```
Beweis zu (\mathsf{GF}\phi \to \mathsf{GF}\psi) \to (\mathsf{GF}(\phi \to \psi)).
Sei w \in \Sigma^{\omega} mit w \models \mathsf{GF}\phi \to \mathsf{GF}\psi. Zu zeigen: w \models \mathsf{GF}(\phi \to \psi).
```

1. Fall Angenommen $w \models \mathsf{GF}\phi$. Dann gilt also ϕ unendlich oft in w. Nach Voraussetzung also auch $w \models \mathsf{GF}\psi$ (\star) .

Wir unterscheiden nun zwei weitere Fälle. (i) Angenommen, $\neg \phi$ gilt auch unendlich oft in w (z.B. ϕ gilt an allen geraden Positionen, und $\neg \phi$ gilt an allen ungeraden Positionen). Dann gilt aber auch $\neg \phi \lor \psi$ unendlich oft in w, und damit auch $\phi \to \psi$. Also $w \models \mathsf{GF}(\phi \to \psi)$. (ii) Angenommen, $\neg \phi$ gilt nur an endlichen vielen Positionen in w. Dann gibt es eine Position i in w, sodass $(w,j) \models \phi$ für alle $j \geq i$. Wegen (\star) wissen wir weiterhin, dass an unendlich vielen Positionen ψ gelten muss, insbesondere natürlich an unendlich vielen Positionen beginnend von i an. Das heisst, dass an unendlich vielen Positionen sowohl ϕ als auch ψ gleichzeitig gelten $(\phi$ gilt ja an allen Positionen $j \geq i!$), also auch $\phi \to \psi$. Also $w \models \mathsf{GF}(\phi \to \psi)$.

2. Fall Angenommen $w \not\models \mathsf{GF}\phi$. Dann gilt ϕ also nur an endlich vielen Positionen von w. Das heisst, es gibt eine Position $i \geq 1$, sodass für alle $j \geq i$ gilt $(w,j) \models \neg \phi$. Somit auch $(w,j) \models \neg \phi \lor \psi$ für alle $j \geq i$. Also auch $(w,j) \models \phi \to \psi$ für alle $j \geq i$. Also $w \models \mathsf{GF}(\phi \to \psi)$.