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Abstract. Recently, the model of weighted timed automata has gained
interest within the real-time community. In a previous work, we built
a bridge to the theory of weighted automata and introduced a general
model of weighted timed automata defined over a semiring and a family
of cost functions. In this model, a weighted timed automaton recognizes a
timed series, i.e., a function mapping to each timed word a weight taken
from the semiring. Continuing in this spirit, the aim of this paper is to
investigate the support and cut languages of recognizable timed series.
We present results that lead to the decidability of weighted versions
of classical decidability problems as e.g. the emptiness problem. Our
results may also be used to check whether weighted timed systems satisfy
specifications restricting the consumption of a resource.

1 Introduction

Since its introduction in 2001 by Alur et al. and Behrmann et al. [3, 6], weighted
timed automata have become a well-studied object of research within the real-
time community. This model allows for a natural modelling of continuous re-
source consumption of real-time systems and has interesting applications in op-
erations research and optimal scheduling. Weighted timed automata are timed
automata [2] extended with one or more variables representing resources e.g.
energy, memory or money. A function assigns weights to both the edges and the
locations of the timed automaton that may be interpreted as costs or rewards.
The variables do not influence the behaviour of a timed automaton, but may be
used as a measure of performance. This model gives rise to a lot of interesting
questions, e.g. what is the cheapest way to reach a certain location, what are the
minimal average costs in non-terminating timed systems, or what is the opti-
mal rate of produced items and energy consumption. Problems of this kind have
been thoroughly investigated in recent papers on solving optimal reachability
problems [6, 5, 3, 1, 11, 9], model checking WCTL, WMTL or WLTL [8, 10, 14,
12] and weighted timed games [13, 8, 10].

Recently, we proposed to define weighted timed automata in a general way
over a semiring and a family of location cost functions [16]. Doing so, we not
only obtain a model that generalizes most of the models used in the literature
so far including amongst others the original proposal [3, 6] and which may also
be used to model weighted timed automata with more than one cost variable



(as in e.g. [11, 19]); but the general definition also gives rise to new instances
of models using different semirings and families of cost functions. Moreover, by
defining weighted timed automata over semirings, we build a bridge to the well-
investigated theory of weighted automata. We believe that the connection be-
tween weighted automata and weighted timed automata may be cross-fertilizing
for both research areas. In particular, while most of the above mentioned pa-
pers focus on algorithmic methods that may be used for specific problems in
verification, we aim to investigate different aspects of the behaviour of weighted
timed automata in terms of timed series, i.e., functions mapping timed words to
weights in the semiring. Doing so, we hope to gain a deeper understanding of the
nature of weighted timed automata and to build a solid basis for further research
on this model. For instance, we were able to generalize two of the most funda-
mental results in the theory of formal languages to weighted timed automata,
namely Kleene’s respectively Büchi’s theorems on the equality of recognizable
and rational respectively MSO-definable languages [16, 21].

Here, we aim to shed light on the so-called supports of timed series, consisting
of all timed words which are not mapped to zero. Within the theory of weighted
automata, supports have been extensively studied (see eg. [7, 23]). For instance,
for large classes of semirings, the support of a recognizable formal power series
is known to be recognizable, which implies the decidability of generalizations
of some of the fundamental decidability problems of formal language theory
as e.g. the emptiness problem or the universality problem. We also want to
investigate the recognizability of so-called cut languages. These are sets of timed
words which are assigned a weight smaller than (or greater than, respectively)
a given value. We believe that both supports and cut languages provide the
real-time community with nice applications in the analysis of real-time systems.
For instance, we may be interested in whether the set of timed words whose
cost under a weighted timed automaton is not exceeding a given value satisfies
a specification. Problems like this can be solved using an automata-theoretic
approach by using methods presented in this paper.

In this paper, we focus on recognizable timed series over semirings having
weights in the reals and families of linear functions, as these allow for the most
interesting applications in the theory of weighted timed automata [6, 3, 9]. Many
algorithms for decision problems in the (untimed) weighted setting rely on the
fact that the set of weights occuring in a weighted automaton is finite. How-
ever, in a weighted timed automaton with linear cost functions this is not the
case. Thus, the main challenge is to deal with the infinite number of weights
occuring in a weighted timed automaton. We can show that for some problems
and semirings it is not necessary to consider the exact weights of the transitions
participating in a run. Besides linear cost functions, we consider weighted timed
automata over step functions for which the problem of infinite weights does not
occur. For this kind of functions we can show that most of the results of the
(untimed) setting can be carried over to the timed setting.
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2 Preliminaries

Let N, Z≥0, Q≥0, R≥0 and R denote the set of natural, positive integer, positive
rational, positive real numbers and real numbers, respectively. We use Σ to
denote a finite alphabet.

