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Lemma 3.4 There exists some k ∈ N such that for all timed words w we have
rotationk(w) = rotationm(w) for all m ≥ k.

Proof. (Sketch) At some point of time all clocks have an integer value greater
than cmax, hence the “last” region word is of the form ∅ · {(x,∞) | x ∈ X}.

Lemma 3.5 Let r, r′ be two clock regions. Further, let w ∈ (2(X×MAX))+ be
the word that represents r. Then r′ is a time successor of r if, and only if, r′ is
represented by a word w′ for which w′ ∈ rotation∗(w).

The Region Graph Construction The region graph (also called region au-
tomaton) of a given timed automaton A = (Σ,L,L0,Lf , X,E), denoted by
R(A), is a tuple (Σ ∪ {ε}, QR, QR0 , QRf ,→R), where

– QR = L × {r | r is a clock region over X},
– QR0 = L0 × {[ν0]}, where ν0(x) = 0 for every x ∈ X,
– QRf = Lf × {r | r is a clock region over X},
– (l , r)

ε→R (l , r′) iff r′ is a time successor of r,

– (l , r)
a→R (l ′, r′) iff there exists t ν ∈ r, ν′ ∈ r′ such that (l , ν)

a→D (l ′, ν′).

Recall that we want to reduce the reachability problem for timed automata to
the reachability problem for finite graphs. That R(A) consists of finitely many
nodes follows from Lemma 3.2. In the following we prove that the reduction
of the reachability problem for timed automata to the reachability problem for
the region graph is correct : The state (l , ν) (for some arbitrary clock valuation
ν) is reachable in A if, and only if, (l , r) (for some arbitrary clock region r) is
reachable in R(A). For this we use the theoretical concept of bisimilarity : we
prove that S(A) and R(A) are bisimilar.

Correctness of the Reduction We define (l , ν) ≡ (l ′, ν′) iff l = l ′ and ν ≡ ν′.
We prove: ≡ is a time-abstract bisimulation relation.

Lemma 3.6 [Bisimulation lemma]

1. If (l1, ν1) ≡ (l ′1, ν
′
1) and (l1, ν1)

δ→T (l2, ν2) for some δ ∈ R≥0, then there exist

δ′ ∈ R≥0 and (l ′2, ν
′
2) such that (l ′1, ν

′
1)

δ′→T (l ′2, ν
′
2) and (l2, ν2) ≡ (l ′2, ν

′
2).
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2. If (l1, ν1) ≡ (l ′1, ν
′
1) and (l1, ν1)

a→D (l2, ν2) for some a ∈ Σ, then there exists

(l ′2, ν
′
2) such that (l ′1, ν

′
1)

a→D (l ′2, ν
′
2) and (l2, ν2) ≡ (l ′2, ν

′
2).

3. If (l1, ν1) ≡ (l ′1, ν
′
1) and (l ′1, ν

′
1)

δ→T (l ′2, ν
′
2) for some δ′ ∈ R≥0, then there

exist δ ∈ R≥0 and (l2, ν2) such that (l1, ν1)
δ→T (l2, ν2) and (l2, ν2) ≡ (l ′2, ν

′
2).

4. If (l1, ν1) ≡ (l ′1, ν
′
1) and (l ′1, ν

′
1)

a→D (l ′2, ν
′
2) for some a ∈ Σ, then there exists

(l2, ν2) such that (l1, ν1)
a→D (l2, ν2) and (l2, ν2) ≡ (l ′2, ν

′
2).

Proof. 1. – (l1, ν1) ≡ (l ′1, ν
′
1) implies l1 = l ′1, and ν1 ≡ ν′1 (by definition of ≡).

– l2 = l1 (by definition of →T ), hence also l2 = l ′1 (1)
– ν2 = ν1 + δ (2) (by definition of →T )
– By Lemma 3.1(a) there exists δ′ ∈ R≥0 such that ν1 + δ ≡ ν′1 + δ′ (3).

– Hence there exists a timed transition (l ′1, ν
′
1)

δ′→T (l ′2, ν
′
2) where l ′2 = l ′1

and ν′2 = ν′1 + δ′ by definition of →T .
– By (1) we have l ′2 = l2, and by (2) and (3) we have ν′2 ≡ ν2.

2. – (l1, ν1) ≡ (l ′1, ν
′
1) implies l1 = l ′1 (1), and ν1 ≡ ν′1 (2) (by definition of ≡).

– By (l1, ν1)
a→D (l2, ν2) there exists e = (l1, a, φ, λ, l2) ∈ E with ν1 |= φ

and ν2 = ν1[λ := 0].
– By Lemma 3.1(b) and (2) we have ν′1 |= φ, we hence can also execute

the edge e from (l ′1, ν
′
1).

– By Lemma 3.1(c) we have in (l ′1, ν
′
1)

a→D (l ′2, ν
′
2) with ν′2 = ν′1[λ := 0]

also ν2 ≡ ν′2.
3. Analogously.
4. Analogously.

