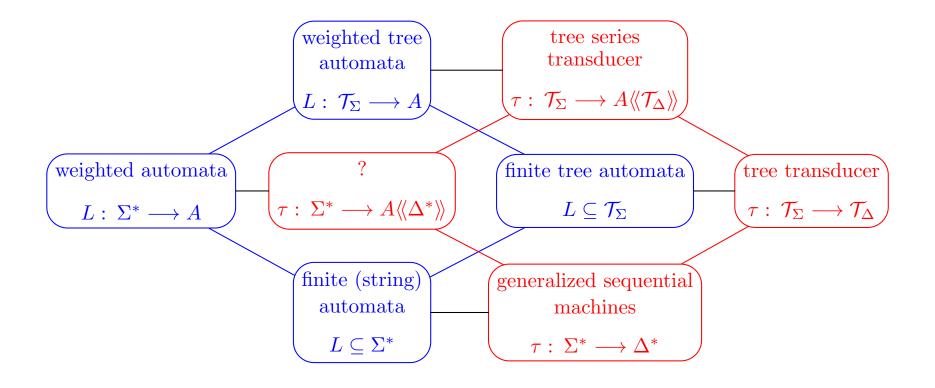
Incomparability results for polynomial bottom-up tree series transducers

Andreas Maletti

May 14, 2003

- 1. Introduction
- 2. Basic definitions
- 3. Cost approximations
- 4. Incomparability results

Generalization hierarchy



Semirings and Orders

- semiring 𝔅 = (A, ⊕, ⊙, 0, 1) comprises of a commutative monoid (A, ⊕, 0) and monoid (A, ⊙, 1); ⊙ distributes over ⊕ and 0 is absorbing
- *partial order* $\leq \subseteq A \times A$ is reflexive, antisymmetric and transitive
- partial order \leq is *consistent*, iff every finite subset $S \subseteq A$ has an upper bound
- semiring \mathfrak{A} is *partially ordered* by the partial order \preceq , iff $a_1 \preceq a_2$ implies
 - 1. $a_1 \oplus a \preceq a_2 \oplus a$,
 - 2. $a_1 \odot a \preceq a_2 \odot a$ and $a \odot a_1 \preceq a \odot a_2$
- semiring \mathfrak{A} is *naturally ordered*, iff $\sqsubseteq \subseteq A \times A$ is a partial order, where

$$a \sqsubseteq b$$
 iff $(\exists c \in A) : b = a \oplus c$

• naturally ordered semirings are partially ordered by the consistent partial order \sqsubseteq

Examples

- 1. the natural numbers $\mathbb{N}_\infty=(\mathbb{N}\cup\{\infty\},+,\cdot,0,1)$ are naturally ordered by $\sqsubseteq=\leq$
- 2. the Boolean semiring $\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top)$ is naturally ordered by $\bot < \top$
- 3. the arctical semiring $\mathbb{A} = (\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$ is naturally ordered by $\sqsubseteq = \leq$
- 4. the *tropical semiring* $\mathbb{T} = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$ is naturally ordered by $\sqsubseteq = \ge$ and (consistently) partially ordered by \le

A semiring is *additively idempotent*, iff $a \oplus a = a$. The latter three presented semirings are additively idempotent.

A semiring preserves \leq under *continuation*, iff $a \leq a \oplus a$. All additively idempotent as well as naturally ordered semirings preserve the order under continuation.

Tree Series

- a *tree series* φ is a mapping of type $\mathcal{T}_{\Delta}(V) \longrightarrow A$; (φ, t) is used to denote $\varphi(t)$
- the class of all tree series is denoted $A\langle\!\langle \mathcal{T}_{\Delta}(V) \rangle\!\rangle$
- the *support* of a tree series φ is defined to be $supp(\varphi) = \{ t \in \mathcal{T}_{\Delta}(V) \mid (\varphi, t) \neq \mathbf{0} \}$
- φ is *polynomial* iff its support is finite; the corresponding class is $A\langle \mathcal{T}_{\Delta}(V) \rangle$
- Let $\varphi \in A\langle\!\langle \mathcal{T}_{\Delta}(X_k) \rangle\!\rangle$, $(\psi_1, \ldots, \psi_k) \in A\langle\!\langle \mathcal{T}_{\Delta}(V) \rangle\!\rangle^k$. Substitution of (ψ_1, \ldots, ψ_k) into φ is

$$\varphi \longleftarrow (\psi_1, \dots, \psi_k) = \sum_{\substack{t \in \operatorname{supp}(\varphi) \\ (\forall i \in [k]): t_i \in \operatorname{supp}(\psi_i)}} ((\varphi, t) \odot (\psi_1, t_1) \odot \cdots \odot (\psi_k, t_k)) t[t_1, \dots, t_k].$$

• whereas o-*substitution* of (ψ_1, \ldots, ψ_k) into φ is

$$\varphi \xleftarrow{o} (\psi_1, \dots, \psi_k) = \sum_{\substack{t \in \operatorname{supp}(\varphi) \\ (\forall i \in [k]): t_i \in \operatorname{supp}(\psi_i)}} ((\varphi, t) \odot (\psi_1, t_1)^{|t|_{x_1}} \odot \cdots \odot (\psi_k, t_k)^{|t|_{x_k}}) t[t_1, \dots, t_k].$$

