
Weighted Timed MSO Logics

Karin Quaas

Institut für Informatik, Universität Leipzig
04009 Leipzig, Germany

quaas@informatik.uni-leipzig.de

Abstract. We aim to generalize Büchi’s fundamental theorem on the
coincidence of recognizable and MSO-definable languages to a weighted
timed setting. For this, we investigate subclasses of weighted timed au-
tomata and show how we can extend existing timed MSO logics with
weights. Here, we focus on the class of weighted event-recording automata
and define a weighted extension of the full logic MSOer(Σ) introduced
by D’Souza. We show that every weighted event-recording automaton
can effectively be transformed into a corresponding sentence of our logic
and vice versa. The methods presented in the paper can be adopted to
weighted versions of timed automata and Wilke’s logic of relative dis-
tance. The results indicate the robustness of weighted timed automata
models and may be used for specification purposes.

Introduction

Recently, the model of weighted timed automata has received much attention in
the real-time community as it can be used to model continuous consumption
of resources [2, 3, 5, 4, 11]. The goal of this paper is to generalize Büchi’s and
Elgot’s fundamental theorems about the coincidence of languages recognizable
by finite automata and languages definable by sentences in a monadic second-
order (MSO) logic [6, 15] to weighted timed automata. For this, we introduce a
weighted timed MSO logic, which may be used for specifying quantitative aspects
of timed automata, e.g. how often a certain property is satisfied by the system.

In this paper, we focus on a weighted version of event-recording automata,
a subclass of timed automata introduced by Alur et al. [1]. Recent results on
event-recording automata include works on alternative characterizations using
regular expressions [7] and MSO logic [14], real-time logics [25, 17], and infer-
ence/learning [16]. The main advantage of event-recording automata is that they
- as opposed to timed automata - always can be determinized. This simpli-
fies some of our constructions compared to the ones necessary for the class of
weighted timed automata.

Our work is motivated by recent works on weighted logics by Droste and
Gastin [8, 10]. The authors introduce a weighted MSO logic for characterizing the
behaviour of weighted automata defined over a semiring. They extend classical
MSO logic with formulas of the form k (for k an element of the semiring), which
may be used to define the weight of a transition of a weighted automaton. They

show that the behaviour of weighted automata coincides with the semantics of
sentences of a fragment of the logic. Recently, this result has been generalized
to weighted settings of infinite words [12], trees [13], pictures [20], traces [21],
texts [18] and nested words [19].

Here, we aim to generalize the result to a weighted timed setting. The basis
of our work is the MSO logic MSOer(Σ) introduced by D’Souza and used for the
logical characterization of event-recording automata [14]. We extend it with two
kinds of weighted formulas whose semantics correspond to the weights of edges
and locations, respectively, in weighted event-recording automata. For proving
a Büchi-type theorem we show that for every sentence ϕ in our logic there
is a weighted event-recording automaton whose behaviour corresponds to the
semantics of ϕ and vice versa.

For this, we use parts of the proofs presented by Droste and Gastin [10].
However, in the weighted timed setting we are faced with two new problems.
First, due to the weights assigned to locations, the Hadamard product, which is
used for defining the semantics of conjunction in our logic, does not preserve rec-
ognizability. Second, there are formulas ϕ such that there are no weighted event-
recording automata whose behaviours correspond to the semantics of ∀x.ϕ and
∀X.ϕ, respectively. To overcome these problems, we define a suitable fragment
of our logic, for which, with the support of some new notions and techniques,
we are able to show the result.

1 (Weighted) Event-Recording Automata

LetΣ,N and R≥0 denote an alphabet, the natural numbers and the positive reals,
respectively. A timed word is a finite sequence (a1, t1)...(ak, tk) ∈ (Σ × R≥0)

∗

such that the sequence t̄ = t1...tk of timestamps is non-decreasing. Sometimes
we denote a timed word as above by (ā, t̄), where ā ∈ Σ∗. We write TΣ∗ for the
set of timed words over Σ. A set L ⊆ TΣ∗ is called a timed language. With Σ
we associate a set CΣ = {xa|a ∈ Σ} of event-recording clock variables ranging
over R≥0. The variable xa measures the time distance between the current event
in a timed word and the last occuring a. Formally, given a timed word w =
(a1, t1)...(ak, tk), we let dom(w) be the set {1, ..., k} and define for every i ∈
dom(w) a clock valuation function γw

i : CΣ → R≥0 ∪ {⊥} by

γw
i (xa) =

ti − tj if there exists a j such that 1 ≤ j < i and aj = a,

and for all m with j < m < i, we have am 6= a

⊥ otherwise.