A timed word over Σ is a finite sequence (a1, t1)...(an, tn) ∈ (Σ × R≥0)
∗,

where the sequence of timestamps t1...tn is non-decreasing. We write TΣ∗ for
the set of timed words over Σ. A set L ⊆ TΣ∗ is called a timed language. We say
that a timed word is strictly monotonic if its sequence of timestamps is strictly
monotonic increasing (i.e., we rule out zero time delays). We use TsΣ

∗ to denote
the set of strictly monotonic timed words. A timed language L ⊆ TsΣ

∗ is called
strictly monotonic. Given a timed word w as above we define the length |w| of
w to be n.

Let X be a finite set of so-called clock variables ranging over R≥0. We define
clock constraints φ over X to be conjunctions of formulas of the form x ∼ k,
where k ∈ Q≥0, x ∈ X , and ∼∈ {<,≤, >,≥}. Let Φ(X) be the set of all clock
constraints φ over X . A clock valuation ν : X → R≥0 is a function that assigns a
value to each clock variable. We let ν0 be the special clock valuation assigning 0
to each clock variable. A clock valuation ν satisfies a clock constraint φ, written
ν |= φ, if φ evaluates to true according to the values given by ν. For δ ∈ R≥0

and λ ⊆ X , respectively, we define ν + δ to be (ν + δ)(x) = ν(x) + δ for each
x ∈ X and (ν[λ := 0])(x) = 0 if x ∈ λ and (ν[λ := 0])(x) = ν(x) otherwise.

A semiring K is an algebraic structure (K,⊕,⊙, 0, 1) such that (K,⊕, 0) is a
commutative monoid, (K,⊙, 1) is a monoid, ⊙ distributes over ⊕, and 0 is ab-
sorbing. As an example, consider the min-plus-semiring (R≥0∪{∞}, min, +,∞, 0)
or the semiring (R, +, ·, 0, 1) over the reals with ordinary addition and multipli-
cation. Let Γ be a set. A mapping T : Γ ∗ → K is called a series. For historical
reasons, we write (T , w) instead of T (w) for w ∈ Γ ∗. The support supp(T ) of T
is defined to be the set {w ∈ Γ ∗|(T , w) 6= 0}.

We let F be a family of functions from R≥0 to K. In this paper, we are mainly
interested in two kinds of such families, namely the family of step functions and
the family of linear functions. A function f : R≥0 → K is a step function if it is
of the form f(δ) =

⊕

1≤i≤n αi ⊙χAi
(δ) for every δ ∈ R≥0, where n ∈ N, αi ∈ K,

Ai are intervals over R≥0 with borders in Q≥0 such that Aj ∩ Ak = ∅ for j 6= k

and
⋃

1≤i≤n Ai = R≥0, and χAi
is a characteristic function of Ai, i.e., we have

χAi
(δ) = 1 if δ ∈ Ai and 0 otherwise, for every i ∈ {1, ..., n}. A step function has

the important property of having a finite image. For semirings where K ⊇ R≥0,
we say that a function f : R≥0 → K is linear if it is of the form f(δ) = k · δ for
every δ ∈ R≥0 and some k ∈ K.

A weighted timed automaton over K, Σ and F is a tuple (S, S0, Sf , X, E, C),
where

– S is a finite set of locations (states)
– S0 ⊆ S is a set of initial locations
– Sf ⊆ S is a set of final locations
– X is a finite set of clock variables
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– E ⊆ S × Σ × Φ(X) × 2X × S is a finite set of edges. An edge (s, σ, φ, λ, s′)
allows a jump from s to s′ if σ is read, provided that for the current clock
valuation ν we have ν |= φ. After the edge has been executed, the new clock
valuation is ν[λ := 0].

– C = {CE} ∪ {Cs : s ∈ S}, where CE : E → K, and Cs ∈ F for any s ∈ S.

A weighted timed automaton A induces an infinite state transition system con-
sisting of states of the form (s, ν), where s ∈ S and ν is a clock valuation.

Between the states there are timed transitions of the form (s, ν)
δ

−→ (s, ν + δ)

for some δ ∈ R≥0, and discrete transitions of the form (s, ν)
e

−→ (s′, ν′) for
some e = (s, a, φ, λ, s′) ∈ E such that ν |= φ and ν′ = ν[λ := 0]. A transi-

tion is a timed transition (s, ν)
δ

−→ (s, ν + δ) followed by a discrete transition

(s, ν+δ)
e

−→ (s′, ν′), abbreviated by (s, ν)
δ

−→
e

−→ (s′, ν′). A run of A on a timed

word w is a finite sequence (s0, ν0)
δ1−→

e1−→ (s1, ν1)
δ2−→

e2−→ ...
δ|w|
−→

e|w|
−→ (s|w|, ν|w|)

of transitions, where ν0 = 0X . We say that a run r is successful if s0 ∈ S0

and s|w| ∈ Sf . We define the running weight rwt(r) of a run r as above
to be

⊙

1≤i≤|w| Csi−1
(δi) ⊙ CE(ei). The behaviour ‖A‖ : TΣ∗ → K of A is

given by (‖A‖, w) =
⊕

{rwt(r) : r is a successful run of A on w}. A function
T : TΣ∗ → K is called a timed series. A timed series T is recognizable over
K, Σ and F if there is a weighted timed automaton A over K, Σ and F with
‖A‖ = T .

