SS 2014 Institut für Informatik

"Real-Timed Automata" Exercise 3

The following exercises must be submitted 02.06.2014 before the lecture.

1. Construct the region automaton for the following timed automaton:

- 2. Let (ψ, t) be a subset-sum game, where $\psi = \forall \{2, 5\} \exists \{3, 1\} \forall \{1, 0\} \exists \{0, 2\} \forall \{3, 1\} \exists \{0, 2\}$, and t = 9.
 - (a) Give a play that is winning for the existential player.
 - (b) Does the existential player have a winning strategy? If yes, give this strategy. Otherwise, give a counterexample.
- 3. Prove Lemma 3.13:

If there exists a successful run in $A_{\mathcal{B}}$, then there exists a computation in \mathcal{B} ending in q_f .

4. Consider the following counter automaton \mathcal{B} :

- (a) \mathcal{B} is not a bounded counter-stack automaton. Why not?
- (b) Add to \mathcal{B} the missing information in such a way that there is some computation in \mathcal{B} ending in q_3 .
- (c) Construct a BOCA B' that is reachability-equivalent to B. Hint: By reachability-equivalent we (informally) mean that for all states q of B, B has a computation ending in q if, and only if, B' has a computation ending in q.