Parsing Algorithms Based on Tree Automata

Andreas Maletti¹ and Giorgio Satta²

¹ Universitat Rovira i Virgili, Tarragona, Spain ² University of Padua, Italy

andreas.maletti@urv.cat

Paris — October 7, 2009

Parsing and CFG

Example (Context-free grammar)

 $\mathsf{S} \to \mathsf{NP}\,\mathsf{VP}$

 $\mathsf{VP} \to \mathsf{VBP}\,\mathsf{ADVP}$

 $\mathsf{JJ} \to \textit{Colorless}$

 $\mathsf{NNS} \to \textit{ideas}$

 $RB \rightarrow \mathit{furiously}$

 $NP \rightarrow JJ JJ NNS$

 $\mathsf{ADVP} \to \mathsf{RB}$

$$JJ \rightarrow green$$

$$VBP \rightarrow sleep$$

Derivation

 $\mathsf{S} \ \to^* \ \mathsf{Colorless} \ \mathsf{green} \ \mathsf{ideas} \ \mathsf{sleep} \ \mathsf{furiously}$

Parse tree

Example

Remark

We are interested in the parse tree, not just whether $S \rightarrow^* w!$

UNIVERSITAT ROVIRA I VIRGILI

Parse tree

Remark

We are interested in the parse tree, not just whether S $\rightarrow^* w!$

Parsing Algorithms Based on Tree Automata

Local tree language

Definition

A local tree grammar is a grammar with rules of the form

The such generated languages are the local tree languages.

Theorem

The derivations of a context-free grammar are a local tree language.

Local tree language

Definition

A local tree grammar is a grammar with rules of the form

The such generated languages are the local tree languages.

Theorem

The derivations of a context-free grammar are a local tree language.

Regular tree language

Definition

A regular tree grammar is a grammar with rules of the form

The such generated languages are the regular tree languages.

Remark

Regular tree grammars are local tree grammars with hidden states.

Regular tree language

Definition

A regular tree grammar is a grammar with rules of the form

The such generated languages are the regular tree languages.

Remark

Regular tree grammars are local tree grammars with hidden states.

Back to parsing

Observation

Most CFG-parsers are regular tree grammars (+ control) because

- \bullet they are based on a CFG (\rightarrow local tree grammar) and
- have hidden states (or features)

Alternative

The features can be made explicit in the parse tree structure.

Back to parsing

Observation

Most CFG-parsers are regular tree grammars (+ control) because

- \bullet they are based on a CFG (\rightarrow local tree grammar) and
- have hidden states (or features)

Alternative

The features can be made explicit in the parse tree structure.

Regular restriction

Theorem [Bar-Hillel et al '64]

The intersection of a context-free language with a regular language is again context-free.

Regular restriction — Trivial approach

Theorem

For every regular language L, the set of all trees, whose yield is in L, is regular.

Theorem

The intersection of two regular tree languages is regular.

Theorem

For every regular tree language the restriction to a regular language of yields is again regular.

Regular restriction — Trivial approach

Theorem

For every regular language L, the set of all trees, whose yield is in L, is regular.

Theorem

The intersection of two regular tree languages is regular.

Theorem

For every regular tree language the restriction to a regular language of yields is again regular.

Regular restriction — Trivial approach

Theorem

For every regular language L, the set of all trees, whose yield is in L, is regular.

Theorem

The intersection of two regular tree languages is regular.

Theorem

For every regular tree language the restriction to a regular language of yields is again regular.

The End?

Thank you for your attention!

Weighted tree grammar

Definition

A weighted tree grammar is a structure $(\mathcal{N}, \Sigma, \mathbb{K}, \mathit{N}_0, \mathit{R})$ with rules of the form

where

- $N, N_1, \ldots, N_k \in \mathcal{N}$ are nonterminals
- $c \in \mathbb{K}$ is a weight (taken from a semiring)
- $V \in \Sigma$ is a terminal symbol

Runs

Example (Input tree)

Runs

Example (Run)

Runs

Example (Run with weights)

Weight of a run

Definition

The weight of a run is obtained by multiplying the weights in it.

Definition

The weight of an input tree is obtained by adding the weights of all runs on it.

Contents

2 Weighted Tree Grammars

4 Further Topics

Binarization

Theorem

A tree language is regular if and only if its binarization is regular (also holds in the weighted setting).

Binarization

Theorem

A tree language is regular if and only if its binarization is regular (also holds in the weighted setting).

UNIVERSITAT ROVIRA I VIRGI

Individual runs

Run on the yield

(p) Colorless (p_1) ideas (p_2) sleep (p_3) furiously (p')

Run on the input tree

Parsing Algorithms Based on Tree Automata

Bar-Hillel construction

Run on the yield

(p) Colorless (p_1) ideas (p_2) sleep (p_3) furiously (p')

Composite run

Bar-Hillel construction (cont'd)

Illustration

Bar-Hillel construction (cont'd)

Theorem

The regular restriction of a regular tree language is regular (also in the weighted setting).

Remark

Complexity: $O(mn^3)$

- m: size of the regular tree grammar
- n: size of the regular grammar (or input string)

Conclusion

We can parse with regular tree grammars in $O(mn^3)$.

Contents

- 2 Weighted Tree Grammars
- Bar-Hillel Construction

Further topics — Probability mass

Definition

The probability mass of a nonterminal is the sum of the weights of runs with that nonterminal at the root.

Algorithm

The probability mass of a state can be computed using fix-point iteration.

Further topics — Probability mass

Definition

The probability mass of a nonterminal is the sum of the weights of runs with that nonterminal at the root.

Algorithm

The probability mass of a state can be computed using fix-point iteration.

Further topics — Normalization

Definition

A weighted regular tree grammar is

- convergent if the sum of weights assigned to trees are (uniformly) bounded
- proper if the probabilities of rules for one nonterminal add to 1
- consistent if it computes a probability distribution.

Theorem

For every convergent grammar, there exist a scaled proper and consistent grammar.

Further topics — Normalization

Definition

A weighted regular tree grammar is

- convergent if the sum of weights assigned to trees are (uniformly) bounded
- proper if the probabilities of rules for one nonterminal add to 1
- consistent if it computes a probability distribution.

Theorem

For every convergent grammar, there exist a scaled proper and consistent grammar.

Further topics — Best parse

Theorem

For an unambiguous grammar we can compute the best parse in linear time.

Proof.

Using a variant of Knuth's algorithm.

References

- Bar-Hillel, Perles, Shamir: On formal properties of simple phrase structure grammars. Language and Information, 1964
- Berstel, Reutenauer: Recognizable formal power series on trees. *Theoret. Comput. Sci.* 18, p. 115–148, 1982
- Borchardt: The theory of recognizable tree series. Ph.D. thesis TU Dresden, 2005
- Gécseg, Steinby: Tree Automata. Akadémiai Kiadó, Budapest 1984
- Nederhof, Satta: Probabilistic parsing as intersection. In IWPT 2003

Thank you for your attention!