An (unweighted) timed automaton as defined by Alur and Dill [2] can be
seen as weighted timed automaton over the Boolean semiring and the family of
constant functions, where C maps every edge and every pair in S × R≥0 to 1.
In this case the behaviour of the automaton A is a characteristic function and
we have L(A) = supp(‖A‖). If we ignore all timing information and let C map
every pair in S×R≥0 to 1, we obtain the model of (untimed) weighted automata.
The standard model of weighted timed automata [3, 6] can be modeled using the
min-plus-semiring and the family of linear functions.

A (weighted) timed automaton is unambiguous, if for every timed word w

there is at most one successful run. A timed language (timed series, respectively)
is called unambiguously recognizable, if there is an unambiguous timed automaton
(weighted timed automaton, respectively) recognizing it.

A timed series T is called strictly monotonic, if for each timed word w ∈
TΣ∗\TsΣ

∗ we have (T , w) = 0.
Given a weighted timed automaton A = (S, S0, Sf , X, E, C), we define

wgte(A) = {CE(e)|e ∈ E} and wgts(A) = {Cs(δ)|s ∈ S, δ ∈ R≥0} and put
wgt(A) = wgte(A) ∪ wgts(A). Let I be the set of all intervals over R≥0 with
borders in Q≥0 and x a clock variable. We define a function 〈〉x : I → Φ({x}) by

s〈I〉x =







a < x ∧ x < b if I = (a, b)

a ≤ x ∧ x < b if I = [a, b)

a < x ∧ x ≤ b if I = (a, b]

a ≤ x ∧ x ≤ b if I = [a, b]

for every I ∈ I.
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3 Supports of Recognizable Timed Series

In this section, we study whether the support of a recognizable timed series is
a recognizable timed language. It is well-known that in the untimed setting the
support of every series recognizable over a positive semiring is recognizable [24].
A semiring is positive if it is both zero-sum free and zero-divisor free, i.e., we
have k ⊕ k′ = 0 implies k = 0 and k′ = 0, and k ⊙ k′ = 0 implies k = 0 or
k′ = 0 for each k, k′ ∈ K. With these two properties it is easy to construct a
finite automaton recognizing exactly the support of the behaviour of some given
weighted automaton by simply removing all edges with weight 0 [24].

For the timed setting, this idea can more or less be adopted by removing
not only the edges with weight 0 but also all locations whose cost functions
map all time delays to 0. However, for certain positive semirings and families
the method does only work for strictly monotonic timed series. For instance, let
K = (R≥0, +, ·, 0, 1) and F be the family of linear functions. Even if in a weighted
timed automaton over K and F we remove all locations with cost functions of
the form f(δ) = 0 · δ, we cannot conclude that in the resulting weighted timed
automaton every successful run has a running weight different from 0. This is
because we have f(0) = 0 for every f ∈ F and thus the running weight of every
successful run on a timed word with a zero delay equals 0.

Lemma 1. Let K be positive.

1. Assume that for all f ∈ F we have either f(δ) 6= 0 for all δ ∈ R≥0 or
f(δ) = 0 for all δ ∈ R≥0. If T is a recognizable timed series, then supp(T )
is recognizable.

2. Assume that for all f ∈ F we have either f(δ) 6= 0 for all δ ∈ R≥0\{0} or
f(δ) = 0 for all δ ∈ R≥0\{0}. If T is a strictly monotonic and recognizable
timed series, then supp(T ) is strictly monotonic and recognizable.

As a consequence, the support of the behaviour of each weighted timed automa-
ton over the widely-used [6, 3, 9] setting of the min-plus-semiring and the family
of linear functions is recognizable. To give another example, the first part of
Lemma 1 also applies to the semiring ([0, 1], max, ·, 0, 1) and families of func-
tions of the form f(δ) = kδ for some k ∈ [0, 1] and each δ ∈ R≥0.

In the past few years, weighted timed automata with multiple prices have
attracted interest [11, 19]. These may be modeled using the direct product of e.g.
the min-plus-semiring and component-wisely defined linear functions. Unfortu-
nately, while still being zero-sum free, direct products of positive semirings are
not zero-divisor free and thus Lemma 1 cannot be applied. Very recently, Kirsten
showed that the commutativity and zero-sum freeness of the semiring is a suffi-
cient condition for the support of a recognizable series being recognizable [18].
Kirsten’s proof method strongly relies on the fact that the set of disjoint weights
occurring in any of the runs of the weighted automaton is finite. However, for
weighted timed automata over the family of linear functions this is not the case.
Nevertheless, for certain semirings we can adapt the proof by exploiting the fact
that the exact weights emerging from staying in a location are not crucial for
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deciding whether the running weight of a run equals 0 or not, but rather it is
sufficient to consider the semiring coefficients that the time delay is multiplied
with, as the following example shows.

