SS 2014 Institut für Informatik

"Real-Timed Automata" Exercise 5

The following exercises must be submitted 07.07.2014 before the lecture.

- 1. Is the following statement correct or not? Justify your answer! Let (D, \leq) be a quasi-order, and let $A, B \subseteq D$. Then the following holds: If $\uparrow A \subseteq \uparrow B$ and $B \subseteq A$, then $A \subseteq B$.
- 2. Write a proof for the following claim: Let (D, \leq) be a quasi-order, and let $A, B \subseteq D$. Then the following two assertions are equivalent:
 - (a) $\uparrow A \subseteq \uparrow B$.
 - (b) $A \subseteq B$, or for every $a \in A \setminus B$ there exists $b \in B$ with $b \leq a$.
- 3. Consider the semantical graph (S, →) induced by a bounded one-counter automaton B. Hence, S is the cross product of the set of states of B and elements in [0,...,b], where b is the global bound of B. Define the order ≤ on S by (q, n) ≤ (q', n') iff q = q' and n ≤ n', where ≤ is the usual order on N. Prove that the transition relation → is not reflexive downward-compatible with respect to ≤.