Better Hyper-Minimization Not as Fast, but Fewer Errors

Andreas Maletti

Universitat Rovira i Virgili Tarragona, Spain

andreas.maletti@urv.cat

Winnipeg — August 13, 2010

Minimization

Observation

minimal DFA too large to handle

Remedy

To make minimal DFA even smaller:

- sacrifice determinism
- sacrifice correctness

Hyper-minimization (BADR, GEFFERT, SHIPMAN 2009)

Obtain a DFA that

- makes only finitely many mistakes
- Is as small as possible

Minimization

Observation

minimal DFA too large to handle

Remedy

To make minimal DFA even smaller:

- sacrifice determinism
- sacrifice correctness (allow a finite number of mistakes)

Hyper-minimization (BADR, GEFFERT, SHIPMAN 2009)

Obtain a DFA that

- makes only finitely many mistakes
- Is as small as possible

Minimization

Observation

minimal DFA too large to handle

Remedy

To make minimal DFA even smaller:

- sacrifice determinism
- sacrifice correctness (allow a finite number of mistakes)

Hyper-minimization (BADR, GEFFERT, SHIPMAN 2009)

Obtain a DFA that

- makes only finitely many mistakes
- is as small as possible

Hyper-minimization

Algorithms

• <i>O</i> (<i>n</i> ³)	[Badr, Geffert, Shipman 2009]
• <i>O</i> (<i>n</i> ²)	[BADR 2009]
 O(n log n) 	[Gawrychowski, Jeż 2009], [Holzer, \sim 2009]

Results (data by [QUERNHEIM 2010])

	erro	ors			erro	ors	
line	max	min		line	max	min	
3	39.5	26.0	34.2	7	14.9	1.7	88.6
4	182.6	39.0	78.6	8	11.4	2.3	79.8
5	66.5	6.4	90.4	15	356.4	18.2	94.9
6	13.5	0.5	96.3	16	516.2	67.4	86.9

Hyper-minimization

Algorithms

• <i>O</i> (<i>n</i> ³)	[Badr, Geffert, Shipman 2009]
• <i>O</i> (<i>n</i> ²)	[BADR 2009]
 O(n log n) 	[Gawrychowski, Jeż 2009], [Holzer, \sim 2009]

Results (data by [QUERNHEIM 2010])

	errors				erro	ors	
line	max	min	%	line	max	min	%
3	39.5	26.0	34.2	7	14.9	1.7	88.6
4	182.6	39.0	78.6	8	11.4	2.3	79.8
5	66.5	6.4	90.4	15	356.4	18.2	94.9
6	13.5	0.5	96.3	16	516.2	67.4	86.9

Hyper-optimization

Obtain a DFA that

- makes only finitely many mistakes
- is as small as possible
 - additionally makes minimal number of mistakes

Question

- Can it be done in polynomial time? [BADR, GEFFERT, SHIPMAN 2009]
- Can it be done in $O(n \log n)$?

Hyper-optimization

Obtain a DFA that

- makes only finitely many mistakes
- is as small as possible
- additionally makes minimal number of mistakes

Question

- Can it be done in polynomial time? [BADR, GEFFERT, SHIPMAN 2009]
- Can it be done in $O(n \log n)$?

Contents

Basic definitions

Definition (almost-equivalent)

- Two languages are almost-equivalent if their difference is finite.
- Two DFA are almost-equivalent if their languages are.

Example

- all finite languages are almost-equivalent
- $\{a^n \mid n \in \mathbb{N}\}$ and $\{aaa^n \mid n \in \mathbb{N}\}$ are almost-equivalent
- $\{a^n \mid n \in \mathbb{N}\}$ and $\{a^{2n} \mid n \in \mathbb{N}\}$ are not almost-equivalent

Definition (hyper-minimal)

Better Hyper-Minimization

A DFA is hyper-minimal if there is no smaller almost-equivalent DFA.

Basic definitions

Definition (almost-equivalent)

- Two languages are almost-equivalent if their difference is finite.
- Two DFA are almost-equivalent if their languages are.

Example

- all finite languages are almost-equivalent
- $\{a^n \mid n \in \mathbb{N}\}$ and $\{aaa^n \mid n \in \mathbb{N}\}$ are almost-equivalent
- $\{a^n \mid n \in \mathbb{N}\}$ and $\{a^{2n} \mid n \in \mathbb{N}\}$ are not almost-equivalent

Definition (hyper-minimal)

Better Hyper-Minimization

A DFA is hyper-minimal if there is no smaller almost-equivalent DFA.

Preamble and kernel states

Definition

- preamble state: finitely many words lead to it
- kernel state: infinitely many words lead to it

Preamble and kernel states (cont'd)

Preamble and kernel states (cont'd)

Almost-equivalent states

Definition

States *p* and *q* almost-equivalent if there is $k \in \mathbb{N}$ such that $\delta(p, w) = \delta(q, w)$ for all |w| > k

Consequence

Almost-equivalent states have almost-equivalent right-languages.

Almost-equivalent states

Definition

States *p* and *q* almost-equivalent if there is $k \in \mathbb{N}$ such that $\delta(p, w) = \delta(q, w)$ for all |w| > k

Consequence

Almost-equivalent states have almost-equivalent right-languages.