Example 1. Let A be a weighted timed automaton over the min-plus-semiring.
For the sake of simplicity, in this example we assume that CE (e) = 0 for every
edge e. Then for each run r of A on a timed word w we have rwt(r) = ∞
iff there is some i ∈ {1, ..., |w|} such that Csi−1

(δi) = ∞. However, for every
location s and time delay δ, we have Cs(δ) = ∞ iff Cs(δ) = ∞ · δ for each
δ ∈ R≥0. Hence, the exact time delays are not important but it is sufficient to
consider the coefficients of the cost functions of the participating locations in a
run. For the direct product of the min-plus-semiring we have a similar result:
rwt(r) = (∞,∞) iff either there is some i ∈ {1, ..., |w|} such that Csi−1

(δi) =
(∞,∞), or there are i, j ∈ {1, ..., |w|} such that i 6= j and Csi−1

(δi) = (a,∞)
and Csj−1

(δj) = (∞, b), for some a, b ∈ R≥0. Again, the exact time delays are
not important.

This leads us to the following result.

Lemma 2. Let K be commutative and zero-sum free.

1. If F is the family of step functions and T is a recognizable timed series, then
supp(T ) is recognizable.

2. If F is the family of linear functions and K is (the direct product of) one of
the following semirings
(a) (R≥0 ∪ {∞}, min, +,∞, 0)
(b) (R≥0 ∪ {−∞}, max, +,−∞, 0)
(c) (R≥0 ∪ {∞,−∞}, min, max,∞,−∞)
and T is a recognizable timed series, then supp(T ) is recognizable.

3. If F is the family of linear functions, K is the (direct product of)
(R≥0, +, ·, 0, 1), and T is strictly monotonic and recognizable, then supp(T )
is strictly monotonic and recognizable.

None of the constructions used in the proofs of Lemmas 1 and 2 increases the
number of clock variables used. Combining these two results with the decidability
of the emptiness problem for timed automata [2] and the universality problem
for single-clock timed automata [20], we obtain the following corollary.

Corollary 1. If K, F and T correspond to one of the settings defined in Lem-
mas 1 and 2, then it is decidable whether supp(T ) = ∅. If, additionally, T can
be recognized by a single-clock weighted timed automaton, then it is decidable
whether supp(T ) = TΣ∗.

Next, we consider recognizable timed series over fields, i.e., semirings where
(K,⊕, 0) is a group and (K\{0},⊙, 1) is a commutative group. It is well-known
that already in the untimed setting there are recognizable series over fields for
which the support is not recognizable (see e.g. [18]). Yet, by a result of Berstel
and Reutenauer [7], it is decidable whether the support of a recognizable series
over a field is empty or not. In the next section, we show that this also holds for
recognizable timed series over certain fields and families of cost functions.
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4 The Empty Support Problem for Fields

In the following, we let K be a field, e.g. the semiring over the rationals or reals
with the usual addition and multiplication operations. We start to show that for
this class of semirings and the family of step functions, it is decidable whether
the support of a given recognizable timed series T is empty or not. The idea is to
reduce the problem for recognizable timed series to the corresponding classical
problem for recognizable (untimed) series, which is known to be decidable [7].

Lemma 3. Let K be a field and F be the family of step functions. If T : TΣ∗ →
K is a recognizable timed series over K and F , then there is a recognizable series
T ′ : Σ∗ → K over K such that supp(T ′) = ∅ iff supp(T ) = ∅.

Proof. Let A be a weighted timed automaton such that ‖A‖ = T . Let R(A)
be the region automaton of the timed automaton underlying A [2]. We add a
cost function µ to R(A), assigning weights taken from K to every transition
in R(A), obtaining a weighted automaton over K which we also will denote by
R(A). The cost function µ is defined as follows: if t is a transition that stems
from an edge e ∈ E in A, we put µ(t) = CE(e). Now, let t be a transition
that stems from a timed transition labelled with δ starting in some location
s, and assume Cs(δ

′) =
⊕

1≤i≤n αi ⊙ χAi
(δ′) for every δ′ ∈ R≥0. There is a

unique i ∈ {1, ..., n} such that δ ∈ Ai. We define µ(t) = αi. Using this and the
fact that the infinite state-transition system induced by the timed automaton
underlying A and the region automaton R(A) are bisimulation equivalent [2],
one can easily show that there is a weight-preserving bijective correspondence
between the set of successful runs of A and R(A). This implies supp(‖A‖) = ∅
iff supp(‖R(A)‖) = ∅. ⊓⊔

Now we want to consider weighted timed automata over fields and the family of
linear functions. Clearly, due to the infinite number of weights occuring in this
kind of automata, we cannot use the same construction as above. However, simi-
larly to the case of non-zero-divisor free semirings in Sect.3, for certain semirings
we do not need to consider the exact weight of a transition in order to decide
whether a running weight equals 0 or not.

