
Random Generation of
Nondeterministic Tree Automata

Thomas Hanneforth1 and Andreas Maletti2 and Daniel Quernheim2

1 Department of Linguistics
University of Potsdam, Germany

2 Institute for Natural Language Processing
University of Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Hanoi, Vietnam (TTATT 2013)

A. Maletti Random Generation of NTA October 19, 2013

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti Random Generation of NTA October 19, 2013

Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

F1 score
grammar |w | ≤ 40 full

CFG = LTL 62.7
TSG [POST, GILDEA, 2009] = xLTL 82.6
TSG [COHN et al., 2010] = xLTL 85.4 84.7

CFGlv [COLLINS, 1999] = NTA 88.6 88.2
CFGlv [PETROV, KLEIN, 2007] = NTA 90.6 90.1
CFGlv [PETROV, 2010] = NTA 91.8

TSGlv (single) = RTG 91.6 91.1
TSGlv (multiple) = RTG 92.9 92.4

Discriminative Parsers

CARRERAS et al., 2008 91.1
CHARNIAK, JOHNSON, 2005 92.0 91.4
HUANG, 2008 92.3 91.7

A. Maletti Random Generation of NTA October 19, 2013

Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

F1 score
grammar |w | ≤ 40 full

CFG = LTL 62.7
TSG [POST, GILDEA, 2009] = xLTL 82.6
TSG [COHN et al., 2010] = xLTL 85.4 84.7

CFGlv [COLLINS, 1999] = NTA 88.6 88.2
CFGlv [PETROV, KLEIN, 2007] = NTA 90.6 90.1
CFGlv [PETROV, 2010] = NTA 91.8

TSGlv (single) = RTG 91.6 91.1
TSGlv (multiple) = RTG 92.9 92.4

Discriminative Parsers

CARRERAS et al., 2008 91.1
CHARNIAK, JOHNSON, 2005 92.0 91.4
HUANG, 2008 92.3 91.7

A. Maletti Random Generation of NTA October 19, 2013

Berkeley Parser

Example parse

S

NP

DT

This

VP

VBZ

is

NP

DT

a

JJ

silly

NN

sentence

from http://tomato.banatao.berkeley.edu:8080/parser/parser.html

A. Maletti Random Generation of NTA October 19, 2013

http://tomato.banatao.berkeley.edu:8080/parser/parser.html

Berkeley Parser

Example productions

S-1→ ADJP-2 S-1 0.0035453455987323125 · 100

S-1→ ADJP-1 S-1 2.108608433271444 · 10−6

S-1→ VP-5 VP-3 1.6367163259885093 · 10−4

S-2→ VP-5 VP-3 9.724998692152419 · 10−8

S-1→ PP-7 VP-0 1.0686659961009547 · 10−5

S-9→ “ NP-3 0.012551243773149695 · 100

Formalism
Berkeley parser = CFG (local tree grammar) + relabeling (+ weights)

A. Maletti Random Generation of NTA October 19, 2013

Typical NTA

Sizes
I English BERKELEY parser grammar 153 MB

(1,133 states and 4,267,277 transitions)
I English EGRET parser grammar 107 MB
I Chinese EGRET parser grammar 98 MB

EGRET = HUI ZHANG’s C++ reimplementation of the BERKELEY parser (Java)

A. Maletti Random Generation of NTA October 19, 2013

Algorithm testing

Observations
I even efficient algorithms run slow on such data
I often require huge amounts of memory
I impossible for inefficient algorithms

I realistic, but difficult to use as test data

Testing on random NTA

I straightforward to implement
I straightforward to scale

I but what is the significance of the results?

A. Maletti Random Generation of NTA October 19, 2013

Algorithm testing

Observations
I even efficient algorithms run slow on such data
I often require huge amounts of memory
I impossible for inefficient algorithms
I realistic, but difficult to use as test data

Testing on random NTA

I straightforward to implement
I straightforward to scale

I but what is the significance of the results?

