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Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

F1 score
grammar |w | ≤ 40 full

CFG = LTL 62.7
TSG [POST, GILDEA, 2009] = xLTL 82.6
TSG [COHN et al., 2010] = xLTL 85.4 84.7

CFGlv [COLLINS, 1999] = NTA 88.6 88.2
CFGlv [PETROV, KLEIN, 2007] = NTA 90.6 90.1
CFGlv [PETROV, 2010] = NTA 91.8

TSGlv (single) = RTG 91.6 91.1
TSGlv (multiple) = RTG 92.9 92.4

Discriminative Parsers

CARRERAS et al., 2008 91.1
CHARNIAK, JOHNSON, 2005 92.0 91.4
HUANG, 2008 92.3 91.7
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Berkeley Parser

Example parse

S

NP

DT

This

VP

VBZ

is

NP

DT

a

JJ

silly

NN

sentence

from http://tomato.banatao.berkeley.edu:8080/parser/parser.html
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Berkeley Parser

Example productions

S-1→ ADJP-2 S-1 0.0035453455987323125 · 100

S-1→ ADJP-1 S-1 2.108608433271444 · 10−6

S-1→ VP-5 VP-3 1.6367163259885093 · 10−4

S-2→ VP-5 VP-3 9.724998692152419 · 10−8

S-1→ PP-7 VP-0 1.0686659961009547 · 10−5

S-9→ “ NP-3 0.012551243773149695 · 100

Formalism
Berkeley parser = CFG (local tree grammar) + relabeling (+ weights)
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Typical NTA

Sizes
I English BERKELEY parser grammar 153 MB

(1,133 states and 4,267,277 transitions)
I English EGRET parser grammar 107 MB
I Chinese EGRET parser grammar 98 MB

EGRET = HUI ZHANG’s C++ reimplementation of the BERKELEY parser (Java)
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Algorithm testing

Observations
I even efficient algorithms run slow on such data
I often require huge amounts of memory
I impossible for inefficient algorithms

I realistic, but difficult to use as test data

Testing on random NTA

I straightforward to implement
I straightforward to scale

I but what is the significance of the results?
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Tree automaton

Definition (THATCHER AND WRIGHT, 1965)
A tree automaton is a tuple A = (Q,Σ, I,R) with

I alphabet Q states
I ranked alphabet Σ terminals
I I ⊆ Q final states
I finite set R ⊆ Σ(Q)×Q rules

Remark
Instead of (`,q) we write `→ q
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Regular Tree Grammar

Example

I Q = {q0,q1,q2,q3,q4,q5,q6}
I Σ = {VP,S, . . . }
I F = {q0}
I and the following rules:

VP

q5 q1 q3

→ q4
S

q1 q4

→ q0
S

q6 q2

→ q0
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Regular Tree Grammar

Definition (Derivation semantics)
Sentential forms: ξ, ζ ∈ TΣ(Q)

ξ ⇒A ζ

if there exist position w ∈ pos(ξ) and rule `→ q ∈ R
I ξ = ξ[`]w
I ζ = ξ[q]w

Definition (Recognized tree language)

L(A) = {t ∈ TΣ | ∃f ∈ F : t ⇒∗A f}
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Previous Approaches

HÉAM et al. 2009
I for deterministic tree-walking automata

(and deterministic top-down tree automata)

I focus on generating automata uniformly at random
(for estimating average-case complexity)

I generator used for evaluation of conversion from det. TWA to NTA
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Previous Approaches

HUGOT et al. 2010
I for tree automata with global equality constraints

I focus on avoiding trivial cases
(removal of unreachable states, minimum height requirement)

I generator used for evaluation of emptiness checker
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Our Approach

Goals
I randomly generate non-trivial NTA
I generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?
I

I

I

I its language has many MYHILL-NERODE congruence classes
→ canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)
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Our Approach

Restrictions
I binary trees

(all RTL can be such encoded with linear overhead)

I each state is final with probability .5
I uniform probability for binary/nullary rules
I three parameters

1. input binary ranked alphabet Σ = Σ2 ∪ Σ0
2. number n of states of generated NTA scaling
3. nullary rule probability d0 for all nullary rules
4. binary rule probability d2 for all binary rules
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Our Approach

