Timed Systems extended with Stacks, Counters and More

Karin Quaas

27th February 2014

Timed Automata [AD90]

- Finite automata extended with a finite set of clocks

a clock

- ranges over ${\sf R}_{\geq 0}$
- grows monotonically while time
- elapses in a state
- can be compared with constants
- in $\ensuremath{\mathbb{N}}$ at the edges
- can be reset to zero at the edges

[AD90] Alur, Dill: A Theory of Timed Automata, 1990.

Timed Automata [AD90]

- Finite automata extended with a finite set of clocks

- Emptiness: decidable (region graph construction) [AD90].
- Language inclusion $(L(\mathcal{A}) \subseteq L(\mathcal{B})?)$: decidable if \mathcal{B} uses ≤ 1 clock [OW04], otherwise undecidable [AD90].
- Universality: decidable if ≤ 1 clock is used, otherwise undecidable [OW04].
- MTL model checking: decidable [OW05].

[AD90] Alur, Dill: A Theory of Timed Automata, 1990.

[OW04] Ouaknine, Worrell: On the language inclusion problem for timed automata: Closing a dec.., 2004. [OW05] Ouaknine, Worrell: On the decidability of Metric Temporal Logic, 2005.

Pushdown Counter Timed Systems [Bou94]

- Finite automata extended with a finite set of clocks, counters and a stack

stack

- takes elements from a finite stack alphabet
- elements can be pushed and popped

a counter

- ranges over $\ensuremath{\mathbb{Z}}$
- can be incremented, decremented
- can be compared with constants in $\ensuremath{\mathbbm Z}$ at the edges

[Bou94] Bouajjani, Echahed, Robbana: On the automatic verification of systems with ..., 1994.

Pushdown Counter Timed Systems [Bou94]

- Finite automata extended with a finite set of clocks, counters and a stack

- Verification of reachability formulas that constrain locations, clocks, and counter values
- Decidable for pushdown timed systems, pushdown timed systems with monotonic counters, pushdown timed systems with observers
- Reduction to emptiness problem for pushdown automata using extension of region graph

[Bou94] Bouajjani, Echahed, Robbana: On the automatic verification of systems with ..., 1994.

Pushdown Timed Systems [Dang03]

- Finite automata extended with a finite set of clocks and a stack

- The set $\{(\gamma,\gamma') \mid \gamma \mbox{ reaches } \gamma' \mbox{ in } \mathcal{A}\}$ has a decidable characterization
- Refinement of the region equivalence

[Dang03] Dang: Pushdown timed automata: a binary reachability characterization and safety verification, 2003.

Timed (Visibly) Pushdown Automata [Emmi06]

- Finite automata extended with a finite set of clocks and a stack

Visibly pushdown stack input alphabet partitioned into

- call symbols to push
- return symbols to pop
- internal symbols
- Language Inclusion $(L(A) \subseteq L(B)?)$: decidable if A is a timed pushdown automaton, B is a timed automaton with ≤ 1 clock (Proof not correct!)
- **Universality** for timed visibly pushdown automata with one clock is undecidable (Gaps in the proof!)

[Emmi06] Emmi, Majumdar: Decision Problems for the Verification of Real-Time Software, 2006.

Timed Counter Systems [BFS09]

- Finite automata extended with a finite set of clocks and counters

a counter

- ranges over $\ensuremath{\mathbb{N}}$
- can be incremented and decremented
- can be compared with zero
- **Emptiness**: decidable for all subclasses of counter systems for which emptiness is decidable, e.g. VASS, reversal-bounded counter machines, etc.
- Reduction to emptiness of the corresponding counter system by extending the region graph

[BFS09] Bouchy, Finkel, Sangnier: Reachability in Timed Counter Systems, 2009.

Dense-Timed Pushdown Automata [AAS12]

- Finite automata extended with a finite set of clocks and stack

Stack

- takes elements from infinite alphabet
- each element has an age
- initial age when pushed is $\boldsymbol{0}$
- element is popped if guard is satisfied

- Emptiness: decidable
- Reduction to emptiness for pushdown automata by an intricate region graph construction.

[AAS12] Abdulla, Atig, Stenman: Dense-timed Pushdown Automata, 2012.

