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Timed Automata [AD90]

- Finite automata extended with a finite set of clocks
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a clock
- ranges over R≥0

- grows monotonically while time
elapses in a state
- can be compared with constants
in N at the edges
- can be reset to zero at the edges

[AD90] Alur, Dill: A Theory of Timed Automata, 1990.
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- Emptiness: decidable (region graph construction) [AD90].

- Language inclusion (L(A) ⊆ L(B)?): decidable if B uses ≤ 1 clock [OW04],

otherwise undecidable [AD90].

- Universality: decidable if ≤ 1 clock is used, otherwise undecidable [OW04].

- MTL model checking: decidable [OW05].

[AD90] Alur, Dill: A Theory of Timed Automata, 1990.

[OW04] Ouaknine, Worrell: On the language inclusion problem for timed automata: Closing a dec.., 2004.

[OW05] Ouaknine, Worrell: On the decidability of Metric Temporal Logic, 2005.
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Pushdown Counter Timed Systems [Bou94]

- Finite automata extended with a finite set of clocks, counters and a stack
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stack a counter
- takes elements from a finite - ranges over Z
stack alphabet - can be incremented, decremented
- elements can be pushed and - can be compared with constants
popped in Z at the edges

[Bou94] Bouajjani, Echahed, Robbana: On the automatic verification of systems with ..., 1994.



Pushdown Counter Timed Systems [Bou94]

- Finite automata extended with a finite set of clocks, counters and a stack
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- Verification of reachability formulas that constrain locations, clocks, and
counter values

- Decidable for pushdown timed systems, pushdown timed systems with
monotonic counters, pushdown timed systems with observers

- Reduction to emptiness problem for pushdown automata using extension
of region graph

[Bou94] Bouajjani, Echahed, Robbana: On the automatic verification of systems with ..., 1994.
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Pushdown Timed Systems [Dang03]

- Finite automata extended with a finite set of clocks and a stack

s0 s1

s2

x > 1, x := 0 x = 1
x := 0
pop a

x > 0
push b

x = 1

push a

⊥

- The set {(γ, γ′) | γ reaches γ′ in A} has a decidable characterization
- Refinement of the region equivalence

[Dang03] Dang: Pushdown timed automata: a binary reachability characterization and safety verification, 2003.
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Timed (Visibly) Pushdown Automata [Emmi06]

- Finite automata extended with a finite set of clocks and a stack
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Visibly pushdown stack
input alphabet partitioned into
- call symbols to push
- return symbols to pop
- internal symbols

- Language Inclusion (L(A) ⊆ L(B)?): decidable if A is a timed pushdown
automaton, B is a timed automaton with ≤ 1 clock (Proof not correct!)

- Universality for timed visibly pushdown automata with one clock
is undecidable (Gaps in the proof!)

[Emmi06] Emmi, Majumdar: Decision Problems for the Verification of Real-Time Software, 2006.
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Timed Counter Systems [BFS09]

- Finite automata extended with a finite set of clocks and counters
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a counter
- ranges over N
- can be incremented and decremented
- can be compared with zero

- Emptiness: decidable for all subclasses of counter systems for which
emptiness is decidable, e.g. VASS, reversal-bounded counter machines, etc.

- Reduction to emptiness of the corresponding counter system by extending
the region graph

[BFS09] Bouchy, Finkel, Sangnier: Reachability in Timed Counter Systems, 2009.
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Dense-Timed Pushdown Automata [AAS12]

- Finite automata extended with a finite set of clocks and stack
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Stack
- takes elements from infinite alphabet
- each element has an age
- initial age when pushed is 0
- element is popped if guard is satisfied

- Emptiness: decidable
- Reduction to emptiness for pushdown automata by an intricate region graph
construction.

[AAS12] Abdulla, Atig, Stenman: Dense-timed Pushdown Automata, 2012.
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Timed One-Counter Nets

- Finite automata extended with a finite set of clocks and one counter
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a clock a counter
- ranges over R≥0 - ranges over N
- grows monotonically while time - can be incremented, decremented
elapses in a state - no zero test
- can be compared with constants - cannot become negative: edges are
in N at the edges blocked
- can be reset to zero at the edges



Language Inclusion Problem for Timed One-Counter Nets

Instance: Two timed one-counter nets A and B.
Question: Does L(A) ⊆ L(B) hold?

Model Specification

Theorem.

1. The language inclusion problem is undecidable, even if A is deterministic

and uses no clocks, and B is a timed automaton with at most one clock.

2. The language inclusion problem is decidable if A is a timed automaton,

and B is a timed one-counter net with at most one clock.

⇒ Use timed one-counter nets as specification!

Corollary.

The universality problem for timed one-counter nets with at most one clock

variable is decidable.



Proof Idea of the Decidability Result

Theorem.

2. The language inclusion problem is decidable if A is a timed automaton,

and B is a timed one-counter net with at most one clock.

Proof. (Sketch)

- Generalize the corresponding proof for B a timed automaton with at most
one clock [OW04]

- Construct a downward compatible well-structured state-transition system
- The nodes are joint configurations of A and B
- Solve a reachability problem on the state-transition system

[OW04] Ouaknine, Worrell: On the language inclusion problem for timed automata: Closing a dec.., 2004.



Proof Idea of the Undecidability Result

Theorem.

