Random Generation of Nondeterministic Tree Automata

Thomas Hanneforth¹ and <u>Andreas Maletti²</u> and Daniel Quernheim²

¹ Department of Linguistics University of Potsdam, Germany

² Institute for Natural Language Processing University of Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Hanoi, Vietnam (TTATT 2013)

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti

Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

	F1 score			
grammar	<i>w</i> ≤ 40	full		
CFG = LTL		62.7		
TSG [Post, Gildea , 2009] = xLTL	82.6			
TSG [Сони et al., 2010] = xLTL	85.4	84.7		
CFGlv [Collins, 1999] = NTA	88.6	88.2		
CFGlv [Petrov, Klein, 2007] = NTA	90.6	90.1		
CFGlv [PETROV, 2010] = NTA		91.8		
TSGlv (single) = RTG	91.6	91.1		
TSGIv (multiple) = RTG	92.9	92.4		
Discriminative Parsers				
CARRERAS et al., 2008		91.1		
Charniak, Johnson, 2005	92.0	91.4		
Huang, 2008	92.3	91.7		

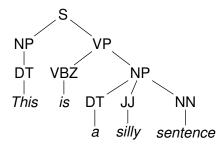
Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

	F1 score			
grammar	<i>w</i> ≤ 40	full		
CFG = LTL		62.7		
TSG [Post, Gildea , 2009] = xLTL	82.6			
TSG [Сони et al., 2010] = xLTL	85.4	84.7		
CFGlv [Collins, 1999] = NTA	88.6	88.2		
CFGlv [Petrov, Klein, 2007] = NTA	90.6	90.1		
CFGlv [PETROV , 2010] = NTA		91.8		
TSGlv (single) = RTG	91.6	91.1		
TSGlv (multiple) = RTG	92.9	92.4		
Discriminative Parsers				
CARRERAS et al., 2008		91.1		
Charniak, Johnson, 2005	92.0	91.4		
Huang, 2008	92.3	91.7		

Berkeley Parser

Example parse



from http://tomato.banatao.berkeley.edu:8080/parser/parser.html

Berkeley Parser

Example productions

- $\text{S-1} \rightarrow \text{ADJP-2} \hspace{0.2cm} \text{S-1}$
- $\text{S-1} \rightarrow \text{ADJP-1} \hspace{0.1in} \text{S-1}$
- $\text{S-1} \rightarrow \text{VP-5} \text{ VP-3}$
- $\text{S-2} \rightarrow \text{VP-5} \text{ VP-3}$
- $\text{S-1} \rightarrow \text{PP-7} \ \text{VP-0}$
- $S-9 \rightarrow$ " NP-3

 $\begin{array}{c} 0.0035453455987323125\cdot 10^{0}\\ 2.108608433271444\cdot 10^{-6}\\ 1.6367163259885093\cdot 10^{-4}\\ 9.724998692152419\cdot 10^{-8}\\ 1.0686659961009547\cdot 10^{-5}\\ 0.012551243773149695\cdot 10^{0} \end{array}$

Formalism Berkeley parser = CFG (local tree grammar) + relabeling (+ weights) **Typical NTA**

Sizes

►	English BERKELEY parser grammar	153 MB
	(1,133 states and 4,267,277 transitions)	
►	English EGRET parser grammar	107 MB
►	Chinese EGRET parser grammar	98 MB

EGRET = HUI ZHANG'S C++ reimplementation of the BERKELEY parser (Java)

October 19, 2013

Observations

- even efficient algorithms run slow on such data
- often require huge amounts of memory
- impossible for inefficient algorithms

Observations

- even efficient algorithms run slow on such data
- often require huge amounts of memory
- impossible for inefficient algorithms
- realistic, but difficult to use as test data

Observations

- even efficient algorithms run slow on such data
- often require huge amounts of memory
- impossible for inefficient algorithms
- realistic, but difficult to use as test data

Testing on random NTA

- straightforward to implement
- straightforward to scale

Observations

- even efficient algorithms run slow on such data
- often require huge amounts of memory
- impossible for inefficient algorithms
- realistic, but difficult to use as test data

Testing on random NTA

- straightforward to implement
- straightforward to scale
- but what is the significance of the results?