Timed One-Counter Nets

- Finite automata extended with a finite set of clocks and one counter

a clock

- ranges over $\mathbb{R}_{\geq 0}$
- grows monotonically while time elapses in a state
- can be compared with constants in ${\rm N}\,$ at the edges
- can be reset to zero at the edges

a counter

- ranges over $\ensuremath{\mathbb{N}}$
- can be incremented, decremented
- no zero test
- cannot become negative: edges are blocked

Language Inclusion Problem for Timed One-Counter Nets

Theorem.

1. The language inclusion problem is undecidable, even if \mathcal{A} is deterministic and uses no clocks, and \mathcal{B} is a timed automaton with at most one clock.

2. The language inclusion problem is decidable if \mathcal{A} is a timed automaton, and \mathcal{B} is a timed one-counter net with at most one clock.

 \Rightarrow Use timed one-counter nets as specification!

Corollary.

The universality problem for timed one-counter nets with at most one clock variable is decidable.

Proof Idea of the Decidability Result

Theorem.

2. The language inclusion problem is decidable if \mathcal{A} is a timed automaton, and \mathcal{B} is a timed one-counter net with at most one clock.

Proof. (Sketch)

- Generalize the corresponding proof for ${\cal B}$ a timed automaton with at most one clock $_{\rm [OW04]}$
- Construct a downward compatible well-structured state-transition system
- The nodes are joint configurations of ${\mathcal A}$ and ${\mathcal B}$
- Solve a reachability problem on the state-transition system

[OW04] Ouaknine, Worrell: On the language inclusion problem for timed automata: Closing a dec.., 2004.

Proof Idea of the Undecidability Result

Theorem.

1. The language inclusion problem is undecidable, even if \mathcal{A} is deterministic and uses no clocks, and \mathcal{B} is a timed automaton with at most one clock.

Proof. (Sketch)

- Reduction of the (undecidable) reachability problem for channel machines
- Given a channel machine ${\mathcal C}$ and a state q, we can define a timed language $L({\mathcal C},q)$ that encodes computations of channel machines with insertion errors $_{\rm [OW06]}$
- Construct a timed one-counter net \mathcal{A} to exclude insertion errors: \mathcal{C} does not reach $q \Leftrightarrow L(\mathcal{A}) \cap L(\mathcal{C},q) = \emptyset$
- Construct timed automaton ${\mathcal B}$ with one clock that recognizes the complement of $L({\mathcal C},q)$:

$$L(\mathcal{A}) \cap L(\mathcal{C},q) = \emptyset \Leftrightarrow L(\mathcal{A}) \subseteq \overline{L(\mathcal{C},q)} \Leftrightarrow L(\mathcal{A}) \subseteq L(\mathcal{B})$$

[OW06] Ouaknine, Worrell: On Metric Temporal Logic and Faulty Turing Machines, 2006.

Details of the Undecidability Proof

 $\mathcal{B}: \quad \text{Channel machine } M = (\{p,q,r\},p,\{e,t,x\},\Delta), \ (p,!t,q), (q,?e,q), \ldots \in \Delta$

Initial configuration (p, ε) is encoded by $(p, 0)(\#, \delta_1) \dots (\#, \delta_n)$, where $0 < \delta_1 < \dots < \delta_n < 1$ for some $n \in \mathbb{N}$.

The transition $\langle (p, tex), !t, (q, text) \rangle$ may be encoded by $(p, 6)(t, 6.1)(e, 6.15)(x, 6.5)(\#, 6.73)(!t, 7)(q, 8)(t, 8.1)(e, 8.15)(x, 8.5)(t, 8.73) \dots$ = 1= 2

Consequences of the Undecidability Result (1)

Theorem.

1. The language inclusion problem is undecidable, even if \mathcal{A} is deterministic and uses no clocks, and \mathcal{B} is a timed automaton with at most one clock.

Recall [Emmi06]:

" $L(\mathcal{A}) \subseteq L(\mathcal{B})$ is decidable if \mathcal{A} is a timed pushdown automaton, and \mathcal{B} is a timed automaton with at most one clock." (Proof not correct!)

Corollary.

The language inclusion problem for pushdown timed automata is undecidable, even if \mathcal{B} is a timed automaton with at most one clock.

[Emmi06] Emmi, Majumdar: Decision Problems for the Verification of Real-Time Software, 2006.