Algorithm

1. Generate n states [n] = {1, . . . ,n}

2. Make q final with probability 0.5 ∀q ∈ [n]

3. Add rule α→ q with probability d0 ∀α ∈ Σ0,q ∈ [n]

4. Add rule σ(q1,q2)→ q with probability d2 ∀σ ∈ Σ2,q,q1,q2 ∈ [n]

5. Reject if it is not trim

Evaluation

1. Determinize
2. Minimize
3. Number of obtained states

= complexity of the original random NTA
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Determinization

Definition (Power-set construction)
P(A) = (P(Q),Σ,F ′,R′) with

I F ′ = {S ⊆ Q | S ∩ F 6= ∅}
I α→ {q ∈ Q | α→ q ∈ R} ∈ R′ ∀α ∈ Σ0

I σ(S1,S2)→ {q ∈ Q | σ(q1,q2)→ q ∈ R,q1 ∈ S1,q2 ∈ S2} ∈ R′

∀σ ∈ Σ2,S1,S2 ⊆ Q

Note
→ will be the guiding definition for the analytical analysis

A. Maletti Random Generation of NTA October 19, 2013



Determinization

Definition (Power-set construction)
P(A) = (P(Q),Σ,F ′,R′) with

I F ′ = {S ⊆ Q | S ∩ F 6= ∅}
I α→ {q ∈ Q | α→ q ∈ R} ∈ R′ ∀α ∈ Σ0

I σ(S1,S2)→ {q ∈ Q | σ(q1,q2)→ q ∈ R,q1 ∈ S1,q2 ∈ S2} ∈ R′

∀σ ∈ Σ2,S1,S2 ⊆ Q

Note
→ will be the guiding definition for the analytical analysis

A. Maletti Random Generation of NTA October 19, 2013



Analytical Analysis

Intuition
I power-set construction should create each state S ⊆ Q
I given states S1,S2 selected uniformly at random, each

state q ∈ Q should occur in target of σ(S1,S2) with probability .5
(the same intuition is also used for string automata)

I this intuition will create large NTA after determinization
(but that they remain large after minimization is non-trivial)

I → we will confirm the intuition experimentally
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Analytical Analysis

Theorem
If d2 = 4(1− n2√

.5) and d0 = .5, then the intuition is met.

Proof.
Let S1,S2 ⊆ Q be selected uniformly at random σ ∈ Σ2,q ∈ Q

π(q ∈ σ(S1,S2))

= 1− π(q /∈ σ(S1,S2))

= 1−
∏

q1,q2∈Q

(
1− π(q1 ∈ S1) · π(q2 ∈ S2) · π(σ(q1,q2)→ q ∈ R)

)
= 1−

(
1− d2

4
)n2

= 1−
(
1− 1 +

n2√
.5
)n2

= 1− (
n2√
.5)n2

=
1
2
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Analytical Predictions

n d2 d ′2 CI n d2 d ′2 CI
2 .636 8 .043
3 .297 9 .034
4 .170 10 .028
5 .109 11 .023
6 .076 12 .019
7 .056 13 .016
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Empirical Evaluation

Setup

I Σ = {σ(2), α(0)}
I evaluation for random NTA with various densities d2

(at least 40 random NTA per data point d2)
I logarithmic scale for d2

(enough datapoints on both sides of the spike)
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Empirical Evaluation
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Empirical Evaluation
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Empirical Evaluation

Observations
I (almost perfect) log-normal distributions
I we can determine the mean

(empirical and analytical)

I → hardest instances
I outside hardest instances: all trivial
I only test on random NTA for hardest density
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Analytical Predictions
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Analytical Predictions + Empirical Evaluation

n d2 d ′2 CI n d2 d ′2 CI
2 .636 .626 8 .043 .041
3 .297 .257 9 .034 .034
4 .170 .133 10 .028 .028
5 .109 .086 11 .023 .025
6 .076 .064 12 .019 .021
7 .056 .050 13 .016 .019

A. Maletti Random Generation of NTA October 19, 2013



Analytical Predictions + Empirical Evaluation

n d2 d ′2 CI n d2 d ′2 CI
2 .636 .626 [.577,.680] 8 .043 .041 [.032,.053]
3 .297 .257 [.209,.316] 9 .034 .034 [.027,.043]
4 .170 .133 [.102,.174] 10 .028 .028 [.023,.034]
5 .109 .086 [.064,.114] 11 .023 .025 [.021,.030]
6 .076 .064 [.048,.085] 12 .019 .021 [.018,.025]
7 .056 .050 [.038,.066] 13 .016 .019 [.016,.022]

CI = confidence interval; 95% confidence level
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Conclusion

Use random NTA carefully!
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