We further use |w| to denote the length of w. We define clock constraints φ
over CΣ to be conjunctions of formulas of the form x = ⊥ or x ∼ c, where
x ∈ CΣ , c ∈ N, and ∼∈ {<,≤,=,≥, >}. We use Φ(CΣ) to denote the set of
all clock constraints over CΣ . A clock valuation γw

i satisfies φ, written γw
i |= φ,

if φ evaluates to true according to the values given by γw
i . An event-recording

automaton (ERA) over Σ is a tuple A = (S, S0, Sf , E), where

– S is a finite set of locations (states)
– S0 ⊆ S is a set of initial locations
– Sf ⊆ S is a set of final locations
– E ⊆ S ×Σ × Φ(CΣ)× S is a finite set of edges.

For w as above, we let a run of A on w be a finite sequence
s0

e1−→ s1
e2−→ ...

ek−→ sk of edges ei = (si−1, ai, φi, si) ∈ E such that γw
i |= φi for

all 1 ≤ i ≤ k. We say that a run r is successful if s0 ∈ S0 and sk ∈ Sf . We define
the timed language L(A) = {w ∈ TΣ∗| there is a successful run of A on w}. We
say that a timed language L ⊆ TΣ∗ is recognizable over Σ if there is an ERA A
over Σ such that L(A) = L.

Remark 1. The methods presented in this paper can easily be extended to event-
clock automata additionally equipped with event-predicting clock variables [1].

An ERAA is deterministic if |S0| = 1 and whenever (s, a, φ1, s1) and (s, a, φ2, s2)
are two different edges in A, then for all clock valuations γ we have γ 6|= φ1 ∧ φ2.
A timed language is called deterministically recognizable over Σ if there is a
deterministic ERA over Σ recognizing it.

Proposition 1. [1] The class of recognizable timed languages is closed under
boolean operations and equal to the class of deterministically recognizable timed
languages.

We extend ERA to be equipped with weights taken from a commutative
semiring. For this, we let K be a commutative semiring, i.e., an algebraic
structure K = (K,+, ·, 0, 1) such that (K,+, 0) and (K, ·, 1) are commutative
monoids, multiplication distributes over addition and 0 is absorbing. As exam-
ples consider the semiring of natural numbers (N,+, ·, 0, 1), the Boolean semiring
({0, 1},∨,∧, 0, 1) and the tropical semiring (R≥0 ∪ {∞},min,+,∞, 0). Further-
more, we let F be a family of functions from R≥0 to K. For instance, if K is the
tropical semiring, F may be the family of linear functions of the form µ(δ) = k · δ
mapping every δ ∈ R≥0 to a value k · δ inK (for some k ∈ R≥0). Given f1, f2 ∈ F ,
we define the pointwise product f1⊙f2 of f1 and f2 by (f1⊙f2)(δ) = f1(δ)·f2(δ).

A weighted event-recording automaton (WERA) over Σ, K and F is a
tuple A = (S, S0, Sf , E, C) such that (S, S0, Sf , E) is an ERA over Σ and
C = {CE} ∪ {Cs|s ∈ S} is a cost function, where CE : E → K assigns a weight
to each edge, and Cs ∈ F gives us the weight for staying in location s per time
unit for each s ∈ S. A WERA A maps to each timed word w ∈ TΣ∗ a weight in
K as follows: first, we define the running weight rwt(r) of a run r as above to
be

∏

i∈dom(w) Csi−1
(ti − ti−1) · CE(ei), where t0 = 0. The running weight of the

empty run is defined to be 1 ∈ K. Then, the behaviour ‖A‖ : TΣ∗ → K of A
is given by (‖A‖, w) =

∑

{rwt(r) : r is a successful run of A on w}. A function
T : TΣ∗ → K is called a timed series. A timed series T is said to be recognizable
over K, Σ and F if there is a WERA A over K, Σ and F such that ‖A‖ = T .

We define the function 1 : R≥0 → K by δ 7→ 1 for every δ ∈ R≥0. In the
following, we fix a commutative semiring K and a family F of cost functions
from R≥0 to K containing 1.

For L ⊆ TΣ∗, the characteristic series 1L is defined by (1L, w) = 1 if w ∈ L,
0 otherwise. Notice that an ERA over Σ can be seen as a WERA over the
Boolean semiring, Σ and the family of constant functions. The timed series
recognized by such a WERA is the characteristic series 1L(A). However, due
to the determinizability of ERA, 1L(A) can also be recognized over arbitrary
semirings:

Lemma 1. If L ⊆ TΣ∗ is recognizable over Σ, then 1L is recognizable over K,
Σ and F .

Given timed series T , T1, T2 and k ∈ K, we define the sum T1 + T2, the Hadamard
product T1 ⊙ T2 and the scalar products k · T and T · k pointwise, i.e., by (T1 +
T2, w) = (T1, w) + (T2, w), (T1 ⊙ T2, w) = (T1, w) · (T2, w), (k · T , w) = k · (T , w)
and (T · k, w) = (T , w) · k respectively. If K is the Boolean semiring, + and ⊙
correspond to the union and intersection of timed languages, respectively.

Later in the paper, we need closure properties of recognizable timed series
under these operations. It can be shown in a straightforward manner that sum
and scalar products preserve recognizability of timed series.