A. Maletti Random Generation of NTA October 19, 2013

Algorithm testing

Observations
I even efficient algorithms run slow on such data
I often require huge amounts of memory
I impossible for inefficient algorithms
I realistic, but difficult to use as test data

Testing on random NTA

I straightforward to implement
I straightforward to scale

I but what is the significance of the results?

A. Maletti Random Generation of NTA October 19, 2013

Algorithm testing

Observations
I even efficient algorithms run slow on such data
I often require huge amounts of memory
I impossible for inefficient algorithms
I realistic, but difficult to use as test data

Testing on random NTA

I straightforward to implement
I straightforward to scale
I but what is the significance of the results?

A. Maletti Random Generation of NTA October 19, 2013

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti Random Generation of NTA October 19, 2013

Tree automaton

Definition (THATCHER AND WRIGHT, 1965)
A tree automaton is a tuple A = (Q,Σ, I,R) with

I alphabet Q states
I ranked alphabet Σ terminals
I I ⊆ Q final states
I finite set R ⊆ Σ(Q)×Q rules

Remark
Instead of (`,q) we write `→ q

A. Maletti Random Generation of NTA October 19, 2013

Regular Tree Grammar

Example

I Q = {q0,q1,q2,q3,q4,q5,q6}
I Σ = {VP,S, . . . }
I F = {q0}
I and the following rules:

VP

q5 q1 q3

→ q4
S

q1 q4

→ q0
S

q6 q2

→ q0

A. Maletti Random Generation of NTA October 19, 2013

Regular Tree Grammar

Definition (Derivation semantics)
Sentential forms: ξ, ζ ∈ TΣ(Q)

ξ ⇒A ζ

if there exist position w ∈ pos(ξ) and rule `→ q ∈ R
I ξ = ξ[`]w
I ζ = ξ[q]w

Definition (Recognized tree language)

L(A) = {t ∈ TΣ | ∃f ∈ F : t ⇒∗A f}

A. Maletti Random Generation of NTA October 19, 2013

Regular Tree Grammar

Definition (Derivation semantics)
Sentential forms: ξ, ζ ∈ TΣ(Q)

ξ ⇒A ζ

if there exist position w ∈ pos(ξ) and rule `→ q ∈ R
I ξ = ξ[`]w
I ζ = ξ[q]w

Definition (Recognized tree language)

L(A) = {t ∈ TΣ | ∃f ∈ F : t ⇒∗A f}

A. Maletti Random Generation of NTA October 19, 2013

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti Random Generation of NTA October 19, 2013

Previous Approaches

HÉAM et al. 2009
I for deterministic tree-walking automata

(and deterministic top-down tree automata)

I focus on generating automata uniformly at random
(for estimating average-case complexity)

I generator used for evaluation of conversion from det. TWA to NTA

A. Maletti Random Generation of NTA October 19, 2013

Previous Approaches

HÉAM et al. 2009
I for deterministic tree-walking automata

(and deterministic top-down tree automata)
I focus on generating automata uniformly at random

(for estimating average-case complexity)

I generator used for evaluation of conversion from det. TWA to NTA

A. Maletti Random Generation of NTA October 19, 2013

Previous Approaches

HÉAM et al. 2009
I for deterministic tree-walking automata

(and deterministic top-down tree automata)
I focus on generating automata uniformly at random

(for estimating average-case complexity)
I generator used for evaluation of conversion from det. TWA to NTA

A. Maletti Random Generation of NTA October 19, 2013

Previous Approaches

HUGOT et al. 2010
I for tree automata with global equality constraints

I focus on avoiding trivial cases
(removal of unreachable states, minimum height requirement)

I generator used for evaluation of emptiness checker

A. Maletti Random Generation of NTA October 19, 2013

Previous Approaches

HUGOT et al. 2010
I for tree automata with global equality constraints
I focus on avoiding trivial cases

(removal of unreachable states, minimum height requirement)