1. The language inclusion problem is undecidable, even if A is deterministic

and uses no clocks, and B is a timed automaton with at most one clock.

Proof. (Sketch)

- Reduction of the (undecidable) reachability problem for channel machines
- Given a channel machine C and a state q, we can define a timed language
L(C, q) that encodes computations of channel machines with insertion
errors [OW06]

- Construct a timed one-counter net A to exclude insertion errors:
C does not reach q ⇔ L(A) ∩ L(C, q) = ∅

- Construct timed automaton B with one clock that recognizes the
complement of L(C, q):

L(A) ∩ L(C, q) = ∅ ⇔ L(A) ⊆ L(C, q) ⇔ L(A) ⊆ L(B)

[OW06] Ouaknine, Worrell: On Metric Temporal Logic and Faulty Turing Machines, 2006.



Details of the Undecidability Proof

Channel machine M = ({p, q, r}, p, {e, t, x},∆), (p, !t, q), (q, ?e, q), ... ∈ ∆

Initial configuration (p, ε) is encoded by (p, 0)(#, δ1) . . . (#, δn), where
0 < δ1 < · · · < δn < 1 for some n ∈ N.

The transition 〈(p, tex), !t, (q, text)〉 may be encoded by

(p, 6)(t, 6.1)(e, 6.15)(x, 6.5)(#, 6.73)(!t, 7)(q, 8)(t, 8.1)(e, 8.15)(x, 8.5)(t, 8.73) . . .
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B :
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Consequences of the Undecidability Result (1)

Theorem.

1. The language inclusion problem is undecidable, even if A is deterministic

and uses no clocks, and B is a timed automaton with at most one clock.

Recall [Emmi06]:

“L(A) ⊆ L(B) is decidable if A is a timed pushdown automaton, and B is
a timed automaton with at most one clock.” (Proof not correct!)

Corollary.
The language inclusion problem for pushdown timed automata is

undecidable, even if B is a timed automaton with at most one clock.

[Emmi06] Emmi, Majumdar: Decision Problems for the Verification of Real-Time Software, 2006.



Consequences of the Undecidability Result (2)

Theorem.

1. The language inclusion problem is undecidable, even if A is deterministic

and uses no clocks, and B is a timed automaton with at most one clock.

- Recall the last step of the proof sketch:
“Construct timed automaton B with one clock that recognizes the
complement of L(C, q):

L(A) ∩ L(C, q) = ∅ ⇔ L(A) ⊆ L(C, q) ⇔ L(A) ⊆ L(B)”

- We can construct an MTL formula ϕ such that L(C, q) = L(ϕ).

Theorem.
The MTL model checking problem for timed one-counter nets is undecidable,

even if the net is deterministic and uses no clock.

- c.f. decidability of the MTL model checking problem for timed automata



Parametric Timed Automata [AHV93]
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a parametric clock
- is a special clock
- can be compared with parameters
- a parameter valuation determines the
behaviour of the automaton

- Emptiness: decidable if A uses ≤ 1 parametric clock, undecidable if
A uses ≥ 3 parametric clocks.

[AHV93] Alur, Henzinger, Vardi: Parametric real-time reasoning, 1993.



MTL Model Checking of Parametric Timed Automata

Theorem.

1. The MTL model checking problem for parametric timed automata is

undecidable, even if A is deterministic and uses one parametric clock.

Proof. (Sketch)

- Reduction of the (undecidable) reachability problem for channel machines
- Given a channel machine C and a state q, we can define a timed language
L(C, q) that encodes computations of channel machines with insertion
errors [OW06]

- Construct a parametric timed automaton A to exclude insertion errors:
C does not reach q ⇔ L(A) ∩ L(C, q) = ∅

- Construct MTL formula ϕ such that L(ϕ) = L(C, q):

L(A) ∩ L(ϕ) = ∅ ⇔ L(A) ⊆ L(ϕ) ⇔ L(A) ⊆ L(¬ϕ)

[OW06] Ouaknine, Worrell: On Metric Temporal Logic and Faulty Turing Machines, 2006.



Details of the Undecidability Proof

Channel machine M = ({p, q, r}, p, {e, t, x},∆), (p, !t, q), (q, ?e, q), ... ∈ ∆

Initial configuration (p, ε) is encoded by (p, 0)(#, δ1) . . . (#, δn), where
0 < δ1 < · · · < δn < 1 for some n ∈ N.

The transition 〈(p, tex), !t, (q, text)〉 may be encoded by

(p, 6)(t, 6.1)(e, 6.15)(x, 6.5)(#, 6.73)(!t, 7)(q, 8)(t, 8.1)(e, 8.15)(x, 8.5)(t, 8.73) . . .

= 2
= 1

= 2

p

x := 0 x = a x := 0

#/x = a, x := 0

. . .
l

e, t, x,#/x = a, x := 0

⋆/x = ar

ϕ :

A :



Open Problems

- Parametric Timed Automata:
•What if the parameters may only take values in the non-negative integers?
• MTL model checking for L/U-automata [BlT09]

- Is universality for timed visibly pushdown automata [Emmi06] really
undecidable?

[BlT09] Bozzelli, La Torre: Decision Problems for lower/upper bound parametric timed automata, 2009.

[Emmi06] Emmi, Majumdar: Decision Problems for the Verification of Real-Time Software, 2006.


