Compositions of Top-down Tree Transducers with ε -Rules

Andreas Maletti¹ and Heiko Vogler²

¹ URV, Tarragona, Spain
 ² Technische Universität Dresden, Germany

andreas.maletti@urv.cat

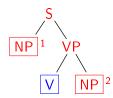
Pretoria — July 24, 2009

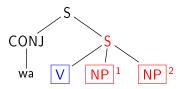
TAT Vircial First author acknowledges the support of MEC grants JDCI-2007-760 and MTM-2007-63422.

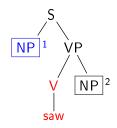
Compositions of Top-down Tree Transducers with E-Rules

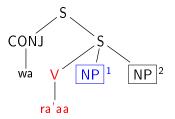
Synchronous Tree Substitution Grammars

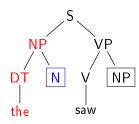
S

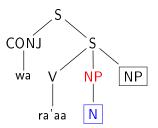


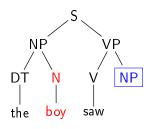


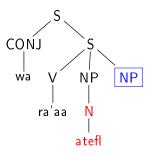




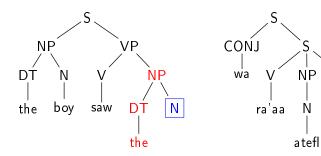








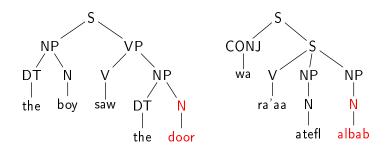
Synchronous Tree Substitution Grammars



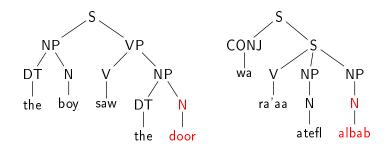
NP

Ν

Ν



Synchronous Tree Substitution Grammars



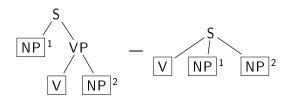
Implementation

- input-oriented with hidden states (\rightarrow tree transducer)
- linear nondeleting extended top-down tree transducer in Tiburon [May, Knight '06]

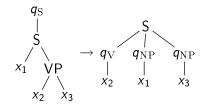
Compositions of Top-down Tree Transducers with E-Rules

Synchronous Tree Substitution Grammars (cont'd)

Synchronous tree substitution grammar rule:

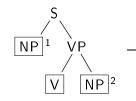


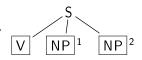
Tree transducer rule:



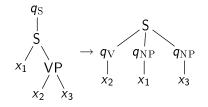
Synchronous Tree Substitution Grammars (cont'd)

Synchronous tree substitution grammar rule:

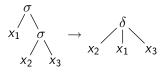




Tree transducer rule:



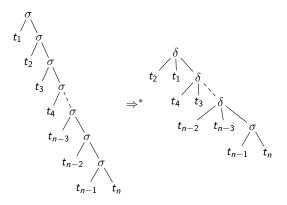
Simplified transducer rule:



UNIVERSITAT ROVIRA I VIRGILI La universitat pública de Tarragona

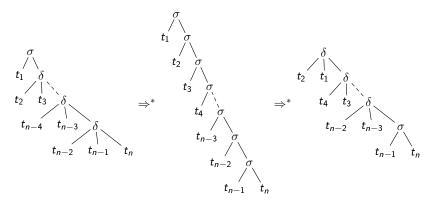
Synchronous Tree Substitution Grammars (cont'd)

Derivation:



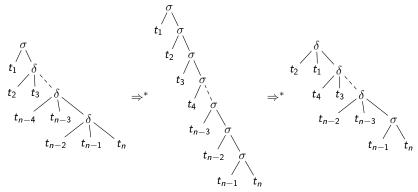
Synchronous Tree Substitution Grammars (cont'd)

Derivation:



Synchronous Tree Substitution Grammars (cont'd)

Derivation:



Conclusion

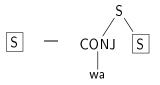
We cannot compose them!

