Hierarchies of Deterministic Bottom-Up Tree-to-Tree-Series Transformations

Andreas Maletti, Heiko Vogler

November 28, 2003

- 1. Introduction and Motivation
- 2. Deterministic Tree Series Transducers
- 3. Particular Semirings
- 4. Hasse Diagrams

Generalization Hierarchy

Bottom-Up Tree Transducers

$$M = (Q, \Sigma, \Delta, F, R)$$

- input and output ranked alphabet $\Sigma = \Delta = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$,
- states and final states $Q = F = \{p, q\}$, and
- transitions R

Semirings

Definition: A *semiring* is an algebraic structure $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$, where

- A is the *carrier set*,
- \oplus and \odot are *associative*, i.e., $a \otimes (b \otimes c) = (a \otimes b) \otimes c$ with $\otimes \in \{\oplus, \odot\}$,
- \oplus is *commutative*, i.e., $a \oplus b = b \oplus a$,
- 0 and 1 are the *unit elements* of addition and multiplication, respectively, i.e.,
 0 ⊕ a = a ⊕ 0 = a and 1 ⊙ a = a ⊙ 1 = a,
- \odot *distributes over* \oplus , i.e., $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$ and $(b \oplus c) \odot a = (b \odot a) \oplus (c \odot a)$, and
- **0** is *absorbing*, i.e., $\mathbf{0} \odot a = a \odot \mathbf{0} = \mathbf{0}$.

Examples of Semirings

- the semiring of the natural numbers $\mathbb{N} = (\mathbb{N}, +, \cdot, 0, 1)$,
- the arctic semiring $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, (-\infty), 0)$,
- the ring Z₄ = ({0, 1, 2, 3}, +, ⋅, 0, 1) with the common operations of addition and multiplication modulo 4,
- the field $\mathbb{Z}_5 = (\{0, 1, 2, 3, 4\}, +, \cdot, 0, 1)$,
- the min-max semiring on the reals $\mathbb{R}_{\min,\max} = (\mathbb{R} \cup \{-\infty, +\infty\}, \min, \max, (+\infty), (-\infty))$
- the boolean semiring $\mathbb{B} = (\{0,1\}, \lor, \land, 0, 1),$
- the *paths semiring* $\mathbb{P} = (\mathcal{P}(\mathbb{N}^*_+), \cup, \circ, \emptyset, \{\varepsilon\})$ with

$$P_1 \circ P_2 = \{ ab \mid a \in P_1, b \in P_2 \}.$$

Bottom-Up Tree Series Transducers

 $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$

- input and output ranked alphabet $\Sigma = \Delta = \{\sigma^{(2)}, \alpha^{(0)}, \beta^{(0)}\}$,
- states and final states $Q = F = \{p, q\}$,
- semiring $\mathcal{A} = \mathbb{P}$, and
- tree representation μ

Deterministic Tree Series Transducers

Definition: A *deterministic bottom-up tree series transducer* is a sixtuple $M = (Q, \Sigma, \Delta, \mathcal{A}, F, \mu)$, where

- Q is a finite, non-empty set of *states*,
- Σ, Δ are ranked alphabets of *input symbols* and *output symbols*, respectively,
- $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is a semiring,
- $F \subseteq Q$ is a set of *final states*, and
- μ is a deterministic tree representation.

$$\mu = \left(\mu_k : \Sigma^{(k)} \longrightarrow (A[T_{\Delta}(X_k)])^{Q \times Q^k} \mid k \in \mathbb{N} \right)$$

Intuitively, given an input symbol $\sigma \in \Sigma^{(k)}$ and states $q_1, \ldots, q_k \in Q$ we have $\mu_k(\sigma)_{q,(q_1,\ldots,q_k)} = a t$ for every $q \in Q$. Therein $a \in A$ and $t \in T_{\Delta}(X_k)$ and for at most one $q \in Q$ the coefficient fulfils $a \neq \mathbf{0}$.

Two Substitutions

We write $\widetilde{\mathbf{0}}$ instead of $\mathbf{0} t$.

(i) $\varphi \leftarrow () = \varphi$, (ii) $\widetilde{\mathbf{0}} \leftarrow (\psi_1, \dots, \psi_k) = \widetilde{\mathbf{0}}$, (iii) $\varphi \leftarrow (\psi_1, \dots, \psi_{i-1}, \widetilde{\mathbf{0}}, \psi_{i+1}, \dots, \psi_k) = \widetilde{\mathbf{0}}$, (iv') $a t \leftarrow (a_1 t_1, \dots, a_k t_k) = (a \odot a_1 \odot \dots \odot a_k) t[t_1, \dots, t_k]$. (iv'') $a t \leftarrow (a_1 t_1, \dots, a_k t_k) = (a \odot a_1^{|t|_{x_1}} \odot \dots \odot a_k^{|t|_{x_k}}) t[t_1, \dots, t_k]$. (i) - (iii), (iv'): pure substitution, denoted by \leftarrow (i) - (iii), (iv''): o-substitution, denoted by \leftarrow^{o}

Tree-to-Tree-Series Transformation

Let $M = (Q, \Sigma, \Delta, A, F, \mu)$ be a deterministic bottom-up tree series transducer and $\text{mod} \in \{\varepsilon, o\}$. M computes the mod-tree-to-tree-series transformation (short: mod-t-ts transformation) $\tau_M^{\text{mod}} : T_{\Sigma} \longrightarrow A[T_{\Delta}]$ defined as follows.

