Minimization of Deterministic Weighted Tree Automata

Andreas Maletti

March 6, 2009

(ロ)、(型)、(E)、(E)、 E) の(の)

Syntax-based MT

Abbreviations

- TST = Tree Series Transducer
- WTA = Weighted Tree Automaton

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Tree Series

- Assigns weight (e.g. a probability) to each tree
- Weight drawn from semiring; e.g. $(\mathbb{R},+,\cdot,0,1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Tree Series

- Assigns weight (e.g. a probability) to each tree
- Weight drawn from semiring; e.g. $(\mathbb{R}, +, \cdot, 0, 1)$

Weighted Tree Automaton

- Finitely represents tree series
- Defines the recognizable tree series

Tree Series

- Assigns weight (e.g. a probability) to each tree
- Weight drawn from semiring; e.g. $(\mathbb{R}, +, \cdot, 0, 1)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weighted Tree Automaton

- Finitely represents tree series
- Defines the recognizable tree series

Application

- Re-ranker for parse trees
- Representation of parses

Syntax

Definition

Weighted tree automaton (wta) is tuple (Q, Σ, A, F, T) where

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Q: finite set of states
- Σ: ranked alphabet of input symbols
- $\mathcal{A} = (A, +, \cdot, 0, 1)$: semiring of *weights*
- $F \subseteq Q$: final states

Syntax

Definition

Weighted tree automaton (wta) is tuple (Q, Σ, A, F, T) where

- Q: finite set of states
- Σ: ranked alphabet of input symbols
- $\mathcal{A} = (A, +, \cdot, 0, 1)$: semiring of *weights*
- $F \subseteq Q$: final states
- T: finite set of transitions of the form $\sigma(q_1,\ldots,q_k) \stackrel{a}{
 ightarrow} q$

Syntax — Illustration

Sample Automaton

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Semantics

Definition

Left-most derivations are defined as usual.

• Weight of a derivation:

product of the weights of the employed transitions (each transition counted as often as it occurs)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Semantics

Definition

Left-most derivations are defined as usual.

Weight of a derivation:

product of the weights of the employed transitions (each transition counted as often as it occurs)

Weight wt(t) of a tree t:

sum of the weights of all left-most derivations that start with t and end in a final state

Sample Automaton

Sample Derivations

Input tree: f(a, b) Derivation: f(a, b)

・ロト・日本・日本・日本・日本・日本

Sample Automaton

Sample Derivations

Input tree: f(a, b) Derivation: f(1, b) with weight 1

・ロト・西ト・西ト・日・ 日・ シュウ

Sample Automaton

Sample Derivations

Input tree: f(a, b) Derivation: f(1, 2) with weight 1

Sample Automaton

Sample DerivationsInput tree: f(a, b)Derivation: 3with weight 0.3

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Sample Automaton

Sample Derivations Input tree: f(a, b) Derivation: 3 with weight 0.3 f(4, b) with weight 1

Sample Automaton

Sample Derivations Input tree: f(a, b) Derivation: 3 with weight 0.3 f(4, 2) with weight 1

Determinism

Definition Deterministic wta: for every σ and q_1, \ldots, q_k there exists exactly one transition $\sigma(q_1, \ldots, q_k) \xrightarrow{a} q \in T$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Determinism

Definition Deterministic wta: for every σ and q_1, \ldots, q_k there exists exactly one transition $\sigma(q_1, \ldots, q_k) \xrightarrow{a} q \in T$

Advantage

One derivation for each tree

Determinism

Definition Deterministic wta: for every σ and q_1, \ldots, q_k there exists exactly one transition $\sigma(q_1, \ldots, q_k) \xrightarrow{a} q \in T$

Advantage

One derivation for each tree

Notes

- Deterministic wta do not use addition
- ► Recognizable ≠ deterministically recognizable
- Determinization sometimes possible [Borchardt & Vogler '03]
- Partial determinization [May & Knight '06]

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Known Minimization Results

	deterministic		nondeterministic	
	string	tree	string	tree
unweighted	$O(Im \log n)$	$O(Im \log n)$	PSPACE	PSPACE
weighted*	$O(m \log n)$?	Р	Р

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- I: maximal rank of symbols
- m: number of transitions
- n: number of states

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

▲□▶ ▲圖▶ ★園▶ ★園▶ - 園 - のへで

Applicability

- Deterministic wta
- Commutative semifield (i.e. multiplicative inverses)

Roadmap

▶ MYHILL-NERODE congruence relation [Borchardt '03]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Determine signs of life
- Scale maps
- Refinement

$M{\tt YHILL}\text{-}N{\tt ERODE} \text{ congruence}$

Definition

 $p \equiv q$: there exists nonzero *a* such that for every context *C*

$$wt(C[p]) = a \cdot wt(C[q])$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$M_{\ensuremath{\mathsf{YHILL}}\xspace}\xspace$ congruence

Definition

 $p \equiv q$: there exists nonzero *a* such that for every context *C*

$$wt(C[p]) = a \cdot wt(C[q])$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notes

- Semifields are zero-divisor free
- Element a is unique if p is not dead

Signs of Life

Definition Sign of life of $q \in Q$: context C such that $wt(C[q]) \neq 0$ Example

State	Sign of life	State	Sign of life
1	f(□, b)	2	$f(1,\Box)$
3		6	

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 厘 の��

Compute Signs of Life

How?