Lemma 2. Recognizable timed series over K, Σ and F are closed under +, k·
and ·k (for k ∈ K).

In contrast to this, in general recognizable timed series are not closed under the
Hadamard product. We illustrate this in the next example.

Example 1. Let K = (R≥0 ∪ {∞},min,+,∞, 0), Σ = {a} and F be the fam-
ily of linear functions C : R≥0 → R≥0. We define the WERA Ai over K, Σ
and F for each i = 1, 2 by Ai = ({pi, qi}, {pi}, {qi}, {(pi, a, true, qi)}, Ci) with
Ci

E((pi, a, true, qi)) = 0, Ci
qi(δ) arbitrary, C1

p1 (δ) = 2 · δ and C2
p2(δ) = 3 · δ.

Let w ∈ TΣ∗. If w 6= (a, t) for some t ∈ R≥0, then (‖Ai‖, w) = 0 for each
i = 1, 2 and thus (‖A1‖ ⊙ ‖A2‖, w) = 0. So let w = (a, t) for some t ∈ R≥0.
Then we have (‖A1‖ ⊙ ‖A2‖, w) = 2 · t + 3 · t = 5 · t. Clearly, this timed series
is recognizable over the family of linear functions. If K and F are as above, for
building a WERA recognizing the Hadamard product of the behaviours of two
given WERA, we can use the usual product automaton construction together
with defining a cost function such that the cost of each edge and location equals
the pointwise product of the costs of the two corresponding edges and locations
in the original WERA. This can be done since the pointwise product of each
pair of linear functions is a linear function and thus in F . However, this is not
always the case. For instance, assume that Ai are WERA over the semiring
(R≥0,+, ·, 0, 1). Then, we have (‖A1‖ ⊙ ‖A2‖, w) = 2 · t · 3 · t = 6 · t2. It can be
easily seen that there is no WERA A over the family F of linear functions such
that ‖A‖ = ‖A1‖ ⊙ ‖A2‖.

For this reason, we define the notion of non-interfering timed series. So for
i = 1, 2, let Ai = (Si, Si

0, S
i
f , E

i, Ci) be two WERA. We say that A1 and A2

are non-interfering if for all pairs (s1, s2) ∈ S
1 × S2, whenever there is a run

from (s1, s2) into S1
f × S

2
f , then C1

s1
= 1 or C2

s2
= 1. Observe that this implies

C1
s1
⊙ C2

s2
∈ F . This enables us to use a product automaton construction for

building a WERA recognizing ‖A1‖ ⊙ ‖A2‖. Also notice that the premise of
the condition is decidable for the whole class of weighted timed automata [2].
Two timed series T1 and T2 are non-interfering over K, Σ and F if there are
non-interfering WERA A1 and A2 over K, Σ and F with ‖Ai‖ = Ti for i = 1, 2.

Lemma 3. 1. If for all f1, f2 ∈ F we have f1⊙f2 ∈ F , then recognizable timed
series over K, Σ and F are closed under ⊙.

2. If T1 and T2 are non-interfering over K, Σ and F , then T1⊙T2 is recognizable
over K, Σ and F .

2 Weighted Timed MSO Logic

Next, we introduce a weighted timed MSO logic for specifying properties of
timed series. Our logic is an extension of the logic MSOer(Σ) introduced by
D’Souza, which we briefly recall here. Formulas of MSOer(Σ) are built induc-
tively from atomic formulas Pa(x), x = y, x < y, x ∈ X , ⊳a(x) ∼ c using
the connectives ∨, ¬, ∃x. and ∃X., where x, y are first-order variables, X is a
second-order variable, a ∈ Σ, c ∈ N and ∼∈ {<,≤,=,≥, >} or (∼ c) = (= ⊥).
As usual, we may also use →, ↔, ∧, ∀x. and ∀X. as abbreviations. For-
mulas of MSOer(Σ) are interpreted over timed words. For this, we associate
with w = (a1, t1)...(ak, tk) the relational structure consisting of the domain
dom(w) together with the unary relations Pa = {i ∈ dom(w)|ai = a} and
⊳a(.) ∼ c = {i ∈ dom(w)|γw