Consequences of the Undecidability Result (2)

Theorem.

1. The language inclusion problem is undecidable, even if \mathcal{A} is deterministic and uses no clocks, and \mathcal{B} is a timed automaton with at most one clock.

- Recall the last step of the proof sketch:

"Construct timed automaton $\mathcal B$ with one clock that recognizes the complement of $L(\mathcal C,q)$:

 $L(\mathcal{A}) \cap L(\mathcal{C},q) = \emptyset \Leftrightarrow L(\mathcal{A}) \subseteq \overline{L(\mathcal{C},q)} \Leftrightarrow L(\mathcal{A}) \subseteq L(\mathcal{B})"$

- We can construct an MTL formula φ such that $L(\mathcal{C},q) = L(\varphi)$.

Theorem.

The MTL model checking problem for timed one-counter nets is undecidable, even if the net is deterministic and uses no clock.

- c.f. decidability of the MTL model checking problem for timed automata

Parametric Timed Automata [AHV93]

- a parametric clock
- is a special clock
- can be compared with parameters
- a parameter valuation determines the behaviour of the automaton
- **Emptiness**: decidable if \mathcal{A} uses ≤ 1 parametric clock, undecidable if \mathcal{A} uses ≥ 3 parametric clocks.

[AHV93] Alur, Henzinger, Vardi: Parametric real-time reasoning, 1993.

MTL Model Checking of Parametric Timed Automata

Theorem.

1. The MTL model checking problem for parametric timed automata is undecidable, even if A is deterministic and uses one parametric clock.

Proof. (Sketch)

- Reduction of the (undecidable) reachability problem for channel machines
- Given a channel machine ${\mathcal C}$ and a state q, we can define a timed language $L({\mathcal C},q)$ that encodes computations of channel machines with insertion errors $_{\rm [OW06]}$
- Construct a parametric timed automaton \mathcal{A} to exclude insertion errors: \mathcal{C} does not reach $q \Leftrightarrow L(\mathcal{A}) \cap L(\mathcal{C},q) = \emptyset$
- Construct MTL formula φ such that $L(\varphi) = L(\mathcal{C}, q)$: $L(\mathcal{A}) \cap L(\varphi) = \emptyset \Leftrightarrow L(\mathcal{A}) \subset \overline{L(\varphi)} \Leftrightarrow L(\mathcal{A}) \subset L(\neg \varphi)$

 $L(\mathcal{A}) \cap L(\varphi) = \emptyset \Leftrightarrow L(\mathcal{A}) \subseteq \overline{L(\varphi)} \Leftrightarrow L(\mathcal{A}) \subseteq L(\neg \varphi)$

[OW06] Ouaknine, Worrell: On Metric Temporal Logic and Faulty Turing Machines, 2006.

Details of the Undecidability Proof

 $\varphi: \quad \text{Channel machine } M = (\{p,q,r\},p,\{e,t,x\},\Delta), \ (p,!t,q), (q,?e,q), \ldots \in \Delta$

Initial configuration (p, ε) is encoded by $(p, 0)(\#, \delta_1) \dots (\#, \delta_n)$, where $0 < \delta_1 < \dots < \delta_n < 1$ for some $n \in \mathbb{N}$.

The transition $\langle (p, tex), !t, (q, text) \rangle$ may be encoded by $(p, 6)(t, 6.1)(e, 6.15)(x, 6.5)(\#, 6.73)(!t, 7)(q, 8)(t, 8.1)(e, 8.15)(x, 8.5)(t, 8.73)\dots$ = 1= 2

$$\mathcal{A}: \qquad \#/x = a, x := 0 \qquad e, t, x, \#/x = a, x := 0$$

$$\stackrel{p}{\longrightarrow} l \qquad & \swarrow x := 0 \qquad & */x = a$$

Open Problems

- Parametric Timed Automata:
 - What if the parameters may only take values in the non-negative integers?
 - MTL model checking for L/U-automata [BIT09]
- Is universality for timed visibly pushdown automata [Emmi06] really undecidable?

[BIT09] Bozzelli, La Torre: Decision Problems for lower/upper bound parametric timed automata, 2009.[Emmi06] Emmi, Majumdar: Decision Problems for the Verification of Real-Time Software, 2006.