1. Aufgabenblatt, Aufgabe 4, Richtung \Leftarrow : Wir beweisen die Kontraposition. Sei $w = \lambda(t_0)\lambda(t_1)\dots$, wobei $t_0t_1\dots$ ein Pfad in K und $w \not\models \varphi$. Definiere $w' = P_1P_2\dots \in (2^{\mathsf{AP'}})^\omega$ durch $P_i = \lambda(t_i) \cup \{t_i\}$ für alle $i \geq 0$. Klarerweise gilt $w' \models \varphi_K$ und $w' \not\models \varphi$, also $w' \not\models (\varphi_K \to \varphi)$.

Ein paar Worte zu der in der Übung vom 15.5. diskutierten Fallunterscheidung:

"Angenommen, $w \models (\varphi_K \to \varphi)$ für alle $w \in (2^{\mathsf{AP}'})^\omega$. Zu zeigen: $K, s_0 \models_{\forall} \varphi$. Angenommen $w \in (2^{\mathsf{AP}'})^\omega$. Es gibt zwei Fälle: $w \models \varphi_K$ oder $w \not\models \varphi_K$."

Diese Fallunterscheidung macht an der Stelle keinen Sinn. Wir müssen ein beliebiges Wort $w \in \mathsf{Lab}(K, s_0)$ betrachten und zeigen, dass $w \models \varphi$.