i (xa) ∼ c} as well as the usual < and = relations
on dom(w). Now, for ϕ ∈ MSOer(Σ), let Free(ϕ) be the set of free variables,
V ⊇ Free(ϕ) be a finite set of first- and second-order variables, and σ be a
(V , w)-assignment mapping first-order (second-order, resp.) variables to elements
(subsets, resp.) of dom(w). For i ∈ dom(w), we let σ[x → i] be the assignment
that maps x to i and agrees with σ on every variable V\{x}. Similarly, we define
σ[X → I] for any I ⊆ dom(w). A timed word (ā, t̄) and a (V , (ā, t̄))-assignment
σ is encoded as timed word ((ā, σ), t̄) over the extended alphabet ΣV . A timed
word over ΣV is written as ((ā, σ), t̄), where ā is the projection over Σ and σ is
the projection over {0, 1}V . Then, σ represents a valid assignment over V if for
each first-order variable x ∈ V , the x-row of σ contains exactly one 1. In this
case, σ is identified with the (V , (ā, t̄))-assignment such that for every first-order
variable x ∈ V , σ(x) is the position of the 1 in the x-row, and for each second-
order variable X ∈ V , σ(X) is the set of positions with a 1 in the X-row. We
define NV = {((ā, σ), t̄) ∈ (TΣV)∗|σ is a valid (V , (ā, t̄))-assignment}. The defi-
nition that ((ā, σ), t̄) satisfies ϕ, written ((ā, σ), t̄) |= ϕ, is as usual. We let
LV(ϕ) = {((ā, σ), t̄) ∈ NV |((ā, σ), t̄) |= ϕ}. The formula ϕ defines the timed lan-
guage L(ϕ) = LFree(ϕ)(ϕ). A timed language L ⊆ TΣ∗ is MSOer(Σ)-definable if
there exists a sentence ϕ ∈ MSOer(Σ) such that L(ϕ) = L.

Theorem 1. [14] A timed language L ⊆ TΣ∗ is MSOer(Σ)-definable if and
only if L is recognizable over Σ.

Now, we turn to the logic MSOer(K, Σ,F), defined inductively as follows. The
atomic formulas are formulas of the form Pa(x), x = y, x < y, x ∈ X , ⊳a(x) ∼ c
and their negations, where x, y,X, a, c,∼ are as above. Atomic formulas and
formulas of the form k and Cµ(x), where k ∈ K and µ ∈ F , can be combined
using the operators ∧, ∨, ∃x., ∀x., ∃X. and ∀X . Notice that we only allow to
apply negation to basic formulas. Let ϕ ∈ MSOer(K, Σ,F) and V ⊇ Free(ϕ).
The V-semantics of ϕ is a timed series [[ϕ]]V : (TΣV)∗ → K. Let (ā, t̄) ∈ TΣ∗.
If σ is a valid (V , (ā, t̄))-assignment, [[ϕ]]V ((ā, σ), t̄) ∈ K is defined inductively as
follows:

[[ϕ]]V ((ā, σ), t̄) = 1LV(ϕ)((ā, σ), t̄) if ϕ is atomic

[[k]]V((ā, σ), t̄) = k

[[Cµ(x)]]V((ā, σ), t̄) = µ(tσ(x) − tσ(x)−1)

[[ϕ ∨ ϕ′]]V((ā, σ), t̄) = [[ϕ]]V ((ā, σ), t̄) + [[ϕ′]]V((ā, σ), t̄)

[[ϕ ∧ ϕ′]]V((ā, σ), t̄) = [[ϕ]]V ((ā, σ), t̄) · [[ϕ′]]V((ā, σ), t̄)

[[∃x.ϕ]]V((ā, σ), t̄) =
∑

i∈dom((ā,t̄))

[[ϕ]]V∪{x}((ā, σ[x→ i]), t̄)

[[∀x.ϕ]]V((ā, σ), t̄) =
∏

i∈dom((ā,t̄))

[[ϕ]]V∪{x}((ā, σ[x→ i]), t̄)

[[∃X.ϕ]]V((ā, σ), t̄) =
∑

I⊆dom((ā,t̄))

[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

[[∀X.ϕ]]V((ā, σ), t̄) =
∏

I⊆dom((ā,t̄))

[[ϕ]]V∪{X}((ā, σ[X → I]), t̄)

For σ not a valid (V , (ā, t̄))-assignment, we define [[ϕ]]V ((ā, σ), t̄) = 0. We write
[[ϕ]] for [[ϕ]]Free(ϕ).

Remark 2. If we let K be the Boolean semiring, then MSOer(Σ) corresponds
to MSOer(K, Σ,F) as every formula in MSOer(Σ) is equivalent to a formula
where negation is applied to atomic subformulas only. Also, every such formula
ϕ ∈ MSOer(Σ) can be seen to be a formula of our logic.

Example 2. Consider the formula ϕ = ∃x. ⊳a (x) < 2 and let w =
(a, 1.7)(b, 3.0)(a, 3.6)(a, 6.0). If we interpret ϕ as an MSOer(K, Σ,F)-formula
over the Boolean semiring or, equivalently, as an MSOer(Σ)-formula, we have
[[ϕ]](w) = 1. If on the other hand, we let K be the semiring over the natural
numbers with ordinary addition and multiplication, we have [[ϕ]](w) = 2, i.e., we
count the number of positions x in w where ⊳a(x) < 2 is satisfied. Counting how
often a certain property holds gives rise to interesting applications in the field
of verification.