$$au_M^{\mathrm{mod}}(s) = egin{cases} h_\mu^{\mathrm{mod}}(s)_q & \text{, if } h_\mu^{\mathrm{mod}}(s)_q
eq \widetilde{\mathbf{0}} \\ \widetilde{\mathbf{0}} & \text{, otherwise} \end{cases}$$

where the mapping $h_{\mu}^{\text{mod}}(\cdot)_q: T_{\Sigma} \longrightarrow A[T_{\Delta}]$ is inductively defined by:

• if
$$s = \alpha$$
, then $h^{\text{mod}}_{\mu}(\alpha)_q = \mu_0(\alpha)_{q,\varepsilon}$

• if $s = \sigma(s_1, \ldots, s_k)$ and for some $q_1, \ldots, q_k \in Q$ the conditions $h_{\mu}^{\text{mod}}(s_i)_{q_i} \neq \tilde{\mathbf{0}}$ are fulfilled, then

$$h_{\mu}^{\mathrm{mod}}(\sigma(s_1,\ldots,s_k))_q = \mu_k(\sigma)_{q,(q_1,\ldots,q_k)} \quad \xleftarrow{\mathrm{mod}} (h_{\mu}^{\mathrm{mod}}(s_1)_{q_1},\ldots,h_{\mu}^{\mathrm{mod}}(s_k)_{q_k})$$

• otherwise
$$h^{\mathrm{mod}}_{\mu}(\sigma(s_1,\ldots,s_k))_q = \widetilde{\mathbf{0}}$$

Example

Let
$$\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$$
 and $\Delta = \{\delta^{(1)}, \alpha^{(0)}\}.$

$$N = (\{*\}, \Delta, \Sigma, \mathbb{N}, \{*\}, \nu)$$

with tree representation ν specified by

$$u_0(\alpha)_{*,\varepsilon} = 2 \alpha \quad \text{and} \quad \nu_1(\delta)_{*,(*)} = 2 \sigma(x_1, x_1).$$

Let $s \in T_{\Delta}$ and $t \in T_{\Sigma}$ such that t is the fully balanced tree with $\operatorname{height}(t) = \operatorname{height}(s)$.

- The *t*-ts transformation τ_N computed by N maps the tree s to the monomial $2^{\text{size}(s)} t$.
- The *o*-*t*-*t*s transformation τ_N^o computed by N maps the tree s to the monomial $2^{\text{size}(t)} t$.

Note that $\operatorname{size}(t) = 2^{\operatorname{size}(s)} - 1$.

12

Properties of Tree Series Transducers

Definition: A deterministic bottom-up tree series transducer $M = (Q, \Sigma, \Delta, A, F, \mu)$ is called

- *non-deleting*, if each tree occurring in the range of μ_k contains each variable x_1, \ldots, x_k at least once,
- *linear*, if all trees in the tree representation μ contain each variable at most once,
- *total*, if for each symbol $\sigma \in \Sigma^{(k)}$ and tuple of states $w \in Q^k$ there exists at least one $q \in Q$ such that $\mu_k(\sigma)_{q,w} \neq \widetilde{\mathbf{0}}$,
- *homomorphism*, if M is total and Q is a singleton.

Example: N is a non-deleting homomorphism (deterministic) bottom-up tree series transducer which is not linear.

Properties of Semirings

A semiring $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is called

- *commutative*, if $a \odot b = b \odot a$ for every $a, b \in A$,
- *finite*, if A is finite,
- *periodic*, if for every $a \in A$ there exist $i, j \in \mathbb{N}$ such that $a^i = a^j$ and $i \neq j$,
- *multiplicatively idempotent*, if $a \odot a = a$ for every $a \in A$,
- multiplicatively regular, if for every a ∈ A there exists a b ∈ A such that a ⊙ b ⊙ a = a, and
- a semifield, if for every $a \in A$ there exists a $b \in A$ such that $a \odot b = 1$.

Semiring Properties Related

Classes of T-TS Transformations

Let $mod \in \{\varepsilon, o\}$ and $\mathcal{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ be a semiring. The *class of mod-t-ts transformations* computed by deterministic bottom-up tree series transducers over the semiring \mathcal{A} , which have all the properties of $x \subseteq \{n, l, t, h\}$ (non-deleting, linear, total, homomorphism), is denoted by dx-BOT^{mod}(\mathcal{A}).

E.g., $dnl-BOT^{o}(\mathbb{N})$ denotes the class of all *o*-t-ts transformations computable by non-deleting and linear deterministic bottom-up tree series transducers over \mathbb{N} .

Boolean Semiring

Commutative and Periodic Semifields

Commutative, Periodic, and Multiplicatively Idempotent Semirings

Commutative, Periodic, and Multiplicatively Regular Semirings

Non-Periodic Semirings

Remaining Questions and Literature

- Non-deterministic tree series transducers?
- Non-commutative, but periodic semirings?
- Top-down tree series transducers?

Some References:

Rounds: Trees, Transducers and Transformations, 1968 Thatcher: Generalized² Sequential Machine Maps, 1970 Engelfriet: Bottom-up and Top-down Tree Transformations - a Comparison, 1975 Engelfriet, Fülöp, Vogler: Bottom-up and Top-down Tree Series Transformations, 2002 Fülöp, Vogler: Tree Series Transformations that Respect Copying, 2003 Fülöp, Vogler: Weighted tree transducers, 2003