Real-Timed Automata Lecture 4, 12.05.2014

Karin Quaas

Universität Leipzig, Germany

Lemma 3.4 There exists some $k \in \mathbb{N}$ such that for all timed words w we have rotation^k $(w) = \text{rotation}^m(w)$ for all $m \geq k$.

Proof. (Sketch) At some point of time all clocks have an integer value greater than **cmax**, hence the "last" region word is of the form $\emptyset \cdot \{(x, \infty) \mid x \in X\}$.

Lemma 3.5 Let r, r' be two clock regions. Further, let $w \in (2^{(X \times MAX)})^+$ be the word that represents r. Then r' is a time successor of r if, and only if, r' is represented by a word w' for which $w' \in \mathsf{rotation}^*(w)$.

The Region Graph Construction The region graph (also called region automaton) of a given timed automaton $\mathcal{A} = (\Sigma, \mathcal{L}, \mathcal{L}_0, \mathcal{L}_f, X, E)$, denoted by $\mathcal{R}(\mathcal{A})$, is a tuple $(\Sigma \cup \{\varepsilon\}, Q^{\mathcal{R}}, Q_0^{\mathcal{R}}, Q_f^{\mathcal{R}}, \rightarrow_{\mathcal{R}})$, where

$$\begin{aligned} &-Q^{\mathcal{R}} = \mathcal{L} \times \{r \mid r \text{ is a clock region over } X\}, \\ &-Q_0^{\mathcal{R}} = \mathcal{L}_0 \times \{[\nu_0]\}, \text{ where } \nu_0(x) = 0 \text{ for every } x \in X, \\ &-Q_f^{\mathcal{R}} = \mathcal{L}_f \times \{r \mid r \text{ is a clock region over } X\}, \\ &-(l,r) \xrightarrow{\varepsilon}_{\mathcal{R}} (l,r') \text{ iff } r' \text{ is a time successor of } r, \\ &-(l,r) \xrightarrow{a}_{\mathcal{R}} (l',r') \text{ iff there exists t } \nu \in r, \nu' \in r' \text{ such that } (l,\nu) \xrightarrow{a}_D (l',\nu'). \end{aligned}$$

Recall that we want to reduce the reachability problem for timed automata to the reachability problem for *finite* graphs. That $\mathcal{R}(\mathcal{A})$ consists of *finitely* many nodes follows from Lemma 3.2. In the following we prove that the reduction of the reachability problem for timed automata to the reachability problem for the region graph is *correct*: The state (l, ν) (for some arbitrary clock valuation ν) is reachable in \mathcal{A} if, and only if, (l, r) (for some arbitrary clock region r) is reachable in $\mathcal{R}(\mathcal{A})$. For this we use the theoretical concept of *bisimilarity*: we prove that $\mathcal{S}(\mathcal{A})$ and $\mathcal{R}(\mathcal{A})$ are *bisimilar*.

Correctness of the Reduction We define $(l, \nu) \equiv (l', \nu')$ iff l = l' and $\nu \equiv \nu'$. We prove: \equiv is a *time-abstract bisimulation relation*.

Lemma 3.6 [Bisimulation lemma]

1. If $(l_1, \nu_1) \equiv (l'_1, \nu'_1)$ and $(l_1, \nu_1) \xrightarrow{\delta}_T (l_2, \nu_2)$ for some $\delta \in \mathbb{R}_{\geq 0}$, then there exist $\delta' \in \mathbb{R}_{\geq 0}$ and (l'_2, ν'_2) such that $(l'_1, \nu'_1) \xrightarrow{\delta'}_T (l'_2, \nu'_2)$ and $(l_2, \nu_2) \equiv (l'_2, \nu'_2)$.

2 Karin Quaas

- 2. If $(l_1, \nu_1) \equiv (l'_1, \nu'_1)$ and $(l_1, \nu_1) \xrightarrow{a}_D (l_2, \nu_2)$ for some $a \in \Sigma$, then there exists (l'_2, ν'_2) such that $(l'_1, \nu'_1) \xrightarrow{a}_D (l'_2, \nu'_2)$ and $(l_2, \nu_2) \equiv (l'_2, \nu'_2)$.
- 3. If $(l_1, \nu_1) \equiv (l'_1, \nu'_1)$ and $(l'_1, \nu'_1) \xrightarrow{\delta}_T (l'_2, \nu'_2)$ for some $\delta' \in \mathbb{R}_{\geq 0}$, then there exist $\delta \in \mathbb{R}_{>0}$ and (l_2, ν_2) such that $(l_1, \nu_1) \xrightarrow{\delta}_T (l_2, \nu_2)$ and $(l_2, \nu_2) \equiv (l'_2, \nu'_2)$.
- 4. If $(l_1, \nu_1) \equiv (l'_1, \nu'_1)$ and $(l'_1, \nu'_1) \stackrel{a}{\rightarrow}_D (l'_2, \nu'_2)$ for some $a \in \Sigma$, then there exists (l_2, ν_2) such that $(l_1, \nu_1) \stackrel{a}{\rightarrow}_D (l_2, \nu_2)$ and $(l_2, \nu_2) \equiv (l'_2, \nu'_2)$.