Lemma 4. Let K = (R, +, ·, 0, 1) and F be the family of linear functions. If
T : TΣ∗ → K is a recognizable timed series over K and F , then there is a
recognizable series T ′ : Σ∗ → K over K such that supp(T ′) = ∅ iff supp(T ) = ∅.

Proof. Let A be a weighted timed automaton such that ‖A‖ = T . Again, we
extend the region automaton R(A) of the timed automaton underlying A with
a cost function µ, obtaining a weighted automaton over K which we also will
denote by R(A). This time, the cost function µ is defined as follows: if t is a
transition that stems from an edge e ∈ E in A, we put µ(t) = CE(e). Now,
let t be a transition that stems from a timed transition labelled with δ starting
in some location s, and assume Cs(δ

′) = cs · δ′ for every δ′ ∈ R≥0. We define
µ(t) = cs if δ 6= 0, µ(t) = 0 otherwise. By the fact that the infinite state-
transition system induced by the timed automaton underlying A and the region
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automaton R(A) are bisimulation equivalent [2], it follows that there is a bijective
correspondence between the set of successful runs of A and R(A); however,
this correspondence is not weight-preserving. Let w ∈ TΣ∗. We use abs(w) to
denote the unique (untimed) word labelling the runs of R(A) corresponding to
runs of A on w. We show that (‖A‖, w) = 0 implies (‖R(A)‖, abs(w)) = 0. Let

r = (s0, ν0)
δ1−→

e1−→ (s1, ν1)
δ2−→

e2−→ ...
δ|w|
−→

e|w|
−→ (s|w|, ν|w|) be a successful run of

A on w. Using commutativity of · and assuming every location cost function Cs

in A to be of the form Cs(δ) = cs · δ for every δ ∈ R≥0, we obtain

rwt(r) =
∏

1≤i≤|w|

csi−1
· CE(ei) ·

∏

1≤i≤|w|

δi.

Let n be the (finite) number of successful runs of A on w and let ri be a successful
run of A on w for each i ∈ {1, ..., n}. Then, by distributivity, we have

(‖A‖, w) =
∑

1≤i≤n

rwt(ri)

=
∑

1≤i≤n








∏

1≤j≤|w|

ci
sj−1

· CE(ei
j)



 ·
∏

1≤j≤|w|

δj





=




∑

1≤i≤n

∏

1≤j≤|w|

ci
sj−1

· CE(ei
j)



 ·
∏

1≤j≤|w|

δj .

Clearly, (‖A‖, w) = 0 iff
∑

1≤i≤n

∏

1≤j≤|w| c
i
sj−1

·CE(ei
j) = 0 or

∏

1≤j≤|w| δj = 0.

In the latter case, there is some j ∈ {1, ..., |w|} such that δj = 0. Then, the
weight µ(t) of the transition that stems from the timed transition labelled with
δj equals 0. Hence, for each i ∈ {1, ..., n}, the running weight of the successful run
of R(A) corresponding to ri equals 0 and we have (‖R(A)‖, abs(w)) = 0. Now,
assume that for every 1 ≤ j ≤ |w| we have δj > 0 and

∑

1≤i≤n

∏

1≤j≤|w| c
i
sj−1

·

CE(ei
j) = 0. The definition of µ for this case implies that the running weights

of the corresponding runs in R(A) equal
∏

1≤j≤|w| c
i
sj−1

· CE(ei
j) for each 1 ≤

i ≤ n and thus we have (‖R(A)‖, abs(w)) = 0. Hence, if supp(‖A‖) = ∅ then
supp(‖R(A)‖) = ∅. The proof for the other direction can be done analogously.

⊓⊔

Observe that the crucial point for obtaining the result is the fact that the multi-
plication of the semiring coincides with the multiplication used for the definitions
of linear functions. The proof may be extended to other semirings and families of
functions for which an analogous property holds, i.e., where we use functions of
the form k ⊙ δ for some k ∈ K. Also notice that - as opposed to the second part
of Lemma 1 - we do not need to restrict the application of Lemma 4 to strictly
monotonic timed series. As a direct consequence, the following corollary (based
on the fact that for every recognizable series over a field it is decidable whether
its support is empty or not [7]) also holds for non-strictly monotonic timed series
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over (R≥0, +, ·, 0, 1) and families of linear functions (generalizing the first part
of Corollary 1 for this setting).

Corollary 2. If K, F and T correspond to one of the settings defined in Lemmas
3 and 4, then it is decidable whether supp(T ) = ∅.

Remark 1. For the class of recognizable series over fields it is not decidable
whether the support equals Σ∗ [7]. Hence, we cannot use a reduction as above
to solve the universal support problem for timed series recognizable by single-
clock weighted timed automata.