Let (S,→) und (S′,→′) be two directed graphs, not necessarily finite. Further
let s ∈ S und s′ ∈ S′. Let R ⊆ (S × S′) be a relation with (s, s′) ∈ R. We say
that R is a bisimulation with respect to (s, s′) if for all (s1, s

′
1) ∈ R we have:

(i) If s1 → s2, then there exists s′2 ∈ S′ with s′1 →′ s′2 and (s2, s
′
2) ∈ R, (ii) If

s′1 →′ s′2, then there exists s2 ∈ S with s1 → s2 such that (s2, s
′
2) ∈ R. We say

that (S,→) and (S′,→′) are bisimilar with respect to s and s′ if there exists a
bisimulation R ⊆ (S × S′) with respect to (s, s′) .

Next we prove that the two directed graphs S(A) and R(A) are bisimilar.

Lemma 3.7 S(A) and R(A) are bisimilar with respect to (l0, ν0) and (l0, [ν0]).

Proof. DefineR = {((l , ν), (l , [ν])) | ν is a clock valuation for X}. We prove that
R is a bisimulation with respect to (l0, ν0) and (l0, [ν0]). Clear: ((l0, ν0), (l0, [ν0])) ∈
R. The following two cases are easy:

1. Assume ((l , ν), (l , [ν])) ∈ R and (l , ν)
δ→T (l ′, ν′) for some δ ∈ R≥0. Hence

ν′ = ν + δ. Thus [ν′] is a time successor of [ν]. Hence by definition of →R
we have (l , [ν])

ε→R (l , [ν′]).

2. Assume ((l , ν), (l , [ν])) ∈ R and (l , ν)
a→D (l ′, ν′) for some a ∈ Σ. By defi-

nition of →D there exists some e = (l , a, φ, λ, l ′) ∈ E such that ν |= φ and

ν′ = ν[λ := 0]. By definition of →R we also have: (l , [ν])
a→R (l ′, [ν′]).
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Now we treat the two harder cases. For them we need the bisimulation lemma.

1. Assume ((l , ν), (l , r)) ∈ R and (l , r)
ε→R (l , r′). Hence r′ is a time successor

of r. Hence there exists ν1 ∈ r and δ1 ∈ R≥0 such that (ν1 + δ1) ∈ r′ (by the

definition of time successors). By definition of →T : (l , ν1)
δ1→T (l , ν1 + δ1).

We have ν ∈ r and ν1 ∈ r, hence ν ≡ ν1. Thus (l , ν) ≡ (l , ν1). By the

bisimulation lemma there exists δ ∈ R≥0 such that (l , ν)
δ→T (l , ν + δ) and

(l , ν + δ) ≡ (l , ν1 + δ1). Hence (ν + δ) ∈ r′. Hence ((l , ν + δ), (l , r′)) ∈ R.
2. Exercise.

We obtain the correctness of the reduction (use the definition of bisimulation!):

Corollary 1. (l , ν) is reachable in A for some ν if, and only if, (l , r) is reachable
in R(A) for some r.

Next we consider the relation between timed languages recognized by a timed
automaton and the (untimed) language recognized by the corresponding region
automaton. Observe that the region graph contains transitions with so-called
ε-transitions. From the theory of finite automata we know that for every finite
automaton A with ε-transitions there exists a finite automaton A′ without ε-
transitions such that L(A) = L(A′). Let B be the finite automaton over Σ such
that L(B) = L(R(A)).

Corollary 2. L(B) = Untime(L(A))

Proof. Let w = a1 . . . an ∈ L(B). Then w ∈ L(R(A)). Hence there is a successful

run (l0, r0)
ε→R (l0, r

′
0)

a1→R · · ·
an→R (ln, rn) of R(A) on w, i.e., l0 ∈ L0, r0 = 0|X|

and ln ∈ LF . From the bisimulation lemma it follows that there exist δ1, . . . , δn ∈
R≥0 such that the run of the form (l0, ν0)

δ1→T (l0, ν0 + δ1)
a1→D · · ·

an→R (ln, νn)
with νi ∈ ri, νi + δi+1 ∈ r′i for all i ∈ {0, ..., n} is a run of A over the timed
word u = (a1, t1) . . . (an, tn), where ti =

∑n
j=1 δj . This run is successful, hence

w ∈ L(A). Further we have w = Untime(u). Hence w ∈ Untime(L(A)).
Let w = a1 . . . an ∈ Untime(L(A)). Then there exists a timed word u =

(a1, t1) . . . (an, tn) ∈ L(A) for some t1, . . . , tn ∈ R≥0. Then there exists a success-

ful run of A on u, e.g., of the form (l0, ν0)
δ1→T (l0, ν0 + δ1)

a1→ (l1, ν1) . . . (ln, νn),
where ti =

∑
1≤j≤i δj for every i ∈ {1, . . . , n}. By the bisimulation lemma there

exists a run of the form (l0, [ν0])
ε→R (l0, [ν0 + δ1])

a1→R . . . (l0, [νn−1 + δn])
an→R

of R on w. This run is successsful, hence w ∈ L(R(A)). Thus w ∈ L(B).

(Alternatively, you can find in the literature a direct construction that constructs
from a timed automaton A a region graph that does not use ε-transitions. Hence,
in this construction time successor transitions are not explicitly considered.)