Proof. 1. $-(l_1, \nu_1) \equiv (l'_1, \nu'_1)$ implies $l_1 = l'_1$, and $\nu_1 \equiv \nu'_1$ (by definition of \equiv). $-l_2 = l_1$ (by definition of \rightarrow_T), hence also $l_2 = l'_1$ (1)

- $-\nu_2 = \nu_1 + \delta$ (2) (by definition of \rightarrow_T)
- By Lemma 3.1(a) there exists $\delta' \in \mathbb{R}_{\geq 0}$ such that $\nu_1 + \delta \equiv \nu'_1 + \delta'$ (3).
- Hence there exists a timed transition $(l'_1, \nu'_1) \xrightarrow{\delta'}_T (l'_2, \nu'_2)$ where $l'_2 = l'_1$ and $\nu'_2 = \nu'_1 + \delta'$ by definition of \rightarrow_T .
- By (1) we have $l'_2 = l_2$, and by (2) and (3) we have $\nu'_2 \equiv \nu_2$.
- 2. $-(l_1, \nu_1) \equiv (l'_1, \nu'_1)$ implies $l_1 = l'_1$ (1), and $\nu_1 \equiv \nu'_1$ (2) (by definition of \equiv). - By $(l_1, \nu_1) \xrightarrow{a}_D (l_2, \nu_2)$ there exists $e = (l_1, a, \phi, \lambda, l_2) \in E$ with $\nu_1 \models \phi$ and $\nu_2 = \nu_1 [\lambda := 0]$.
 - By Lemma 3.1(b) and (2) we have $\nu'_1 \models \phi$, we hence can also execute the edge *e* from (l'_1, ν'_1) .
 - By Lemma 3.1(c) we have in $(l'_1, \nu'_1) \xrightarrow{a}_D (l'_2, \nu'_2)$ with $\nu'_2 = \nu'_1[\lambda := 0]$ also $\nu_2 \equiv \nu'_2$.
- 3. Analogously.
- 4. Analogously.

Let (S, \rightarrow) und (S', \rightarrow') be two directed graphs, not necessarily finite. Further let $s \in S$ und $s' \in S'$. Let $R \subseteq (S \times S')$ be a relation with $(s, s') \in R$. We say that R is a bisimulation with respect to (s, s') if for all $(s_1, s'_1) \in R$ we have: (i) If $s_1 \rightarrow s_2$, then there exists $s'_2 \in S'$ with $s'_1 \rightarrow' s'_2$ and $(s_2, s'_2) \in R$, (ii) If $s'_1 \rightarrow' s'_2$, then there exists $s_2 \in S$ with $s_1 \rightarrow s_2$ such that $(s_2, s'_2) \in R$. We say that (S, \rightarrow) and (S', \rightarrow') are bisimilar with respect to s and s' if there exists a bisimulation $R \subseteq (S \times S')$ with respect to (s, s').

Next we prove that the two directed graphs $\mathcal{S}(\mathcal{A})$ and $\mathcal{R}(\mathcal{A})$ are bisimilar.

Lemma 3.7 $\mathcal{S}(\mathcal{A})$ and $\mathcal{R}(\mathcal{A})$ are bisimilar with respect to (l_0, ν_0) and $(l_0, [\nu_0])$.

Proof. Define $R = \{((l, \nu), (l, [\nu])) \mid \nu \text{ is a clock valuation for } X\}$. We prove that R is a bisimulation with respect to (l_0, ν_0) and $(l_0, [\nu_0])$. Clear: $((l_0, \nu_0), (l_0, [\nu_0])) \in R$. The following two cases are easy:

- 1. Assume $((l,\nu), (l, [\nu])) \in R$ and $(l,\nu) \xrightarrow{\delta}_T (l',\nu')$ for some $\delta \in \mathbb{R}_{\geq 0}$. Hence $\nu' = \nu + \delta$. Thus $[\nu']$ is a time successor of $[\nu]$. Hence by definition of $\rightarrow_{\mathcal{R}}$ we have $(l, [\nu]) \xrightarrow{\varepsilon}_{\mathcal{R}} (l, [\nu'])$.
- 2. Assume $((l,\nu), (l, [\nu])) \in R$ and $(l,\nu) \stackrel{a}{\to}_D (l',\nu')$ for some $a \in \Sigma$. By definition of \to_D there exists some $e = (l, a, \phi, \lambda, l') \in E$ such that $\nu \models \phi$ and $\nu' = \nu[\lambda := 0]$. By definition of $\to_{\mathcal{R}}$ we also have: $(l, [\nu]) \stackrel{a}{\to}_{\mathcal{R}} (l', [\nu'])$.

Now we treat the two harder cases. For them we need the bisimulation lemma.