Synchronous Tree Substitution Grammars (cont'd)

Why?

- linear nondeleting top-down tree transducers can be composed [Engelfriet '75, Baker '79]
- ightarrow large left-hand sides cause problems
- \rightarrow What about ε -rules?

STSG rule:



Simplified tree transducer rule:

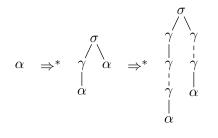
Synchronous Tree Substitution Grammars (cont'd)

Derivation:

$$\begin{array}{ccc} \alpha & \Rightarrow^* & & & & \\ \alpha & \Rightarrow^* & & & & \\ & & & & & \\ & & & & \alpha \end{array}$$

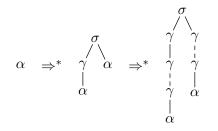
Synchronous Tree Substitution Grammars (cont'd)

Derivation:



Synchronous Tree Substitution Grammars (cont'd)

Derivation:

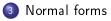


Conclusion

We cannot even compose linear nondeleting top-down tree transducers with $\varepsilon\text{-rules!}$

Table of Contents

2 Top-down tree transducer with ε -rules



Syntax

Definition (cf. [Rounds '70] & [Thatcher '70])

Top-down tree transducer (ε tdtt) with ε -rules (Q, Σ, Δ, I, R)

- Q alphabet of states
- Σ and Δ ranked alphabets of input and output symbols
- $I \subseteq Q$ initial states
- R finite set of *(rewrite)* rules $q(l) \rightarrow r$ with

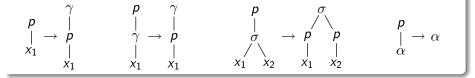
(i)
$$q \in Q$$
,
(ii) $l = x_1$ or $l = \sigma(x_1, \ldots, x_k)$ for some $\sigma \in \Sigma_k$, and
(iii) $r \in T_{\Delta}(Q(\operatorname{var}(l)))$

A full example

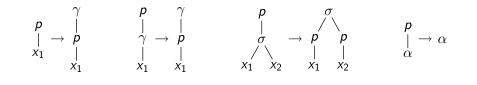
Example

 ε tdtt $M = (P, \Sigma, \Sigma, P, R)$ with

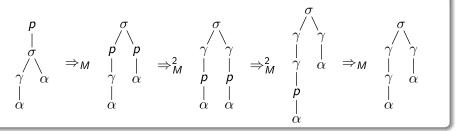
- $P = \{p\}$
- $\Sigma = \{\sigma^{(2)}, \gamma^{(1)}, \alpha^{(0)}\}$
- the following rules in R



A full example (cont'd)



Example



Semantics

Definition

$$M = (Q, \Sigma, \Delta, I, R) \varepsilon t dt t$$

$$\tau_{M} = \{(t, u) \mid \exists q \in I \colon q(t) \Rightarrow^{*}_{M} u\}$$

Semantics

Definition

$$M = (Q, \Sigma, \Delta, I, R) \varepsilon t dtt$$

$$\tau_M = \{(t, u) \mid \exists q \in I \colon q(t) \Rightarrow^*_M u\}$$

Example

Our example ε tdtt can include γ -symbols anywhere in the input tree.

Syntactical restrictions

Definition

 ε tdtt $M = (Q, \Sigma, \Delta, I, R)$ is

- linear if every right-hand side (of a rule) does not contain duplicate variables
- nondeleting, if every right-hand side contains all variables of its left-hand side
- total if for every $q \in Q$ and $t \in T_{\Sigma}$ there exists $u \in T_{\Delta}$ such that $q(t) \Rightarrow^*_M u$

Syntactical restrictions

Definition

 ε tdtt $M = (Q, \Sigma, \Delta, I, R)$ is

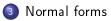
- linear if every right-hand side (of a rule) does not contain duplicate variables
- nondeleting, if every right-hand side contains all variables of its left-hand side
- total if for every $q \in Q$ and $t \in T_{\Sigma}$ there exists $u \in T_{\Delta}$ such that $q(t) \Rightarrow^*_M u$

Example

Our example ε tdtt is linear, nondeleting, and total.

