L(ϕ)

- Emptiness problem for synchronized product of weighted

automata and Aϕ is decidable

- e.g. (Q+,+, 0,≤), (N\{0}, ·, 1,≤), (Q ∪ {∞},min,∞,≥)
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wMTL Model Checking of Weighted Automata over Z

- (Z,+, 0,≤) is not a bounded locally finite monoid

- wMTL model checking is undecidable (Quaas, 2012)

Open problem:

Can we restrict the logic in such a way that it is still

reasonably expressive and model checking is decidable?



MTL Model Checking Timed Automata + VASS

-wMTL model checking for WTA over Z and LIN is undecidable

Open problem:

Is MTL model checking decidable for timed automata extended

with weight variable ranging over N, but whose
value can be increased and decreased in a discrete manner?

(Transitions which decrease the value below zero are blocked.)
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A Fruitful Interplay!

Weighted
Automata

10
kg 7

kg
4 kg

(Weighted)
Timed

Automata

Model Checking MTL-like temporal logics



Future Research

- Unifying frameworks for non-semiring WTA

- Generalizing known results for WTA

- Energy Problems:

· [0, b]-problem for 1-clock WTA

· for other weight structures

· for other kinds of weighted automata

- Model checking restriction of weighted LTL over Z

- Model checking MTL of timed automata + VASS