Let L ⊆ MSOer(K, Σ,F). A timed series T : TΣ∗ → K is called L-definable
if there is a sentence ϕ ∈ L such that [[ϕ]] = T . The goal of this paper is
to find a suitable fragment L of MSOer(K, Σ,F) such that L-definable timed

series precisely correspond to recognizable timed series over K, Σ and F , i.e.,
we want to generalize Theorem 1 to the weighted setting. It is not surprising
that MSOer(K, Σ,F) does not constitute a suitable candidate for L since this is
already not the case in the untimed setting [9]. In the next section, we explain
the problems that occur when we do not restrict the logic and step by step
develop solutions resulting in the logic sRMSOer(K, Σ,F) for which we are able
to give the following Büchi-type theorem.

Theorem 2. A timed series T : TΣ∗ → K is recognizable over K, Σ and F if
and only if T is definable by some sentence in sRMSOer(K, Σ,F). The respective
transformations can be done effectively provided that the operations of K and F
are given effectively.

3 From Logic To Automata

In this section, we want to prove the direction from right to left in Theorem 2
and show that for every formula ϕ of our weighted timed MSO logic, [[ϕ]] is a
recognizable timed series. We do this similarly to the corresponding proof for
the classical setting [27], i.e., by induction over the structure of the logic.

For the induction base, we show that for every atomic formula ϕ in
MSOer(K, Σ,F) there is a WERA recognizing [[ϕ]]. For ϕ of the form Pa(x),
x = y, x < y, x ∈ X and its negations, this can be done as in the classical
setting [27]. In Fig.2, we give the WERA recognizing the timed series [[ϕ]] for ϕ
being one of ⊳a(x) ∼ c, k and Cµ(x).

1 1(

Σ
1

)

/1

x(a

0)
∼ c

(

Σ
0

)

/1
(

Σ
0

)

/1 1 1Σ/k

Σ/11 1...
| {z }

k−times

1 µ 1(

Σ
0

)

/1
(

Σ
1

)

/1

(

Σ
0

)

/1
(

Σ
0

)

/1

Figure 2. WERA with behaviours [[⊳a(x) ∼ c]], [[k]] and [[Cµ(x)]]

For the induction step, we need to show closure properties of recognizable
timed series under the constructs of the logic. For disjunction and existential
quantification, we can give proofs very similar to the classical case (see Thomas
for the case of formal languages [26] or Droste and Gastin for the case of (un-
timed) series [9, 10]). However, we will see that for the remaining operators of
our logic, we cannot give easy extensions of the classical proofs.

First of all, in Sect.1 we have seen that recognizable timed series in general
are not closed under the Hadamard product. Since the semantics of conjunction
is defined using the Hadamard product, this means that we have to restrict the
usage of conjunction. More precisely, we either have to require that F is such
that for all f1, f2 ∈ F we have f1⊙f2 ∈ F , or we have to formulate a syntactical
restriction implying that whenever two formulas ϕ1 and ϕ2 are combined by a
conjunction, then [[ϕ1]] and [[ϕ2]] are non-interfering.

Lemma 4. Let ϕ1, ϕ2 ∈ MSOer(K, Σ,F) such that [[ϕ1]] and [[ϕ2]] are recogniz-
able. Assume that whenever ϕ1 contains the subformula Cµ1

(x1) and ϕ2 contains
Cµ2

(x2), then x1, x2 are free in both ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the
form ψ ∧ ¬(x1 = x2) for some ψ ∈ MSOer(K, Σ,F). Then [[ϕ1]] and [[ϕ2]] are
non-interfering.

We give the intuition behind this lemma via an example. Consider the formula
Cµ1

(x1) ∧ Cµ2
(x2) and let Ai be a WERA such that ‖Ai‖ = [[Cµi

(xi)]] for each
i = 1, 2 (see Fig.2). We use s1 (s2, resp.) to denote the location in A1 (A2,
resp.) with cost function µ1 (µ2), resp.). We want to enforce that in the product
automaton of A1 and A2, from the pair (s1, s2) there is no run to a final location.
This is the case if from s1 and s2 no common letter can be read. Observe that
from s1 (s2, resp.) every outgoing edge is labeled with (a, σ) such that σ(x1) = 1
(σ(x2) = 1, resp.) for every a ∈ Σ. Hence, in the product automaton every
edge from (s1, s2) must be labeled with a letter of the form (a, σ) such that
σ(x1) = σ(x2) = 1 for every a ∈ Σ. By requiring x1 and x2 to refer to different
positions in a timed word, we can exclude that there is an edge from (s1, s2)
labeled with a letter of this form. This is done by conjoining the formula above
with ¬(x1 = x2).

Second, examples [10] show that unrestricted application of ∀x. and ∀X. do
not preserve recognizability. For instance, let K = (N,+, ·, 0, 1) be the semiring
of the natural numbers and F be the family of constant functions. We consider
the formula ϕ = ∀y.∃x.C1(x). Then we have [[ϕ]](w) = |w||w|. However, this
cannot be recognized by any WERA as this timed series grows too fast (see
[9] for a detailed proof which can also be applied to the timed setting). Similar
examples can be given for ∀X . Hence, we need to restrict both the usage of ∀x.
and ∀X. in our logic. We adopt the approach of Droste and Gastin [10].