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti

Random Generation of NTA

October 19, 2013

Tree automaton

Definition (THATCHER AND WRIGHT, 1965)

A tree automaton is a tuple $A = (Q, \Sigma, I, R)$ with

- alphabet Q
- ranked alphabet Σ
- I ⊆ Q
- finite set $R \subseteq \Sigma(Q) \times Q$

states terminals final states

rules

Remark Instead of (ℓ, q) we write $\ell \rightarrow q$

Regular Tree Grammar

Example

- $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$
- $\Sigma = \{VP, S, \dots\}$
- $F = \{q_0\}$
- and the following rules:

Regular Tree Grammar

Definition (Derivation semantics) Sentential forms: $\xi, \zeta \in T_{\Sigma}(Q)$

$$\xi \Rightarrow_{\mathcal{A}} \zeta$$

if there exist position $w \in \mathsf{pos}(\xi)$ and rule $\ell o q \in R$

•
$$\xi = \xi[\ell]_W$$

►
$$\zeta = \xi[q]_w$$

Regular Tree Grammar

Definition (Derivation semantics) Sentential forms: $\xi, \zeta \in T_{\Sigma}(Q)$

$$\xi \Rightarrow_{\mathsf{A}} \zeta$$

if there exist position $w \in \mathsf{pos}(\xi)$ and rule $\ell o q \in R$

•
$$\xi = \xi[\ell]_W$$

►
$$\zeta = \xi[q]_W$$

Definition (Recognized tree language)

$$L(A) = \{t \in T_{\Sigma} \mid \exists f \in F \colon t \Rightarrow^*_A f\}$$

Random Generation of NTA

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

A. Maletti

Random Generation of NTA

October 19, 2013

HÉAM et al. 2009

for deterministic tree-walking automata (and deterministic top-down tree automata)

HÉAM et al. 2009

- for deterministic tree-walking automata (and deterministic top-down tree automata)
- focus on generating automata uniformly at random (for estimating average-case complexity)

НÉАМ et al. 2009

- for deterministic tree-walking automata (and deterministic top-down tree automata)
- focus on generating automata uniformly at random (for estimating average-case complexity)
- generator used for evaluation of conversion from det. TWA to NTA

HUGOT et al. 2010

for tree automata with global equality constraints

HUGOT et al. 2010

- for tree automata with global equality constraints
- focus on avoiding trivial cases (removal of unreachable states, minimum height requirement)

Нидот et al. 2010

- for tree automata with global equality constraints
- focus on avoiding trivial cases (removal of unreachable states, minimum height requirement)
- generator used for evaluation of emptiness checker

Goals

- randomly generate non-trivial NTA
- generator (potentially) usable for all NTA algorithms

Goals

- randomly generate non-trivial NTA
- generator (potentially) usable for all NTA algorithms

- large number of states
- large number of rules

Goals

- randomly generate non-trivial NTA
- generator (potentially) usable for all NTA algorithms

- large number of states
- large number of rules

Goals

- randomly generate non-trivial NTA
- generator (potentially) usable for all NTA algorithms

- large number of states
- large number of rules
- its language contains large trees

Goals

- randomly generate non-trivial NTA
- generator (potentially) usable for all NTA algorithms

- large number of states
- large number of rules
- its language contains large trees

Goals

- randomly generate non-trivial NTA
- generator (potentially) usable for all NTA algorithms

When is an NTA non-trivial?

- large number of states
- large number of rules
- ► its language contains large trees
- ► its language has many MYHILL-NERODE congruence classes
 - \rightarrow canonical NTA has many states

(canonical NTA = equivalent minimal deterministic NTA)

Restrictions

binary trees

(all RTL can be such encoded with linear overhead)

Restrictions

binary trees (all RTL can be such encoded with linear overhead)

each state is final with probability .5

Restrictions

- binary trees (all RTL can be such encoded with linear overhead)
- each state is final with probability .5
- uniform probability for binary/nullary rules

Restrictions

- binary trees (all RTL can be such encoded with linear overhead)
- each state is final with probability .5
- uniform probability for binary/nullary rules
- three parameters
 - 1. input binary ranked alphabet $\Sigma = \Sigma_2 \cup \Sigma_0$
 - 2. number n of states of generated NTA
 - 3. nullary rule probability d_0
 - 4. binary rule probability d₂

scaling for all nullary rules for all binary rules

Algorithm

1. Generate *n* states $[n] = \{1, \ldots, n\}$

Algorithm

- 1. Generate *n* states $[n] = \{1, \ldots, n\}$
- 2. Make q final with probability 0.5