- start with final states
- apply transition as in a grammar
- record reached states and their signs of life

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

rinse and repeat with those states

Compute Signs of Life

How?

- start with final states
- apply transition as in a grammar
- record reached states and their signs of life

rinse and repeat with those states

Theorem

We can determine signs of life in O(Im).

Scaling Map

Definition $f: Q \to A$ is scaling map for partition Π of Q if (i) f(q) = 1 for every dead state q(ii) for every block $B \in \Pi$ there exists context C such that $wt(C[q]) = f(q) \cdot wt(C[r(B)])$

and C is a sign of life for every live $q \in B$

Note

Scaling maps are nonzero everywhere.

Scaling Map

Definition $f: Q \to A$ is scaling map for partition Π of Q if (i) f(q) = 1 for every dead state q(ii) for every block $B \in \Pi$ there exists context C such that $wt(C[q]) = f(q) \cdot wt(C[r(B)])$

and C is a sign of life for every live $q \in B$

Note

Scaling maps are nonzero everywhere.

Theorem

A scaling map for Π can be computed in time $O(n^2)$.

Refinement

Definition

Refinement of Π : Split each block $B \in \Pi$ into two blocks, where one block contains all q such that

(ii)
$$\sigma(C[q]) \xrightarrow{a} q' \equiv_{\Pi} p' \xleftarrow{b} \sigma(C[r(B)])$$

(iii) if q' is live, then

$$f(q)^{-1} \cdot a \cdot f(q') = b \cdot f(p')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all symbols σ and contexts C.

Refinement

Definition

Refinement of Π : Split each block $B \in \Pi$ into two blocks, where one block contains all q such that

(ii)
$$\sigma(C[q]) \xrightarrow{a} q' \equiv_{\Pi} p' \xleftarrow{b} \sigma(C[r(B)])$$

(iii) if q' is live, then

$$f(q)^{-1} \cdot a \cdot f(q') = b \cdot f(p')$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all symbols σ and contexts C.

Theorem

Each refinement can be implemented to run in time O(Im).

Complete Algorithm

Algorithm

 $(\Pi, \text{sol}, D) \leftarrow \text{COMPUTESOL}(M) // \text{ in } O(Im)$ 2: $\Pi \leftarrow \text{REFINECONG}(\Pi) // \text{ classical minimization in } O(Im \log n)$ $f \leftarrow \text{COMPUTESM}(\Pi) // \text{ in } O(n^2)$ 4: repeat $\Pi' \leftarrow \Pi // \text{ store old partition}$ 6: $\Pi \leftarrow \text{REFINE}(\Pi, f) // \text{ in } O(Im)$ $f \leftarrow \text{UPDATESM}(\Pi, f) // \text{ in } O(n)$ 8: until $\Pi' = \Pi$ return minimized wta // in O(Im)

Complete Algorithm

Algorithm

 $(\Pi, \text{sol}, D) \leftarrow \text{COMPUTESOL}(M) // \text{ in } O(lm)$ 2: $\Pi \leftarrow \text{REFINECONG}(\Pi) // \text{ classical minimization in } O(lm \log n)$ $f \leftarrow \text{COMPUTESM}(\Pi) // \text{ in } O(n^2)$ 4: **repeat** $\Pi' \leftarrow \Pi // \text{ in } O(n^2)$ 6: $\Pi \leftarrow \text{REFINE}(\Pi, f) // \text{ in } O(lm)$ $f \leftarrow \text{UPDATESM}(\Pi, f) // \text{ in } O(n)$ 8: **until** $\Pi' = \Pi$ **return** minimized wta // in O(lm)

Notes

- Algorithm runs in O(Imn)
- Returns equivalent minimal deterministic wta

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Experiments

State Count

Original	Minimal	Reduction to
98	68	69%
394	308	78%
497	381	77%
727	515	71%
2701	1993	74%
3686	1766	48%

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Experiments

State Count

Original	Minimal	Reduction to
98	68	69%
394	308	78%
497	381	77%
727	515	71%
2701	1993	74%
3686	1766	48%

State & Transition Count

Error	Original	Minimal	Reduction to
10^{-4}	(727,6485)	(629, 6131)	(87%, 95%)
10^{-2}	(727,6485)	(525, 3425)	(72%, 53%)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

References

- B. BORCHARDT and H. VOGLER
 Determinization of Finite State Weighted Tree Automata.
 J. Autom. Lang. Combin. 8(3), 2003
- ▶ B. Borchardt

The Myhill-Nerode Theorem for Recognizable Tree Series. *Proc. DLT*, LNCS 2710, Springer, 2003

▶ J. MAY and K. KNIGHT

A Better *N*-Best List: Practical Determinization of Weighted Finite Tree Automata. *Proc. HLT-NAACL*, ACL, 2006

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 M. DROSTE, W. KUICH and H. VOGLER (eds.) Handbook of Weighted Automata. Springer, 2009