5 Timed Cut Languages

In this section, we are interested in those timed words whose weights under
a timed series exactly correspond to a given value, or whose weights do (not)
exceed a given value from the semiring. Sets of words of the second category are
knows as cut languages and play an important role in the theory of weighted
automata (see eg. [17, 22]). In particular, we want to investigate the following
problems: given a recognizable timed series T and k ∈ K, are the sets

– T −1(k) = {w ∈ TΣ∗|(T , w) = k}
– {w ∈ TΣ∗|(T , w) ≤ k}
– {w ∈ TΣ∗|(T , w) ≥ k}

recognizable? Besides new applications in the analysis of real-time systems, a
solution to the questions above can also help to solve problems from the theory
of timed languages, as the following example (adopted from [17]) shows: assume
there is some semiring K and a family F such that there is some f ∈ F with
f(δ) = 1 for each δ ∈ R≥0 and we can show that T −1(k) is a recognizable
timed language for every recognizable timed series T and every k ∈ K. Then,
we could conclude that the complement L̄ of every unambiguously recognizable
timed language L is recognizable. The proof of this is as follows: let L be an
unambiguously recognizable timed language and A be an unambiguous timed
automaton such that L(A) = L. Then, simply assign the weight 1 to all edges of
A and let Cs = f for any location s. Clearly, the behaviour ‖A′‖ of the resulting
weighted timed automaton A′ corresponds to the characteristic function of L.
But then by assumption the timed language ‖A′‖−1(0) = L̄ must be recogniz-
able. However, by now it is not known whether negation preserves recognizability
of unambiguous timed languages or not [25].

A semiring K has characteristic zero if there is no n ∈ N\{0} such that1⊕ ... ⊕ 1
︸ ︷︷ ︸

n

= 0.
Lemma 5. Let K have characteristic zero and assume that there is some f ∈ F
such that f(δ) = 1 for each δ ∈ R≥0. Then there is some recognizable timed
series T over K and F such that T −1(0) is not recognizable.
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Proof. It is well-known that the class of recognizable timed languages is not
closed under complement [2]. So let L ⊆ TΣ∗ be a recognizable timed language
such that the complement L̄ is not recognizable (e.g. the example language in
Theorem 1 in [4]). We further let A be a timed automaton recognizing L. We
obtain a weighted timed automaton A′ over K and F by adding a cost function
C such that 1 is assigned to every edge and the cost function of every location is
f . Let w ∈ L. Then the running weight of every successful run of A′ on w is 1.
Exploiting the condition on K, we get (‖A′‖, w) 6= 0. Hence, L is the support of
the behaviour of A′, formally supp(‖A′‖) = L. But this implies ‖A‖−1(0) = L̄,
which by assumption is not recognizable. ⊓⊔

The condition on the semiring is satisfied by every semiring which is not a
ring but also e.g. by the semiring over the integers with natural addition and
multiplication. In particular, given a recognizable timed series T over the min-
plus-semiring (max-plus-semiring, respectively) and the family of step functions
or linear functions, in general T −1(0) is not recognizable. In contrast to this, the
lemma cannot be applied if T is recognizable over the semiring (R≥0, +, ·, 0, 1)
and the family F of linear functions, as there is no function f ∈ F satisfying
f(δ) = 1 for every δ ∈ R≥0. Notice that for the family of step functions there is
such a function. This raises the interesting question whether in general, assuming
that K is fixed, we cannot conclude from a “negative” result for the family of
step functions that a negative result also holds for the (more expressive and
harder) family of linear functions.

The negative result in Lemma 5 mainly relies on the non-closure of recog-
nizable timed languages under complement. The question arises whether we can
obtain a positive result for k 6= 0. Unfortunately, for the most interesting set-
ting of real-valued weights and linear cost functions we have to give a negative
answer, even if we confine our study to unambiguously recognizable timed series.

Lemma 6. Let K be one of the following semirings

– (R≥0 ∪ {∞}, min, +,∞, 0)

– (R≥0 ∪ {−∞}, max, +,−∞, 0)

– (R, +, ·, 0, 1)

– (R≥0, +, ·, 0, 1)

and F be the family of linear functions. Then there is some unambiguously rec-
ognizable timed series T over K and F and some k ∈ K\{0} such that T −1(k)
is not recognizable.

Proof. We show the proof for (R≥0, +, ·, 0, 1). The proofs for the other semirings
can be done analogously. Let A be the unambiguous weighted timed automaton
over (R≥0, +, ·, 0, 1) and the family of linear functions shown in the figure below.
Further, we put k = 6. Assume there is a timed automaton A′ such that L(A′) =
‖A‖−1(k). Let w = (a, t1)(a, t2) be some timed word such that (‖A‖, w) = 6,
e.g. (a, 1.5)(a, 0.3).

