Input Products for Weighted Extended Top-down Tree Transducers

Andreas Maletti

Universitat Rovira i Virgili Tarragona, Spain

andreas.maletti@urv.cat

London, ON — August 17, 2010

Input Products for WXTT

Schema $\begin{array}{c} \text{Input} \longrightarrow \end{array} & \begin{array}{c} \text{Machine} \\ \text{translation} \\ \text{system} \end{array} \longrightarrow \text{Output} \end{array}$

Question

How does the system handle input sentences containing "system"?

- take regular language *L* = * system *
- turn into a regular tree language
- use forward application

Schema Input \rightarrow WXTT \rightarrow Output

Question

How does the system handle input sentences containing "system"?

- take regular language *L* = * system *
- turn into a regular tree language
- use forward application

Schema

Input
$$\longrightarrow$$
 WXTT \longrightarrow Output

Question

How does the system handle input sentences containing "system"?

- take regular language *L* = * system *
- turn into a regular tree language
- use forward application

Input \longrightarrow WXTT \longrightarrow Output

Question

Schema

How does the system handle input sentences containing "system"?

- take regular language *L* = * system *
- turn into a regular tree language
- use forward application

Machine translation (cont'd)

Question

How does the system handle input sentences containing "system"?

Forward application

- Problem: we obtain only output trees
- \Rightarrow not informative enough

Another answer

- regular language, regular tree language as before
- input product restricts input to regular tree language
- \Rightarrow retains full translation information

Machine translation (cont'd)

Question

How does the system handle input sentences containing "system"?

Forward application

- Problem: we obtain only output trees
- \Rightarrow not informative enough

Another answer

- regular language, regular tree language as before
- input product restricts input to regular tree language
- \Rightarrow retains full translation information

Applications

- parsing (one-sided, both-sided)
- translation
- forward application (input product + domain projection)
- regular look-ahead
- computation of interesting parameters (inside/outside weights)

Applications

- parsing (one-sided, both-sided)
- translation
- forward application (input product + domain projection)
- regular look-ahead
- computation of interesting parameters (inside/outside weights)

Applications

- parsing (one-sided, both-sided)
- translation
- forward application (input product + domain projection)
- regular look-ahead
- computation of interesting parameters (inside/outside weights)

Contents

Weight structure

Definition

Commutative semiring $(C, +, \cdot, 0, 1)$ if

- (C, +, 0) and (C, \cdot , 1) commutative monoids
- · distributes over finite (incl. empty) sums

Idempotent if c + c = c

Example

- BOOLEAN semiring ({0,1}, max, min, 0, 1)
- Semiring $(\mathbb{N}, +, \cdot, 0, 1)$ of natural numbers
- Tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$
- Any field, ring, etc.

(idempotent)

(idempotent)

Weight structure

Definition

Commutative semiring $(C, +, \cdot, 0, 1)$ if

- (C,+,0) and (C, \cdot , 1) commutative monoids
- · distributes over finite (incl. empty) sums

Idempotent if c + c = c

Example

- BOOLEAN semiring ({0,1}, max, min, 0, 1)
- Semiring $(\mathbb{N}, +, \cdot, 0, 1)$ of natural numbers
- Tropical semiring $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, \mathbf{0})$

• Any field, ring, etc.

Input Products for WXTT

(idempotent)

(idempotent)

Weighted tree automaton

Definition (BERSTEL, REUTENAUER 1982)

Weighted tree automaton (WTA) $A = (Q, \Sigma, I, \delta)$ with rules

- $q, q_1, \ldots, q_k \in Q$ are states
- $c \in C$ is a weight
- $\sigma \in \Sigma_k$ is a *k*-ary input symbol

Input Products for WXTT

Example (Weight of the run) wt(r) = 0.4 · 0.2 · 0.3 · 0.1 · 0.3 · 0.1 · 0.4 · 0.2 · 0.1 · 0.3 · 0.2 · 0.1