 $\forall q \in [n]$

Algorithm

- 1. Generate *n* states $[n] = \{1, \ldots, n\}$
- 2. Make q final with probability 0.5
- 3. Add rule $\alpha \rightarrow q$ with probability d_0

 $orall q \in [n]$ $orall \alpha \in \Sigma_0, q \in [n]$

Our Approach

Algorithm

- 1. Generate *n* states $[n] = \{1, \ldots, n\}$
- 2. Make q final with probability 0.5
- 3. Add rule $\alpha \rightarrow q$ with probability d_0
- 4. Add rule $\sigma(q_1, q_2) \rightarrow q$ with probability $d_2 \quad \forall \sigma \in \Sigma_2, q, q_1, q_2 \in [n]$

 $\forall q \in [n]$

 $\forall \alpha \in \Sigma_0, q \in [n]$

Our Approach

Algorithm

- 1. Generate *n* states $[n] = \{1, \ldots, n\}$
- 2. Make q final with probability 0.5
- 3. Add rule $\alpha \rightarrow q$ with probability d_0
- 4. Add rule $\sigma(q_1, q_2) \rightarrow q$ with probability $d_2 \quad \forall \sigma \in \Sigma_2, q, q_1, q_2 \in [n]$
- $orall lpha \in \Sigma_0, q \in [n]$ $orall \sigma \in \Sigma_2, q, q_1, q_2 \in [n]$

5. Reject if it is not trim

 $\forall q \in [n]$

Our Approach

Algorithm

- 1. Generate *n* states $[n] = \{1, ..., n\}$
- 2. Make q final with probability 0.5
- 3. Add rule $\alpha \rightarrow q$ with probability d_0
- 4. Add rule $\sigma(q_1, q_2) \rightarrow q$ with probability $d_2 \quad \forall \sigma \in \Sigma_2, q, q_1, q_2 \in [n]$
- $\forall q \in [n]$ $\forall \alpha \in \Sigma_0, q \in [n]$

Reject if it is not trim

Evaluation

- 1. Determinize
- 2. Minimize
- Number of obtained states
 - = complexity of the original random NTA

Outline

Motivation

Nondeterministic Tree Automata

Random Generation

Analysis

Determinization

Definition (Power-set construction)	
$\mathcal{P}(\mathcal{A}) = (\mathcal{P}(\mathcal{Q}), \Sigma, F', R')$ with	
$\blacktriangleright F' = \{S \subseteq Q \mid S \cap F \neq \emptyset\}$	
$\blacktriangleright \ \alpha \to \{ \pmb{q} \in \pmb{Q} \mid \alpha \to \pmb{q} \in \pmb{R} \} \in \pmb{R}'$	$\forall \alpha \in \Sigma_0$
▶ $\sigma(S_1, S_2) \rightarrow \{q \in Q \mid \sigma(q_1, q_2) \rightarrow q \in R, q_1\}$	$\in old S_1, old q_2 \in old S_2\} \in old R'$
	$\forall \sigma \in \Sigma_2, S_1, S_2 \subseteq Q$

Determinization

Definition (Power-set construction)	
$\mathcal{P}(\mathcal{A}) = (\mathcal{P}(\mathcal{Q}), \Sigma, \mathcal{F}', \mathcal{R}')$ with	
• $F' = \{S \subseteq Q \mid S \cap F \neq \emptyset\}$	
$\blacktriangleright \ \alpha \to \{ \pmb{q} \in \pmb{Q} \mid \alpha \to \pmb{q} \in \pmb{R} \} \in \pmb{R}'$	$\forall \alpha \in \Sigma_0$
• $\sigma(S_1, S_2) \rightarrow \{q \in Q \mid \sigma(q_1, q_2) \rightarrow q \in R, q_1 \in S\}$	$\{S_1, q_2 \in S_2\} \in R'$
\forall	$\sigma \in \Sigma_2, S_1, S_2 \subseteq Q$

Note

 \rightarrow will be the guiding definition for the analytical analysis

Analytical Analysis

Intuition

- ▶ power-set construction should create each state $S \subseteq Q$
- given states S₁, S₂ selected uniformly at random, each state q ∈ Q should occur in target of σ(S₁, S₂) with probability .5 (the same intuition is also used for string automata)
- this intuition will create large NTA after determinization (but that they remain large after minimization is non-trivial)
- \blacktriangleright \rightarrow we will confirm the intuition experimentally

Analytical Analysis

Theorem

If $d_2 = 4(1 - \sqrt[n^2]{.5})$ and $d_0 = .5$, then the intuition is met.