Tree Series Transducers

 $M = (Q, \Sigma, \Delta, \mathfrak{A}, Q_d, \mu)$, where

- Q and $Q_d \subseteq Q$ are *finite* sets of states and final states, resp.
- Σ and Δ are the input and output ranked alphabets, resp.
- $\mathfrak{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ is a semiring
- μ is a family of mappings $(\mu_k)_{k\in\mathbb{N}}$ of type

$$\mu_k: \Sigma^{(k)} \longrightarrow A \langle\!\langle \mathcal{T}_\Delta(X_k) \rangle\!\rangle^{\mathbf{Q} \times \mathbf{Q}^k},$$

M is

- 1. *polynomial*, if every $\mu_k(\sigma)_{q,(q_1,\ldots,q_k)} \in A\langle \mathcal{T}_{\Delta}(X_k) \rangle$
- 2. *deterministic*, if for every k-ary σ and $(q_1, \ldots, q_k) \in Q^k$ and q

$$\#(\operatorname{supp}(\mu_k(\sigma)_{\boldsymbol{q},(\boldsymbol{q}_1,\ldots,\boldsymbol{q}_k)})) \le 1$$

and for at most one q equality holds.

Semantics of tree series transducers

Let $mod \in \{\varepsilon, o\}$.

$$\overline{\mu_k(\sigma)}^{\mathrm{mod}} : \left(A \langle\!\langle \mathcal{T}_\Delta \rangle\!\rangle^{\mathbf{Q} \times \{1\}} \right)^k \longrightarrow A \langle\!\langle \mathcal{T}_\Delta \rangle\!\rangle^{\mathbf{Q} \times \{1\}}$$
$$\overline{\mu_k(\sigma)}^{\mathrm{mod}}(R_1, \dots, R_k)_{\mathbf{q}} = \sum_{(\mathbf{q}_1, \dots, \mathbf{q}_k) \in \mathbf{Q}^k} \mu_k(\sigma)_{\mathbf{q}, (\mathbf{q}_1, \dots, \mathbf{q}_k)} \stackrel{\mathrm{mod}}{\leftarrow} \left((R_1)_{\mathbf{q}_1}, \dots, (R_k)_{\mathbf{q}_k} \right).$$

Initial homomorphism: $h_{\mu}^{\mathrm{mod}}: \mathcal{T}_{\Sigma} \longrightarrow A\langle\!\langle \mathcal{T}_{\Delta} \rangle\!\rangle^{Q \times \{1\}}$

$$h_{\mu}^{\mathrm{mod}}(\sigma(s_1,\ldots,s_k)) = \overline{\mu_k(\sigma)}^{\mathrm{mod}}(h_{\mu}^{\mathrm{mod}}(s_1),\ldots,h_{\mu}^{\mathrm{mod}}(s_k))$$

mod-*semantics* of M is $\tau_M^{\mathrm{mod}} : \mathcal{T}_{\Sigma} \longrightarrow A \langle\!\langle \mathcal{T}_{\Delta} \rangle\!\rangle$

$$\tau_M^{\mathrm{mod}}(s) = \sum_{\boldsymbol{q} \in \boldsymbol{Q_d}} h_{\mu}^{\mathrm{mod}}(s)_{\boldsymbol{q}}$$

Example

Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$ and $\Delta = \{\alpha^{(0)}\}$. The (bottom-up) tree series transducer

$$M = (\{\ast\}, \Sigma, \Delta, \mathfrak{A}, \{\ast\}, \mu),$$

where $\mu_0(\alpha)_{*,\varepsilon} = \mu_2(\sigma)_{*,(*,*)} = c \alpha$ for some $c \in A$, is *deterministic* and gives rise to the following *translations*:

•
$$\tau_M(s) = c^{\operatorname{size}(s)} \alpha$$
 since

$$h_{\mu}(s)_{*} = \begin{cases} \left(c \odot \underbrace{(h_{\mu}(s_{1})_{*}, \alpha)}_{c^{\operatorname{size}(s_{1})}} \odot \underbrace{(h_{\mu}(s_{2})_{*}, \alpha)}_{c^{\operatorname{size}(s_{2})}}\right) \alpha & \text{, if } s = \sigma(s_{1}, s_{2}) \\ c \alpha & \text{, if } s = \alpha \end{cases}$$

•
$$au^o_M(s) = c \, \alpha \, \operatorname{since} \, h^o_\mu(s)_* = c \, \alpha$$

Requirements and constants

- partially ordered semiring $\mathfrak{A} = (A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ via a consistent partial order \preceq
- \leq preserves order under *continuation*

or

• \mathfrak{A} is *naturally ordered* and $\leq = \sqsubseteq$

 $M = (Q, \Sigma, \Delta, \mathfrak{A}, Q_d, \mu)$ is a *polynomial* bottom-up tree series transducer