For dealing with ∀X., the idea is to restrict the application of ∀X. to so-
called syntactically unambiguous formulas. These are formulas ϕ ∈ MSOer(Σ)
such that - even though interpreted over a semiring - the semantics [[ϕ]] of ϕ
always equals 0 or 11. We define the set of syntactically unambiguous formulas
ϕ+ and ϕ− for ϕ ∈MSOer(Σ) inductively as follows:

1. If ϕ is of the form Pa(x), x < y, x = y, x ∈ X , ⊳a(x) ∼ c, then ϕ+ = ϕ and
ϕ− = ¬ϕ.

2. If ϕ = ¬ψ then ϕ+ = ψ− and ϕ− = ψ+.
3. If ϕ = ψ ∨ ζ then ϕ+ = ψ+ ∨ (ψ− ∧ ζ+) and ϕ− = ψ− ∧ ζ−

4. If ϕ = ∃x.ψ then ϕ+ = ∃x.ψ+ ∧ ∀y.(y < x ∧ ψ(y))− and ϕ− = ∀x.ψ−

5. If ϕ = ∃X.ψ then ϕ+ = ∃X.ψ+ ∧ ∀Y.(Y < X ∧ ψ(Y))− and ϕ− = ∀X.ψ−

where X < Y = ∃y.y ∈ Y ∧ ¬(y ∈ X) ∧ ∀z.[z < y −→ (z ∈ X ←→ z ∈ Y)]+.
Notice that for each ϕ ∈ MSOer(Σ) we have [[ϕ+]] = 1L(ϕ) and [[ϕ−]] = 1L(¬ϕ).
Thus the semantics of syntactically unambiguous formulas are recognizable by
Theorem 1 and Lemma 1. Moreover, if ϕ is syntactically unambiguous, one

1 Recall that every MSOer(Σ)-formula can also be seen as an MSOer(K, Σ,F)-formula
and may have a semantics different from 0 or 1; see e.g. Ex.2

can easily see that also ∀X.ϕ is syntactically unambiguous and thus [[∀X.ϕ]] is
recognizable.

Next, we explain how to deal with ∀x. The approach used by Droste and
Gastin [10] is to restrict the subformula ϕ in ∀x.ϕ to so-called almost unambigu-
ous formulas. Formulas of this kind can be transformed into equivalent formulas
of the form

∨

1≤i≤n ki ∧ ψ
+
i for some n ∈ N, ki ∈ K and syntactically unam-

biguous formulas ψ+
i for each i ∈ {1, ..., n}. One can easily see that the series

corresponding to the semantics of such a formula has a finite image. Moreover,
closure properties of recognizable series under sum, Hadamard- and scalar prod-
ucts can be used to prove that the semantics of such a formula is recognizable by
a weighted automaton. Finally, this particular form of the formula is the base of
an efficient construction of a weighted automaton recognizing [[∀x.ϕ]]. Here, we
use a very similar approach. However, we have to redefine the notion of almost
unambiguous formulas a bit in order to include subformulas of the form Cµ(x).

Let x be a first-order variable. We say that a formula ϕ is almost unam-
biguous over x if it is in the disjunctive and conjunctive closure of syntactically
unambiguous formulas, constants k ∈ K and formulas Cµ(x) (for µ ∈ F), such
that Cµ(x) may appear at most once in every subformula of ϕ of the form
ϕ1 ∧ ϕ2. Using similar methods as in [10], one can show that every almost un-
ambiguous formala can be transformed into an equivalent formula of the form
∨

1≤i≤n Cµi
(x) ∧ ki ∧ ψ

+
i for some n ∈ N, ki ∈ K, (µi ∈ F) and ψi ∈MSOer(Σ)

for every i ∈ {1, ..., n}. Clearly, the semantics of formulas of this form is not
guaranteed to have a finite image. As a counter example consider for instance
the case where F is the family of linear functions. However, using Lemmas 2 and
3 as well as Theorem 1, one can prove that the semantics of every formula of this
form (and thus of every almost unambiguous formula over x) is recognizable. So
now assume that ϕ is almost unambiguous over x. The main challenge of this
paper was to prove that [[∀x.ϕ]] is recognizable. We were able to adapt the proof
proposed by Droste and Gastin to the timed setting by applying an additional
normalization technique to solve problems having their origin in formulas of the
form Cµ(x). The proof is rather technical and omitted here; for the details see
the full length version of this paper [23].