I generator used for evaluation of emptiness checker

A. Maletti Random Generation of NTA October 19, 2013

Previous Approaches

HUGOT et al. 2010
I for tree automata with global equality constraints
I focus on avoiding trivial cases

(removal of unreachable states, minimum height requirement)
I generator used for evaluation of emptiness checker

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I

I

I

I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I large number of states
I large number of rules

I

I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I large number of states
I large number of rules

I

I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I large number of states
I large number of rules
I its language contains large trees

I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I large number of states
I large number of rules
I its language contains large trees

I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I large number of states
I large number of rules
I its language contains large trees
I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Restrictions
I binary trees

(all RTL can be such encoded with linear overhead)

I each state is final with probability .5
I uniform probability for binary/nullary rules
I three parameters

1. input binary ranked alphabet Σ = Σ2 ∪ Σ0
2. number n of states of generated NTA scaling
3. nullary rule probability d0 for all nullary rules
4. binary rule probability d2 for all binary rules

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Restrictions
I binary trees

(all RTL can be such encoded with linear overhead)
I each state is final with probability .5

I uniform probability for binary/nullary rules
I three parameters

1. input binary ranked alphabet Σ = Σ2 ∪ Σ0
2. number n of states of generated NTA scaling
3. nullary rule probability d0 for all nullary rules
4. binary rule probability d2 for all binary rules

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Restrictions
I binary trees

(all RTL can be such encoded with linear overhead)
I each state is final with probability .5
I uniform probability for binary/nullary rules

I three parameters
1. input binary ranked alphabet Σ = Σ2 ∪ Σ0
2. number n of states of generated NTA scaling
3. nullary rule probability d0 for all nullary rules
4. binary rule probability d2 for all binary rules

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Restrictions
I binary trees

(all RTL can be such encoded with linear overhead)
I each state is final with probability .5
I uniform probability for binary/nullary rules
I three parameters

1. input binary ranked alphabet Σ = Σ2 ∪ Σ0
2. number n of states of generated NTA scaling
3. nullary rule probability d0 for all nullary rules
4. binary rule probability d2 for all binary rules

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}

2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}
2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}
2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}
2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}
2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA

A. Maletti Random Generation of NTA October 19, 2013

Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}
2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA

A. Maletti Random Generation of NTA October 19, 2013

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti Random Generation of NTA October 19, 2013

Determinization

Definition (Power-set construction)
P(A) = (P(Q),Σ,F ′,R′) with

I F ′ = {S ⊆ Q | S ∩ F 6= ∅}
I α→ {q ∈ Q | α→ q ∈ R} ∈ R′ ∀α ∈ Σ0

I σ(S1,S2)→ {q ∈ Q | σ(q1,q2)→ q ∈ R,q1 ∈ S1,q2 ∈ S2} ∈ R′

∀σ ∈ Σ2,S1,S2 ⊆ Q

Note
→ will be the guiding definition for the analytical analysis

A. Maletti Random Generation of NTA October 19, 2013

Determinization

Definition (Power-set construction)
P(A) = (P(Q),Σ,F ′,R′) with

I F ′ = {S ⊆ Q | S ∩ F 6= ∅}
I α→ {q ∈ Q | α→ q ∈ R} ∈ R′ ∀α ∈ Σ0

I σ(S1,S2)→ {q ∈ Q | σ(q1,q2)→ q ∈ R,q1 ∈ S1,q2 ∈ S2} ∈ R′

∀σ ∈ Σ2,S1,S2 ⊆ Q

Note
→ will be the guiding definition for the analytical analysis

A. Maletti Random Generation of NTA October 19, 2013

Analytical Analysis

Intuition
I power-set construction should create each state S ⊆ Q
I given states S1,S2 selected uniformly at random, each

state q ∈ Q should occur in target of σ(S1,S2) with probability .5
(the same intuition is also used for string automata)

I this intuition will create large NTA after determinization
(but that they remain large after minimization is non-trivial)

I → we will confirm the intuition experimentally

A. Maletti Random Generation of NTA October 19, 2013

Analytical Analysis

Theorem
If d2 = 4(1− n2√

.5) and d0 = .5, then the intuition is met.