10



3δ 5δ
a a

Hence, there must be a successful run r of A′ on w. Choose an arbitrary ǫ such
that t2+ǫ ∈ R≥0\Q≥0 and let w′ = (a, t1)(a, t2+ǫ). Then, the discrete transitions
of r must also constitute a successful run of A′ on w′, because the constants in
a guard may only be rational numbers and hence A′ cannot distinguish between
the time delays t2−t1 and (t2+ǫ)−t1. Hence, w′ ∈ L(A′), but (‖A‖, w′) > 6. ⊓⊔

Next, we show that if we consider unambiguously recognizable timed series over
the family of step functions, we can give a positive answer. This may be not too
surprising, as in this case the number of weights occuring in a weighted timed
automaton is finite and we can apply proof methods known from the theory
of weighted automata (see e.g. [17]). For the sake of completeness we present
some of the results in the following. These may also serve as a starting point for
further research on other kinds of cost functions.

A morphism between semirings (K,⊕,⊙, 0K , 1K) and (K ′,⊕′,⊙′, 0K′ , 1K′)
is a function η : K → K ′ satisfying

– η(a ⊕ b) = η(a) ⊕′ η(b) for all a, b ∈ K

– η(a ⊙ b) = η(a) ⊙′ η(b) for all a, b ∈ K

– η(0K) = 0K′ and η(1K) = 1K′ .

Lemma 7. Let K,K′ be two semirings and F be the family of step functions
from R≥0 to K. If T is a recognizable timed series over K and F and η : K → K′

is a semiring morphism, then η ◦ T is recognizable over K′ and F .

Proof. If A is the weighted timed automaton over K recognizing T , we obtain a
weighted timed automaton A′ over K′ by replacing all constants k ∈ K occuring
in the cost functions of A by η(k). Then one can show that there is a bijective
correspondence between the set of successful runs r of A and the set of successful
runs r′ of A′ such that rwt(r′) = η(rwt(r)). Thus, we have

(‖A′‖, w) =
⊕

{rwt(r′)|r′ is a successful run of A′ on w}

=
⊕

{η(rwt(r))|r is a successful run of A on w}

= η(
⊕

{rwt(r)|r is a successful run of A on w})

= η(‖A‖, w)

Lemma 8. Let F be the family of step functions, k ∈ K\{0} and T be an
unambiguously recognizable timed series. If K is (the direct product of) one of
the following semirings

1. (K ∪ {∞}, min, +,∞, 0) for K ∈ {N,Z≥0,Q≥0,R≥0},
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2. (R ∪ {∞,−∞}, min, max,∞,−∞),

3. (K ∪ {∞}, min, ·,∞, 1) for K ∈ {N,Z≥0,Q≥0,R≥0},
4. ([0, 1] ∪ {∞}, min, ·,∞, 1),

5. ([1,∞], min, ·,∞, 1),

6. (K ∪ {−∞}, max, +,−∞, 0) for K ∈ {N,Z≥0,Q≥0,R≥0},
7. (K ∪ {∞}, max, min, 0,∞) for K ∈ {N,Z≥0,Q≥0,R≥0},
8. ([0, 1], max, min, 0, 1),
9. ([0, 1], max, ·, 0, 1),

or K is such that (K,⊙, 1) is locally finite, i.e., each finitely generated monoid
is finite, then T −1(k) is unambiguously recognizable.

Proof. First, we give the proof for (R≥0 ∪ {∞}, min, +,∞, 0). The idea is as
follows: assume that N is the minimal weight occuring as a weight in a weighted
timed automaton. Then, we only have to consider runs of length smaller than or
equal to ⌈ k

N
⌉. This is because every other run necessarily has a running weight

greater than k. Thus, the set of occuring weights relevant for solving the problem
is finite and can be remembered within the discrete part of a timed automaton.

Let A = (S, S0, Sf , X, E, C) be a weighted timed automaton over K and F
such that ‖A‖ = T and k ∈ R≥0. We assume Cs to be of the form min{αs

i +
χAs

i
|1 ≤ i ≤ ns} for every s ∈ S. Define N = min(wgt(A)\{0}). Let y be

a “fresh” clock variable not occurring in X . We define the timed automaton
A′ = (S′, S′

0
, S′

f , X ′, E′) by

– S′ = S × {m ∈ R≥0 ∪ {∞}|m = m1 + ... + mp, m1, ..., mp ∈ wgt(A), p ∈
{1, ..., ⌈ k

N
⌉}} ∪ {0, k}

– S′
0

= S0 × {0}
– S′

f = Sf × {k}
– X ′ = X ∪ {y}
– E′ = {((s, m), a, φ′, λ′, (s′, m′))|(s, a, φ, λ, s′) ∈ E such that φ′ = φ ∧

〈As
i 〉y, λ′ = λ∪{y}, m′ = m+αi+CE((s, a, φ, λ, s′)) for every i ∈ {1, ..., ns}}

Then, one can easily prove L(A′) = ‖A‖−1(k). The proof for R≥0 of course also
works for N,Z≥0 and Q≥0, which finishes the proof for 1.