Finally, we define the fragment of MSOer(K, Σ,F) used in Theorem 2. A
formula ϕ ∈ MSOer(K, Σ,F) is called syntactically restricted if it satisfies the
following conditions:

1. Whenever ϕ contains a conjunction ϕ1 ∧ ϕ2 as subformula, ϕ1 contains the
subformula Cµ1

(x1) and ϕ2 contains Cµ2
(x2), then x1, x2 are free in both

ϕ1 and ϕ2, and either ϕ1 or ϕ2 is of the form ψ ∧ ¬(x1 = x2) for some
ψ ∈ MSOer(K, Σ,F).

2. Whenever ϕ contains ∀x.ψ as a subformula, then ψ is an almost unambiguous
formula over x.

3. Whenever ϕ contains ∀X.ψ as a subformula, then ψ is a syntactically un-
ambiguous formula.

We let sRMSOer(K, Σ,F) denote the set of all syntactically restricted formulas
of MSOer(K, Σ,F). Notice that each of these conditions can be checked for in

easy syntax tests. Hence, the logic sRMSOer(K, Σ,F) is a decidable fragment,
i.e., for each formula in MSOer(K, Σ,F) we can decide whether it is syntactically
restricted or not.

We want to give some final remarks on the correctness of the proof methods
described above. Although not explicitly mentioned in the individual steps, we
make use of renaming operations in the proofs for closure under the constructs of
our logic. For instance, we adopt the classical proof method for showing that the
application of ∃x. preserves the recognizability of the semantics of a formula ϕ
with Free(ϕ) = V by using a renaming π : ΣV → ΣV\{x} which erases the x-row
(see e.g. [26, 10]). However, it is well-known that recognizable timed languages
are not closed under renaming [1]. We solve this problem using an approach
proposed by D’Souza [14] and consider so-called quasi-WERA. Timed languages
recognizable by quasi-WERA share the same closure properties as recognizable
timed languages, but additionally are closed under so-called valid renamings [14].
So, in the inductive proof described above, we actually show that the semantics
of every formula in our logic is recognizable by a quasi-WERA rather than a
WERA. Since quasi-WERA-recognizable timed series form a strict subclass of
recognizable timed series, we get the final implication. For the sake of simplicity,
we only mention this here; the correct proof can be found in [23].

4 From Automata To Logic

For the implication from left to right in Theorem 2, we extend the proof pro-
posed by Droste and Gastin to the timed setting, briefly explained in the
following. Let A = (S, S0, S, E,C) be a WERA. We choose an enumeration
(e1, ..., em) of E with m = |E| and assume ei = (si, ai, φi, s

′
i). We define

a syntactically unambiguous formula ψ(X1, ..., Xm) without any second-order
quantifiers describing the successful runs of A (where for each i ∈ {1, ...,m},
Xi stands for the edge ei). This can be done similarly to the classical set-
ting [26]. The guards of the edges in E can be defined by a formula of the

form ∀x.
∧

1≤i≤m

(

x ∈ Xi
+
−→

∧

a∈Σ

(
∧

(xa∼c)∈φi

⊳a(x) ∼ c)
)

where ϕ
+
−→ ψ is an ab-

breviation for ϕ− ∨ (ϕ+ ∧ ψ+). Then, for every non-empty timed word (ā, t̄) and
valid ({X1, ..., Xm}, (ā, t̄))-assignment σ, we have [[ψ(X1, ..., Xm)]]((ā, σ), t̄) = 1,
if there is a successful run of A on (ā, t̄), and [[ψ(X1, ..., Xm)]]((ā, σ), t̄) = 0, oth-
erwise. Notice that we need to use syntactically unambiguous formulas here in
order to avoid getting weights different from 1 or 0. Now, we “add weights” to
ψ to obtain a formula ξ whose semantics corresponds to the running weight of
a successful run of A on (ā, t̄) as follows:

ξ = ψ ∧
∧

ei∈E

∀x.
(

¬(x ∈ Xi) ∨ [x ∈ Xi ∧ Cµsi
(x) ∧ CE(ei)]

)

.

For the empty timed word ε, we define a formula ϕ = (‖A‖, ε) ∧ ∀x.¬(x ≤ x).
Finally, we let ζ = ∃X1...∃Xm.(ξ∨ϕ), and we obtain [[ζ]] = ‖A‖. Hence, we have
shown the second implication, which finishes the proof of Theorem 2.

5 Conclusion

We have presented a weighted timed MSO logic, which is - at least to our knowl-
edge - the first MSO logic allowing for the description of both timed and quan-
titative properties. On the one hand, we provide the real-time-community with
a new tool, because sometimes it may be easier to specify properties in terms of
logic rather than by automata devices. On the other hand, the coincidence be-
tween recognizable and definable timed series, together with a previous work on
WERA concerning a Kleene-Schützenberger Theorem [22], shows the robustness
of the notion of WERA-recognizable timed series, as they can equivalently be
characterized in terms of automata, logics and rational operations. The same ap-
plies to timed series recognizable by weighted timed automata, for which we were
successful in adapting the proofs presented in this paper using the relative dis-

tance logic L
←−
d introduced by Wilke and his results concerning timed languages

with bounded variability [28, 24]. Notice that our result generalizes correspond-
ing results on ERA-recognizable languages as well as formal power series [14, 10].
Also, we have stated conditions for closure of recognizable timed series under
the Hadamard product, which corresponds to the intersection operation in the
unweighted setting.