Proof.

Let $S_1, S_2 \subseteq Q$ be selected uniformly at random $\sigma \in \Sigma_2, q \in Q$

$$egin{aligned} &\pi(\pmb{q}\in\overline{\sigma}(\pmb{S}_1,\pmb{S}_2))\ &=1-\pi(\pmb{q}
otin \overline{\sigma}(\pmb{S}_1,\pmb{S}_2))\ &=1-\prod_{q_1,q_2\in Q}\left(1-\pi(\pmb{q}_1\in\pmb{S}_1)\cdot\pi(\pmb{q}_2\in\pmb{S}_2)\cdot\pi(\sigma(\pmb{q}_1,\pmb{q}_2)
ightarrow \pmb{q}\in\pmb{R})
ight)\ &=1-\left(1-\left(1-\frac{\pmb{d}_2}{\pmb{4}}
ight)^{n^2}=1-\left(1-1+\left.\sqrt[n^2]{.5}
ight)^{n^2}=1-\left(\left.\sqrt[n^2]{.5}
ight)^{n^2}=rac{1}{2} \end{aligned}$$

Analytical Predictions

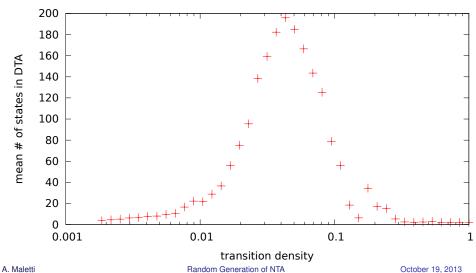
п	d_2	d_2'	CI	n	d_2	d_2'	CI
2	.636			8	.043		
3	.297			9	.034		
4	.170			10	.028		
5	.109			11	.023		
6	.076			12	.019		
7	.056			13	.016		

Setup

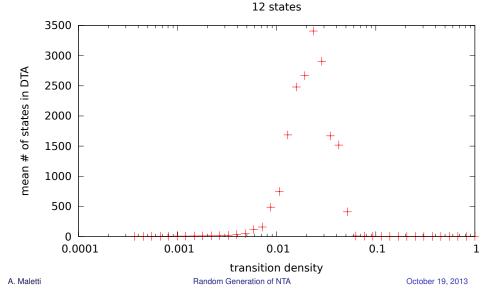
• $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$

 evaluation for random NTA with various densities d₂ (at least 40 random NTA per data point d₂)

logarithmic scale for d₂ (enough datapoints on both sides of the spike)



8 states



- (almost perfect) log-normal distributions
- we can determine the mean (empirical and analytical)

- (almost perfect) log-normal distributions
- we can determine the mean (empirical and analytical)
- \blacktriangleright \rightarrow hardest instances

- (almost perfect) log-normal distributions
- we can determine the mean (empirical and analytical)
- \blacktriangleright \rightarrow hardest instances
- outside hardest instances: all trivial

- (almost perfect) log-normal distributions
- we can determine the mean (empirical and analytical)
- \blacktriangleright \rightarrow hardest instances
- outside hardest instances: all trivial
- only test on random NTA for hardest density

Analytical Predictions

п	d_2	d_2'	CI	п	d_2	d_2'	CI
2	.636			8	.043		
3	.297			9	.034		
4	.170			10	.028		
5	.109			11	.023		
6	.076			12	.019		
7	.056			13	.016		

Analytical Predictions + Empirical Evaluation

n		d_2'	CI	п	d_2	d_2'	CI
2	.636	.626		8	.043	.041	
3	.297	.257		9	.034	.034	
4	.170	.133		10	.028	.028	
5	.109	.086		11	.023	.025	
6	.076	.064		12	.019	.021	
7	.056	.050		13	.016	.019	

Analytical Predictions + Empirical Evaluation

n	d_2	d_2'	CI	п	d_2	d_2'	CI
2	.636	.626	[.577,.680]	8	.043	.041	[.032,.053]
3	.297	.257	[.209,.316]	9	.034	.034	[.027,.043]
4	.170	.133	[.102,.174]	10	.028	.028	[.023,.034]
5	.109	.086	[.064,.114]	11	.023	.025	[.021,.030]
6	.076	.064	[.048,.085]	12	.019	.021	[.018,.025]
7	.056	.050	[.038,.066]	13	.016	.019	[.016,.022]

CI = confidence interval; 95% confidence level

Use random NTA carefully!