Now, let ln(x) denote the natural logarithm of a number x and abbreviate
Pmax = ([0, 1], max, ·, 0, 1) and Rmin = (R≥0 ∪{∞}, min, +,∞, 0). We define the
semiring morphism η : [0, 1] → R≥0 ∪ {∞} by η(x) = −ln(x). Let T be recog-
nizable over Pmax and k ∈ [0, 1]\{0}. Then, by Lemma 7, η ◦ T is recognizable
over Rmin. Using 1., we know that {w ∈ TΣ∗|(η ◦ T , w) = η(k)} is recognizable.
But this implies that {w ∈ TΣ∗|(T , w) = k} is recognizable. This proves 8.

Similar proof ideas can be used to prove the claim for the other semirings. ⊓⊔

Lemma 9. Let K be a semiring such that ⊙ = min or ⊙ = max, F is the
family of linear functions of the form c · δ such that c ∈ Q and k ∈ Q. If T
is an unambiguously recognizable timed series over K and F , then T −1(k) is
unambiguously recognizable.
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Proof. We briefly summarize the idea of the construction of a timed automaton
A recognizing ‖A‖−1(k). We need to remember whether during a run on a word
we already have reached a weight of k or not. We obtain this information by a
newly introduced clock variable y that measures the time that has been spent in
the current location. At every edge a clock constraint on y controls the behaviour
of A depending on whether we have already reached a weight of k or not be-
forehands, and on how much time we have already spent in the current location.
This can be done owing to the restriction on k being a rational number. ⊓⊔

Lastly, we want to consider cut languages. Again, we can generalize results
from the theory of weighted automata for recognizable timed series over the
family of step functions owing to the finite number of weights occuring in a
corresponding weighted timed automaton. Notice that in the next lemma, in
opposition to Lemma 8, we do not require T to be unambiguous.

Lemma 10. Let F be the family of step functions, let k ∈ K\{0} and T be a
recognizable timed series. If K is one of the following semirings

1. (K ∪ {∞}, min, +,∞, 0) for K ∈ {N,Z≥0,Q≥0,R≥0},
2. (R ∪ {∞,−∞}, min, max,∞,−∞),
3. (K ∪ {∞}, min, ·,∞, 1) for K ∈ {N,Z≥0,Q≥0,R≥0},
4. ([0, 1] ∪ {∞}, min, ·,∞, 1),
5. ([1,∞], min, ·,∞, 1),

then T −1({m|m ≤ k} is recognizable. If K is one of the following semirings

1. (K ∪ {−∞}, max, +,−∞, 0) for K ∈ {N,Z≥0,Q≥0,R≥0},
2. (K ∪ {∞}, max, min, 0,∞) for K ∈ {N,Z≥0,Q≥0,R≥0},
3. ([0, 1], max, min, 0, 1),
4. ([0, 1], max, ·, 0, 1),

then T −1({m|m ≥ k} is recognizable.

Proof. We use the same approach as in the proof of Lemma 8. Notice that η

is an anti-isomorphism w.r.t. the natural orderings in Pmax and R≥0. Thus, we
have

{w ∈ TΣ∗|(η ◦ T , w) ≤ η(k)} = {w ∈ TΣ∗|(T , w) ≥ k)}

and can conclude that {w ∈ TΣ∗|(T , w) ≥ k)} is recognizable. ⊓⊔

6 Conclusion and Further Research

In this paper, we investigated decidability problems concerning the supports
(and subsets of supports, respectively) of recognizable timed series. We believe
that this work is only the beginning of fruitful further research within this area,
as there are a lot of open problems worth considering. For instance, some results
of this paper do not cover recognizable timed series over certain important semir-
ings and families of cost functions. In particular, we would like to know whether
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there is a recognizable timed series over (R≥0, +, ·, 0, 1) and the family of linear
functions such that T −1(0) is not recognizable. Also, we are interested in what
happens if we let F contain both linear and step functions. This is needed to
model so-called stopwatch automata, where the cost variable can be switched on
in some locations (the cost functions are linear) and switched out in the other
locations (the cost functions map every time delay to the constant 1). However,
we cannot apply the proof method of e.g. Lemma 4 when F contains both linear
and step functions. Of course, one may think of cost functions other than the
step or linear cost functions as e.g. functions of the form k · ln(δ), kδ etc., and
other semirings. Also, there are lots of interesting applications that require op-
erations that do not form a semiring and have recently been introduced under
the notion of quantitative languages [15]. This model is promising also within the
context of real-time systems and has in fact already been used [11, 19]. Thus we
want to consider it in future work. Last but not least, for those settings where
the supports (cut languages, respectively) of recognizable timed series in general
are not guaranteed to be recognizable, we want to further examine whether we
can decide whether a particular timed series has a recognizable support (cut
language, respectively) or not. Altogether, with this work we hope to give a new
perspective on the work on weighted timed automata.
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