- 1. Assume $((l,\nu), (l,r)) \in R$ and $(l,r) \stackrel{\varepsilon}{\to}_{\mathcal{R}} (l,r')$. Hence r' is a time successor of r. Hence there exists $\nu_1 \in r$ and $\delta_1 \in \mathbb{R}_{\geq 0}$ such that $(\nu_1 + \delta_1) \in r'$ (by the definition of time successors). By definition of \to_T : $(l,\nu_1) \stackrel{\delta_1}{\to}_T (l,\nu_1 + \delta_1)$. We have $\nu \in r$ and $\nu_1 \in r$, hence $\nu \equiv \nu_1$. Thus $(l,\nu) \equiv (l,\nu_1)$. By the bisimulation lemma there exists $\delta \in \mathbb{R}_{\geq 0}$ such that $(l,\nu) \stackrel{\delta}{\to}_T (l,\nu + \delta)$ and $(l,\nu + \delta) \equiv (l,\nu_1 + \delta_1)$. Hence $(\nu + \delta) \in r'$. Hence $((l,\nu + \delta), (l,r')) \in R$.
- 2. Exercise.

We obtain the correctness of the reduction (use the definition of bisimulation!):

Corollary 1. (l, ν) is reachable in \mathcal{A} for some ν if, and only if, (l, r) is reachable in $\mathcal{R}(\mathcal{A})$ for some r.

Next we consider the relation between timed languages recognized by a timed automaton and the (untimed) language recognized by the corresponding region automaton. Observe that the region graph contains transitions with so-called ε -transitions. From the theory of finite automata we know that for every finite automaton \mathcal{A} with ε -transitions there exists a finite automaton \mathcal{A}' without ε -transitions such that $L(\mathcal{A}) = L(\mathcal{A}')$. Let \mathcal{B} be the finite automaton over Σ such that $L(\mathcal{B}) = L(\mathcal{R}(\mathcal{A}))$.

Corollary 2. $L(\mathcal{B}) = \text{Untime}(L(\mathcal{A}))$

Proof. Let $w = a_1 \ldots a_n \in L(\mathcal{B})$. Then $w \in L(\mathcal{R}(\mathcal{A}))$. Hence there is a successful run $(l_0, r_0) \xrightarrow{\varepsilon}_{\mathcal{R}} (l_0, r'_0) \xrightarrow{a_1}_{\mathcal{R}} \cdots \xrightarrow{a_n}_{\mathcal{R}} (l_n, r_n)$ of $\mathcal{R}(\mathcal{A})$ on w, i.e., $l_0 \in \mathcal{L}_0, r_0 = 0^{|X|}$ and $l_n \in \mathcal{L}_F$. From the bisimulation lemma it follows that there exist $\delta_1, \ldots, \delta_n \in \mathbb{R}_{\geq 0}$ such that the run of the form $(l_0, \nu_0) \xrightarrow{\delta_1}_{\mathcal{T}} (l_0, \nu_0 + \delta_1) \xrightarrow{a_1}_{\mathcal{D}} \cdots \xrightarrow{a_n}_{\mathcal{R}} (l_n, \nu_n)$ with $\nu_i \in r_i, \nu_i + \delta_{i+1} \in r'_i$ for all $i \in \{0, \ldots, n\}$ is a run of \mathcal{A} over the timed word $u = (a_1, t_1) \ldots (a_n, t_n)$, where $t_i = \sum_{j=1}^n \delta_j$. This run is successful, hence $w \in L(\mathcal{A})$. Further we have w = Untime(u). Hence $w \in \text{Untime}(L(\mathcal{A}))$.

Let $w = a_1 \dots a_n \in \text{Untime}(L(\mathcal{A}))$. Then there exists a timed word $u = (a_1, t_1) \dots (a_n, t_n) \in L(\mathcal{A})$ for some $t_1, \dots, t_n \in \mathbb{R}_{\geq 0}$. Then there exists a successful run of \mathcal{A} on u, e.g., of the form $(l_0, \nu_0) \stackrel{\delta_1}{\to}_T (l_0, \nu_0 + \delta_1) \stackrel{a_1}{\to} (l_1, \nu_1) \dots (l_n, \nu_n)$, where $t_i = \sum_{1 \leq j \leq i} \delta_j$ for every $i \in \{1, \dots, n\}$. By the bisimulation lemma there exists a run of the form $(l_0, [\nu_0]) \stackrel{\varepsilon}{\to}_{\mathcal{R}} (l_0, [\nu_0 + \delta_1]) \stackrel{a_1}{\to}_{\mathcal{R}} \dots (l_0, [\nu_{n-1} + \delta_n]) \stackrel{a_n}{\to}_{\mathcal{R}}$ of \mathcal{R} on w. This run is successful, hence $w \in L(\mathcal{R}(\mathcal{A}))$. Thus $w \in L(\mathcal{B})$.

(Alternatively, you can find in the literature a direct construction that constructs from a timed automaton \mathcal{A} a region graph that does not use ε -transitions. Hence, in this construction time successor transitions are not explicitly considered.)