Table of Contents

) Top-down tree transducer with arepsilon-rules



4 Composition

One-symbol form

Definition (cf. [Berstel '79] & [Engelfriet et al '08])

An ε tdtt is in one-symbol form if at most one output symbol occurs in each rule.

One-symbol form

Definition (cf. [Berstel '79] & [Engelfriet et al '08])

An ε tdtt is in one-symbol form if at most one output symbol occurs in each rule.

Example

Our example ε tdtt is in one-symbol form.

One-symbol form

Definition (cf. [Berstel '79] & [Engelfriet et al '08])

An ε tdtt is in one-symbol form if at most one output symbol occurs in each rule.

Example

Our example ε tdtt is in one-symbol form.

Theorem

For every ε tdtt we can construct an equivalent one in one-symbol form.

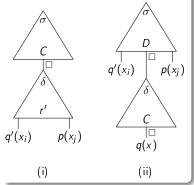
Maximally output-separated

Definition

An ε tdtt is maximally output-separated if for every rule $q(I) \rightarrow r \in R$

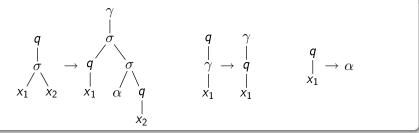
- (i) $r \neq C[r']$ for every nontrivial context $C \in C_{\Delta}$ and $r' \in \Delta(T_{\Delta}(Q(X)))$,
- (ii) $r \neq D[C[q(x)]]$ for every nontrivial context $D \in C_{\Delta}(Q(X))$ and nontrivial context $C \in C_{\Delta}$.

Illustration



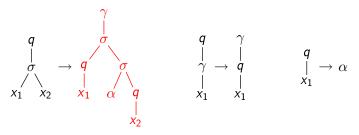
Normal forms

Maximally output-separated (cont'd)



Maximally output-separated (cont'd)

Example



is not maximally output-separated because

(i)
$$r = C[r']$$
 with $C = \gamma(\Box)$ and $r' = \sigma(q(x_1), \sigma(\alpha, q(x_2)))$
(ii) $r = D[C[q(x_2)]]$ with $D = \gamma(\sigma(q(x_1), \Box))$ and $C = \sigma(\alpha, \Box)$

Maximally output-separated (cont'd)

Theorem

For every (linear, nondeleting) ε tdtt there exists an equivalent maximally output-separated ε tdtt with the same properties.

Proof.

Separate the context C from a rule creating two rules, which need to be applied one after the other by introducing a new state.

Maximally output-separated (cont'd)

Theorem

For every (linear, nondeleting) ε tdtt there exists an equivalent maximally output-separated ε tdtt with the same properties.

Proof.

Separate the context C from a rule creating two rules, which need to be applied one after the other by introducing a new state.

Example

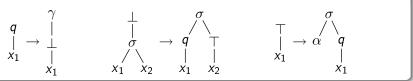


Table of Contents

Top-down tree transducer with ε -rules

Composition construction

Definition

arepsilontdtt $M = (P, \Sigma, \Gamma, I_1, R_1)$ and $N = (Q, \Gamma, \Delta, I_2, R_2)$ construct

$$M$$
 ; $N = (Q \times P, \Sigma, \Delta, \mathit{I}_2 \times \mathit{I}_1, \mathit{R}'_1 \cup \mathit{R}'_2 \cup \mathit{R}')$

with 3 types of rules:

() rules R'_1 constructed from rules of R_1 that do not produce output

$$\mathcal{R}'_1 = \{q(l)
ightarrow q(r) \mid q \in Q, l
ightarrow r \in \mathcal{R}_1, r \in \mathcal{P}(X)\}$$