Proof.
Let S1,S2 ⊆ Q be selected uniformly at random σ ∈ Σ2,q ∈ Q

π(q ∈ σ(S1,S2))

= 1− π(q /∈ σ(S1,S2))

= 1−
∏

q1,q2∈Q

(
1− π(q1 ∈ S1) · π(q2 ∈ S2) · π(σ(q1,q2)→ q ∈ R)

)
= 1−

(
1− d2

4
)n2

= 1−
(
1− 1 +

n2√
.5
)n2

= 1− (
n2√
.5)n2

=
1
2

A. Maletti Random Generation of NTA October 19, 2013

Analytical Predictions

n d2 d ′2 CI n d2 d ′2 CI
2 .636 8 .043
3 .297 9 .034
4 .170 10 .028
5 .109 11 .023
6 .076 12 .019
7 .056 13 .016

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

Setup

I Σ = {σ(2), α(0)}
I evaluation for random NTA with various densities d2

(at least 40 random NTA per data point d2)
I logarithmic scale for d2

(enough datapoints on both sides of the spike)

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0.001 0.01 0.1 1

m
e
a
n
 #

 o
f

st
a
te

s
in

 D
TA

transition density

8 states

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.0001 0.001 0.01 0.1 1

m
e
a
n
 #

 o
f

st
a
te

s
in

 D
TA

transition density

12 states

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

Observations
I (almost perfect) log-normal distributions
I we can determine the mean

(empirical and analytical)

I → hardest instances
I outside hardest instances: all trivial
I only test on random NTA for hardest density

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

Observations
I (almost perfect) log-normal distributions
I we can determine the mean

(empirical and analytical)
I → hardest instances

I outside hardest instances: all trivial
I only test on random NTA for hardest density

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

Observations
I (almost perfect) log-normal distributions
I we can determine the mean

(empirical and analytical)
I → hardest instances
I outside hardest instances: all trivial

I only test on random NTA for hardest density

A. Maletti Random Generation of NTA October 19, 2013

Empirical Evaluation

Observations
I (almost perfect) log-normal distributions
I we can determine the mean

(empirical and analytical)
I → hardest instances
I outside hardest instances: all trivial
I only test on random NTA for hardest density

A. Maletti Random Generation of NTA October 19, 2013

Analytical Predictions

n d2 d ′2 CI n d2 d ′2 CI
2 .636 8 .043
3 .297 9 .034
4 .170 10 .028
5 .109 11 .023
6 .076 12 .019
7 .056 13 .016

A. Maletti Random Generation of NTA October 19, 2013

Analytical Predictions + Empirical Evaluation

n d2 d ′2 CI n d2 d ′2 CI
2 .636 .626 8 .043 .041
3 .297 .257 9 .034 .034
4 .170 .133 10 .028 .028
5 .109 .086 11 .023 .025
6 .076 .064 12 .019 .021
7 .056 .050 13 .016 .019

A. Maletti Random Generation of NTA October 19, 2013

Analytical Predictions + Empirical Evaluation

n d2 d ′2 CI n d2 d ′2 CI
2 .636 .626 [.577,.680] 8 .043 .041 [.032,.053]
3 .297 .257 [.209,.316] 9 .034 .034 [.027,.043]
4 .170 .133 [.102,.174] 10 .028 .028 [.023,.034]
5 .109 .086 [.064,.114] 11 .023 .025 [.021,.030]
6 .076 .064 [.048,.085] 12 .019 .021 [.018,.025]
7 .056 .050 [.038,.066] 13 .016 .019 [.016,.022]

CI = confidence interval; 95% confidence level

A. Maletti Random Generation of NTA October 19, 2013

Conclusion

Use random NTA carefully!

A. Maletti Random Generation of NTA October 19, 2013

	Motivation
	Nondeterministic Tree Automata
	Random Generation
	Analysis