Almost-equivalent states (cont'd)

Almost-equivalent states (cont'd)

Merging states

Algorithm (BADR, GEFFERT, SHIPMAN 2009)

- don't-care nondeterministic
- select representative of each block; kernel state if possible
- merge all preamble states into their representative

Theorem (BADR, GEFFERT, SHIPMAN 2009)

DFA is hyper-minimal if and only if

- no unreachable states
- no equivalent states

no preamble state is almost-equivalent to another state

Theorem (BADR, GEFFERT, SHIPMAN 2009)

DFA is hyper-minimal if and only if

- minimal
- no preamble state is almost-equivalent to another state

merges: D into C

merges: D into C G into I

merges: D into C G into I H into J

merges: D into C G into I H into J

Comparison

Comparison (cont'd)

Theorem (BADR, GEFFERT, SHIPMAN 2009)

Two almost-equivalent, hyper-minimal DFA are isomorphic up to

- finality of preamble states
- Itransitions from preamble to kernel states
- initial state

Comparison (cont'd)

Theorem (BADR, GEFFERT, SHIPMAN 2009)

Two almost-equivalent, hyper-minimal DFA are isomorphic up to

- finality of preamble states
- 2 transitions from preamble to kernel states
- initial state

Optimal merges

Errors

Finality of preamble states

Question

Which words lead to C?

word <i>w</i>	$w \in L$	
$\longrightarrow \longrightarrow$		
$- \rightarrow - \rightarrow$		
$\dashrightarrow \longrightarrow \dashrightarrow$		

Finality of preamble states

Question

Which words lead to C?

word <i>w</i>	$w \in L$
$\longrightarrow \longrightarrow$	 Image: A second s
$- \rightarrow - \rightarrow$	1
$ \rightarrow \longrightarrow \rightarrow$	×

Finality of preamble states

Question

Which words lead to C?

word w	$w \in L$
$\longrightarrow \longrightarrow$	 Image: A second s
$- \rightarrow - \rightarrow$	1
$- \rightarrow \longrightarrow - \rightarrow \rightarrow$	×

 \Rightarrow make C final

Optimal merges (cont'd)

Transitions from preamble to kernel states

Question

states	words (number)
P–Q	ε (1)

Transitions from preamble to kernel states

Question

states	words (number)
P–Q	ε (1)
L–M	\longrightarrow (1)

Transitions from preamble to kernel states

Question

states	words (number)
P–Q	ε (1)
L–M	\longrightarrow (1)
I–J	$\longrightarrow \longrightarrow (1)$

Transitions from preamble to kernel states

Question

states	words (number)
P–Q	ε (1)
L–M	\longrightarrow (1)
I–J	$\longrightarrow \longrightarrow (1)$
H–J	$\varepsilon, \dashrightarrow \longrightarrow \longrightarrow$ (2)

Transitions from preamble to kernel states

Question

states	words (number)
P–Q	ε (1)
L–M	\longrightarrow (1)
I–J	$\longrightarrow \longrightarrow (1)$
H–J	$\varepsilon, \dashrightarrow \longrightarrow \longrightarrow$ (2)
H–I	$\varepsilon, \dashrightarrow \longrightarrow \longrightarrow,$
	$\longrightarrow \longrightarrow$ (3)

Transitions from preamble to kernel states

Question

states	words (number)
P–Q	ε (1)
L–M	\longrightarrow (1)
I–J	$\longrightarrow \longrightarrow (1)$
H–J	$\varepsilon, \dashrightarrow \longrightarrow \longrightarrow$ (2)
H–I	$\varepsilon, \dashrightarrow \longrightarrow \longrightarrow,$
	$\longrightarrow \longrightarrow$ (3)
G–J	(3)
G–1	(2)
G–H	(5)

Transitions from preamble to kernel states (cont'd)

Errors

• u leads to C

• w error between H-I

Transitions from preamble to kernel states (cont'd)

Errors

• u leads to C

• w error between H-I

Transitions from preamble to kernel states (cont'd)

Errors

• u leads to C

 $\longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$

w error between H–I

A. Maletti · 21

(6)

Optimal merges (cont'd)

UNIVERSITAT ROVIRA I VIRGILI La universitat pública de Tarragona

Transitions from preamble to kernel states (cont'd)

Errors

- *u* leads to *C* (2)
- *w* ∈ *H*−*J* (2)

or

- *u* leads to *D* (1)
- *w* ∈ *I*−*J* (1)

Transitions from preamble to kernel states (cont'd)

Errors

 $U \longrightarrow W$

- *u* leads to *C* (2)
- *w* ∈ *H*−*J* (2)

or

- *u* leads to *D* (1)
- *w* ∈ *I*−*J* (1)

Transitions from preamble to kernel states (cont'd)

Errors

$$U \longrightarrow W$$

- u leads to C (2)
- *w* ∈ *H*−*J* (2)

or

- *u* leads to *D* (1)
- *w* ∈ *I*−*J* (1)

Transitions from preamble to kernel states (cont'd)

Errors

$$U \longrightarrow W$$

- u leads to C (2)
- *w* ∈ *H*−*J* (2)

or

- *u* leads to *D* (1)
- *w* ∈ *I*−*J* (1)

\Rightarrow only 5 errors

Optimal merges (cont'd)

Errors

Optimal merges (cont'd)

Errors

Main result

Theorem

Hyper-optimization can be achieved in $O(n^2)$.

Open question

Can it also be done in $O(n \log n)$?

Main result

Theorem

Hyper-optimization can be achieved in $O(n^2)$.

Open question

Can it also be done in $O(n \log n)$?

References

- BADR: *Hyper-minimization in O*(*n*²). Int. J. Found. Comput. Sci. 20, 2009
- BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite state automata. ITA 43, 2009
- GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009
- HOLZER, MALETTI: An n log n algorithm for hyper-minimizing states in a (minimized) deterministic automaton. CIAA 2009
- QUERNHEIM: Hyper-minimisation of weighted finite automata. Master thesis, 2010

Thank you for your attention!