Semantics

Definition

The weight A(t) of input tree t= sum of weights of all runs ending in initial state

$$A(t) = \sum_{\substack{r \text{ run on } t \\ \operatorname{root}(r) \in I}} \operatorname{wt}(r)$$

Note

Weighted tree language regular if computable by WTA

Semantics

Definition

The weight A(t) of input tree t= sum of weights of all runs ending in initial state

$$A(t) = \sum_{\substack{r \text{ run on } t \\ \operatorname{root}(r) \in I}} \operatorname{wt}(r)$$

Note

Weighted tree language regular if computable by WTA

Contents

Input Product

Syntax

Definition (ARNOLD, DAUCHET 1976, GRAEHL, KNIGHT 2004) Weighted extended top-down tree transducer (WXTT) $M = (Q, \Sigma, \Delta, I, R)$ with finitely many rules

q, *q'*, *p* ∈ *Q* are states *i*, *j* ∈ {1,..., *k*}

Syntax (cont'd)

Definition (ROUNDS 1970, THATCHER 1970) Weighted top-down tree transducer (WTT) if all rules

Semantics

Example

States $\{q_S, q_V, q_{NP}\}$ of which only q_S is initial

Semantics (cont'd)

DefinitionComputed transformation $(t \in T_{\Sigma} \text{ and } u \in T_{\Delta})$: $M(t, u) = \sum_{\substack{q \in I \\ q(t) \stackrel{c_1}{\rightarrow} \dots \stackrel{c_n}{\rightarrow} u \\ left-most derivation}} c_1 \cdot \dots \cdot c_n$

Input Products for WXTT

Contents

Motivation

3 Weighted Extended Top-down Tree Transducer

Definition

Given WTA A and WTT M, their input product is WTT N with

 $N(t, u) = M(t, u) \cdot A(t)$

Notes

Input product ...

- is special composition
- is like regular look-ahead
- can be used for parsing
- can be used for preservation of regularity

Definition

Given WTA A and WTT M, their input product is WTT N with

 $N(t, u) = M(t, u) \cdot A(t)$

Notes

Input product ...

- is special composition
- is like regular look-ahead
- can be used for parsing
- can be used for preservation of regularity

Nondeletion

Example

Definition

WTT M is

• nondeleting if var(I) = var(r) for all rules $I \rightarrow r$

Input Products for WXTT

• linear if no variable appears twice in r for all rules $l \rightarrow r$

Nondeletion

Example

Definition

- all-copies nondeleting = nondeleting
 - = every copy of an input subtree is fully explored
- some-copy nondeleting
 - = one copy of each input subtree is fully explored

Nondeletion (cont'd)

Nondeletion (cont'd)

Input Products for WXTT

Theorem (ENGELFRIET 1977)

For nondeleting WTT and WTA we can construct their input product.

• $x_{2a} x_{1b} x_{2d} \rightarrow x_2 a^e x_1 b^f x_{2d}$

Theorem (ENGELFRIET 1977)

For nondeleting WTT and WTA we can construct their input product.

- for original nondeleting rules construct new rules
- mark one state for each variable; one possibility

•
$$x_{2a} \quad x_{1b} \quad x_{2d} \rightarrow \quad x_2 \stackrel{e}{a} \quad x_1 \stackrel{f}{b} \quad x_{2d}$$

Theorem

For some-copy nondeleting WXTT and WTA over idempotent semiring we can construct their input product.

Proof.

• for original nondeleting rules construct new rules

mark one state for each variable; all possibilities

 $\mathbf{x}_{2a} \ \mathbf{x}_{1b} \ \mathbf{x}_{2d} \rightarrow \mathbf{x}_{2} \overset{e}{a} \ \mathbf{x}_{1} \overset{f}{b} \ \mathbf{x}_{2d} \ \mid \ \mathbf{x}_{2a} \ \mathbf{x}_{1} \overset{f}{b} \ \mathbf{x}_{2} \overset{e}{d}$

at least one exploration will succeed (somy-copy nondeletion)
 aebfd + abfde = abdef if several succeed (idempotency)

Theorem

For some-copy nondeleting WXTT and WTA over idempotent semiring we can construct their input product.