Composition construction

Definition

 ε tdtt $M = (P, \Sigma, \Gamma, I_1, R_1)$ and $N = (Q, \Gamma, \Delta, I_2, R_2)$ construct

$$M$$
 ; $N = (Q \times P, \Sigma, \Delta, I_2 \times I_1, R_1' \cup R_2' \cup R')$

with 3 types of rules:

vules R'₁ constructed from rules of R₁ that do not produce output
epsilon rules R'₂ constructed from epsilon-rules of R₂

$$R'_{2} = \{ I[p(x_{1})] \to r[p(x_{1})] \mid p \in P, l \to r \in R_{2}, l \in Q(X) \}$$

Composition construction

Definition

arepsilontdtt $M = (P, \Sigma, \Gamma, I_1, R_1)$ and $N = (Q, \Gamma, \Delta, I_2, R_2)$ construct

$$M$$
 ; $N = (Q \times P, \Sigma, \Delta, I_2 \times I_1, R_1' \cup R_2' \cup R')$

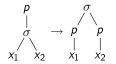
with 3 types of rules:

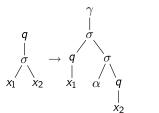
- **(**) rules R'_1 constructed from rules of R_1 that do not produce output
- 2 epsilon rules R'_2 constructed from epsilon-rules of R_2
- rules R' constructed from rules of R₁ that contain an output symbol that is immediately consumed by a rule of R₂

$$R' = \{q(l) \rightarrow r' \mid q \in Q, l \rightarrow r \in R_1, r \in \Gamma(P(X)), q(r) \Rightarrow_N r'\}$$

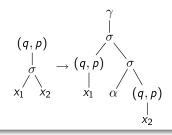
Composition construction (cont'd)

Example





Resulting rule of R':



Composition

Theorem (cf. [Engelfriet '75] & [Baker '79])

Let *M* and *N* be ε tdtts. Then *M*; *N* computes τ_M ; τ_N if

- N is linear,
- M is total or N is nondeleting, and
- M is in one-symbol form.

Composition

Theorem (cf. [Engelfriet '75] & [Baker '79])

Let *M* and *N* be ε tdtts. Then *M*; *N* computes τ_M ; τ_N if

- N is linear,
- M is total or N is nondeleting, and
- M is in one-symbol form.

Consequences

 The class of transformations computed by linear nondeleting εtdtt in one-symbol form is closed under composition.

Composition

Theorem (cf. [Engelfriet '75] & [Baker '79])

Let *M* and *N* be ε tdtts. Then *M*; *N* computes τ_M ; τ_N if

- N is linear,
- M is total or N is nondeleting, and
- M is in one-symbol form.

Consequences

- The class of transformations computed by linear nondeleting εtdtt in one-symbol form is closed under composition.
- The class of transformations computed by synchronous context-free grammars (incl. chain rules) is closed under composition.

Composition (cont'd)

Theorem

Any composition of linear nondeleting ε tdtts can be simulated by an ε tdtt.

ln-eTOP; · · · ; $ln-eTOP \subseteq eTOP$

Proof.

- Take first ε tdtt into one-symbol form (losing linearity and nondeletion)
- ${f Q}$ Compose with next linear and nondeleting ${f arepsilon}$ tdtt
- ${f 0}$ Result computes composition of first 2 arepsilontdtts
- 4 Repeat

References

- Baker: Composition of top-down and bottom-up tree transformations. Inform. Control 41(2), 1979
- Berstel: Transductions and context-free languages. Teubner 1979
- Engelfriet: Bottom-up and top-down tree transformations a comparison. *Math. Systems Theory* 9(3), 1975
- Engelfriet, Lilin, Maletti: Extended multi bottom-up tree transducers. Proc. DLT. LNCS 5257, 2008
- Rounds: Mappings and grammars on trees. Math. Systems Theory 4(3), 1970
- Thatcher: Generalized² sequential machine maps. *J. Comput. System Sci.* 4(4), 1970

Thank you for your attention!

