"Real-Timed Automata" Exercise 2

The following exercises must be submitted 19.05.2014 before the lecture.

1. Construct the region automaton for the following timed automaton:

- 2. Prove the remaining open case for Lemma 3.7: Assume $\langle (l,\nu), (l,r) \rangle \in R$ and $(l,r) \xrightarrow{a}_{\mathcal{R}} (l',r')$. Then there exists some (l',ν') such that $(l,\nu) \xrightarrow{a}_{D} (l',\nu')$ and $\langle (l',\nu'), (l',r') \rangle \in R$.
- 3. For $a, b \in \mathbb{Z}$ with $a \leq b$, we use [a, b] to denote the set $\{x \in \mathbb{Z} \mid a \leq x \leq b\}$.

A bounded one-counter automaton (BOCA, for short) is a tuple $\mathcal{B} = (Q, b, \Delta, q_{\iota})$, where Q is a finite set of control states, $b \in \mathbb{N}$ is a global counter bound, $\Delta \subseteq (Q \times [-b, +b] \times Q)$ is a finite set of transitions, and $q_{\iota} \in Q$ is the initial control state. A *configuration* is a pair (q, v), where $q \in Q$ is the current control state, and $v \in [0, b]$ is the current value of the counter. We define the transition relation \rightarrow on the set of configurations as follows: $\langle (q, v), (q', v') \rangle \in \rightarrow$ iff there is a transition $(q, d, q') \in \Delta$ such that v' = v + d. A *computation* is a finite sequence $\prod_{1 \leq i \leq n} \langle (q_{i-1}, v_{i-1}), (q_i, v_i) \rangle$ such that $q_0 = q_{\iota}$, $v_0 = 0$, and $\langle (q_{i-1}, v_{i-1}), (q_i, v_i) \rangle \in \rightarrow$ for every $i \in \{1, \ldots, n\}$. The reachability problem is: given a bounded one-counter automaton $\mathcal{B} =$ $(Q, b, \Delta, q_{\iota})$ and $q \in Q$, is there a computation ending in q?

A bounded one-counter automaton with inequality tests is a tuple $\mathcal{I} = (Q, b, \Delta, q_{\iota})$, where Q, b, q_{ι} are as above, and $\Delta \subseteq (Q \times [-b, +b] \times [0, b] \times [0, b] \times Q)$ is a finite set of transitions. In a transition of the form $(q, d, g_1, g_2, q') \in \Delta$, g_1 and g_2 determine the lower and upper bound on the value of the counter. Accordingly, the transition relation \Rightarrow on the set of configurations is defined by $\langle (q, v), (q', v') \rangle \in \Rightarrow$ iff there is a transition $(q, d, g_1, g_2, q') \in \Delta$ such that $g_1 \leq v \leq g_2$ and v' = v + d. Computations and the reachability problem are defined as for BOCA.

Prove that the reachability problem for bounded one-counter automata with inequality tests is log-space reducible to the reachability problem for BOCA.

Hint: Give a translation from bounded one-counter automata with inequality tests to BOCA. Use the global counter bound to test inequalities against the counter.

4. An instance of the SUBSET-SUM problem consists of a pair (A, t), where $A \subseteq \mathbb{N}$ is a finite set of the natural numbers, and $t \in \mathbb{N}$ is a natural number. The SUBSET-SUM problem is to decide, whether there exists a subset B of A, such that $\sum_{a \in B} a = t$. This problem is NP-complete.

Show by a reduction of the SUBSET-SUM problem that the reachability problem for timed automata with two clocks is NP-hard.