Proof.

- for original nondeleting rules construct new rules
- mark one state for each variable; all possibilities

 $x_{2a} x_{1b} x_{2d} \rightarrow x_2 a^e x_1 b^f x_{2d} \mid x_{2a} x_1 b^f x_2 d^e$

at least one exploration will succeed (somy-copy nondeletion)
 aebfd + abfde = abdef if several succeed (idempotency)

Theorem

For some-copy nondeleting WXTT and WTA over idempotent semiring we can construct their input product.

Proof.

- for original nondeleting rules construct new rules
- mark one state for each variable; all possibilities

Input Products for WXTT

 $x_{2a} x_{1b} x_{2d} \rightarrow x_2 \stackrel{e}{a} x_1 \stackrel{f}{b} x_{2d} \mid x_{2a} \stackrel{f}{x_1} \stackrel{f}{b} x_2 \stackrel{e}{d}$

- at least one exploration will succeed (somy-copy nondeletion)
- aebfd + abfde = abdef if several succeed (idempotency)

Theorem

For some-copy nondeleting WXTT and WTA over ring we can construct their input product.

Proof.

- for original nondeleting rules construct several new rules
- mark states according to elimination scheme

• X2a X1b X2d
$$ightarrow$$

• at least one exploration will succeed

Theorem

For some-copy nondeleting WXTT and WTA over ring we can construct their input product.

Input Products for WXTT

Theorem

For some-copy nondeleting WXTT and WTA over ring we can construct their input product.

Elimination schemes

Question

Do elimination schemes exist?

Answer

	001	010	100	011	101	110	111	\sum
	+	+	+	_	_	_	+	
001	а	0	0	0	0	0	0	а
010	0	а	0	0	0	0	0	а
100	0	0	а	0	0	0	0	а
011	а	а	0	-a	0	0	0	а
101	а	0	а	0	-a	0	0	а
110	0	а	а	0	0	-a	0	а
111	а	а	а	-a	-а	-a	а	а

Elimination schemes

Question

Do elimination schemes exist?

Answer

	001	010	100	011	101	110	111	\sum
	+	+	+	_	_	_	+	
001	а	0	0	0	0	0	0	а
010	0	а	0	0	0	0	0	а
100	0	0	а	0	0	0	0	а
011	а	а	0	-a	0	0	0	а
101	а	0	а	0	-a	0	0	а
110	0	а	а	0	0	-а	0	а
111	а	а	а	-a	-a	-a	а	а

Elimination schemes

Question

Do elimination schemes exist?

Answer

	001	010	100	011	101	110	111	\sum
	+	+	+	—	—	_	+	
001	а	0	0	0	0	0	0	а
010	0	а	0	0	0	0	0	а
100	0	0	а	0	0	0	0	а
011	а	а	0	-a	0	0	0	а
101	а	0	а	0	-a	0	0	а
110	0	а	а	0	0	-а	0	а
111	а	а	а	-a	-a	-a	а	а

References

- ARNOLD, DAUCHET: Bi-transductions de forêts. ICALP 1976
- BERSTEL, REUTENAUER: Recognizable formal power series on trees. Theor. Comput. Sci. 18, 1982
- ENGELFRIET: *Top-down tree transducers with regular look-ahead.* Math. Systems Theory 10, 1977
- GRAEHL, KNIGHT: Training tree transducers. HLT-NAACL 2004
- MALETTI, SATTA: Parsing and translation algorithms based on weighted extended tree transducers. ATANLP 2010
- MAY, KNIGHT: TIBURON a weighted tree automata toolkit. CIAA 2006
- ROUNDS: *Mappings and grammars on trees.* Math. Systems Theory 4, 1970
- THATCHER Generalized² sequential machine maps. J. Comput. System Sci. 4, 1970

Thank you for your attention!