Acknowledgement

I would like to thank Manfred Droste and Christian Mathissen for their helpful
discussions and comments.

References

1. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: A determinizable
class of timed automata. Theor. Comput. Sci., 211(1-2):253–273, 1999.

2. R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
Theoretical Computer Science, 318:297–322, 2004.

3. G. Behrmann, A. Fehnker, T. Hune, K. Larsen, P. Pettersson, J. Romijn, and
F. Vaandrager. Minimum-cost reachability for priced timed automata. In HSCC,
volume 2034 of LNCS, pages 147–161. Springer, 2001.

4. P. Bouyer, T. Brihaye, V. Bruyère, and J.-F. Raskin. On the optimal reacha-
bility problem on weighted timed automata. Formal Methods in System Design,
31(2):135–175, October 2007.

5. P. Bouyer, T. Brihaye, and N. Markey. Improved undecidability results on weighted
timed automata. Inf. Process. Lett., 98(5):188–194, 2006.

6. J. R. Büchi. On a decision method in restricted second order arithmetics. In
E. Nagel et al., editor, Proc. Intern. Congress on Logic, Methodology and Philoso-
phy of Sciences, pages 1–11, Stanford, 1960. Stanford University Press.

7. C. Dima. Kleene theorems for event-clock automata. In FCT, volume 1684 of
LNCS, pages 215–225. Springer, 1999.

8. M. Droste and P. Gastin. Weighted automata and weighted logics. In ICALP,
volume 3580 of LNCS, pages 513–525. Springer, 2005.

9. M. Droste and P. Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

10. M. Droste and P. Gastin. Weighted automata and weighted logics. In M. Droste,
W. Kuich, and H. Vogler, editors, Handbook of Weighted Automata, pages 173–206.
Springer, 2009. To appear.

11. M. Droste and K. Quaas. A Kleene-Schützenberger Theorem for Weighted Timed
Automata. In FoSSaCS, volume 4962 of LNCS, pages 142–156. Springer, 2008.

12. M. Droste and G. Rahonis. Weighted automata and weighted logics on infinite
words. In Developments in Language Theory, volume 4036 of LNCS, pages 49–58.
Springer, 2006.

13. M. Droste and H. Vogler. Weighted tree automata and weighted logics. Theor.
Comput. Sci., 366(3):228–247, 2006.

14. D. D’Souza. A logical characterisation of event recording automata. In FTRTFT,
volume 1926 of LNCS, pages 240–251. Springer, 2000.

15. C. C. Elgot. Decision problems of finite automata design and related arithmetics.
Trans. Am. Math. Soc., 98:21–51, 1961.

16. O. Grinchtein, B. Jonsson, and P. Pettersson. Inference of event-recording au-
tomata using timed decision trees. In CONCUR, volume 4137 of LNCS, pages
435–449. Springer, 2006.

17. T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. The regular real-time lan-
guages. In ICALP, volume 1443 of LNCS, pages 580–591. Springer, 1998.

18. C. Mathissen. Definable transductions and weighted logics for texts. In Develop-
ments in Language Theory, volume 4588 of LNCS, pages 324–336. Springer, 2007.

19. C. Mathissen. Weighted logics for nested words and algebraic formal power series.
In ICALP (2), volume 5126 of LNCS, pages 221–232. Springer, 2008.

20. I. Mäurer. Weighted picture automata and weighted logics. In STACS, volume
3884 of LNCS, pages 313–324. Springer, 2006.

21. I. Meinecke. Weighted logics for traces. In CSR, volume 3967 of LNCS, pages
235–246. Springer, 2006.

22. K. Quaas. A Kleene-Schützenberger-Theorem for Weighted Event-Clock-
Automata. http://www.informatik.uni-leipzig.de/∼quaas/weca ks.pdf, 2008.

23. K. Quaas. A logical characterization for weighted event-recording automata.
http://www.informatik.uni-leipzig.de/∼quaas/wera logic.pdf, 2009.

24. K. Quaas. A logical characterization for weighted timed automata.
http://www.informatik.uni-leipzig.de/∼quaas/wta logic.pdf, 2009.

25. J.-F. Raskin and P.-Y. Schobbens. State clock logic: A decidable real-time logic.
In HART, volume 1201 of LNCS, pages 33–47. Springer, 1997.

26. W. Thomas. Languages, automata and logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, pages 389–485. Springer, 1997.

27. Wolfgang Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pages 133–192. Elsevier and MIT Press, 1990.

28. T. Wilke. Specifying Timed State Sequences in Powerful Decidable Logics and
Timed Automata. In FTRTFT, volume 863 of LNCS, pages 694–715, Lübeck,
Germany, 1994. Springer-Verlag.