- 1. the maximal rank $r = \max \{ k \in \mathbb{N} \mid \Sigma^{(k)} \neq \emptyset \}$ of a symbol of Σ
- 2. the number of *follow-up states* $d = \begin{cases} 1 & \text{, if } M \text{ is deterministic} \\ \#(Q) & \text{, otherwise} \end{cases}$
- 3. the maximal support cardinality e of any tree series of μ

$$e = \max\left\{ \#(\operatorname{supp}(\mu_k(\sigma)_{\boldsymbol{q},\boldsymbol{w}})) \mid k \in \mathbb{N}, \sigma \in \Sigma^{(k)}, \boldsymbol{q} \in \boldsymbol{Q}, \boldsymbol{w} \in \boldsymbol{Q}^k \right\}.$$

Cardinality approximations

Lemma:

- (a) $\#(\operatorname{supp}(h_{\mu}^{\operatorname{mod}}(s)_{\boldsymbol{q}})) \leq \#(\mathcal{T}_{\Delta})$ and
- (b) $\#(\operatorname{supp}(h_{\mu}^{\operatorname{mod}}(s)_{q})) \leq d^{(\sum_{i=1}^{\operatorname{height}(s)-1}r^{i})} e^{(\sum_{i=0}^{\operatorname{height}(s)-1}r^{i})}$ hold.

Proof: (a) trivial, (b) straightforward induction over s

Observation: Both approximations are *monotonic* in s (or height(s)).

Observation: For *deterministic* transducers:

 $\#(\operatorname{supp}(h_{\mu}^{\operatorname{mod}}(s)_q)) \leq 1$

Constants again

- 1. the maximal rank $r = \max \{ k \in \mathbb{N} \mid \Sigma^{(k)} \neq \emptyset \}$ of a symbol of Σ 2. the number of follow-up states $d = \begin{cases} 1 & \text{, if } M \text{ is deterministic} \\ \#(Q) & \text{, otherwise} \end{cases}$
- 3. the maximal support cardinality e of any tree series of μ

$$e = \max\left\{ \#(\operatorname{supp}(\mu_k(\sigma)_{\boldsymbol{q},\boldsymbol{w}})) \mid k \in \mathbb{N}, \sigma \in \Sigma^{(k)}, \boldsymbol{q} \in \boldsymbol{Q}, \boldsymbol{w} \in \boldsymbol{Q}^k \right\}.$$

4. an upper bound c of all coefficients appearing in the tree representation μ

$$c \in \left(\{\mathbf{1}\} \cup \left\{ \left(\mu_k(\sigma)_{\boldsymbol{q}, \boldsymbol{w}}, t \right) \mid k \in \mathbb{N}, \sigma \in \Sigma^{(k)}, \boldsymbol{q} \in \boldsymbol{Q}, \boldsymbol{w} \in \boldsymbol{Q}^k, t \in \operatorname{supp}(\mu_k(\sigma)_{\boldsymbol{q}, \boldsymbol{w}}) \right\} \right)^u,$$

5. the maximal number of variables u in the support of any tree series of μ

$$u = \begin{cases} r & , \text{ if } \text{mod} = \varepsilon \\ \max_{\substack{k \in \mathbb{N}, \sigma \in \Sigma^{(k)}, q \in Q, \\ w \in Q^k, t \in \text{supp}(\mu_k(\sigma)_{q,w})}} \sum_{x \in X_k} |t|_x & , \text{ if } \text{mod} = o \end{cases}$$

Approximations

• order-preserving cardinality approximation mapping $l: \mathbb{N}_+ \longrightarrow \mathbb{N}_+$

approximation mapping $f_{M,l}^{\mathrm{mod}}: \mathbb{N}_+ \longrightarrow A$

$$f_{M,l}^{\text{mod}}(n) = \begin{cases} c & \text{, if } n = 1\\ d^r e \, l(n-1)^r & \\ \sum_{i=1}^r c \odot f_{M,l}^{\text{mod}}(n-1)^u & \text{, if } n > 1 \end{cases}$$

In case M is *deterministic* or \mathfrak{A} is *additively idempotent*

$$f_M^{\text{mod}}(n) = \begin{cases} c & \text{, if } n = 1\\ c \odot f_M^{\text{mod}}(n-1)^u & \text{, if } n > 1 \end{cases}$$

Approximations (cont'd)

Lemma: For every $s \in \mathcal{T}_{\Sigma}$ and $t \in \operatorname{supp}(h_{\mu}^{\operatorname{mod}}(s)_{q})$ with $q \in Q_{d}$ we have $(h_{\mu}^{\operatorname{mod}}(s)_{q}, t) \preceq f_{M,l}^{\operatorname{mod}}(\operatorname{height}(s)).$

Example: $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}, \Delta = \{\alpha^{(0)}\} \text{ and } \mu_0(\alpha)_* = \mu_2(\sigma)_{*,(*,*)} = c \alpha$

• regular substitution: r = u = 2

$$(\tau_M(s), \alpha) \le c^{2^{\operatorname{height}(s)} - 1}$$

• *o*-substitution: u = 0

 $(\tau^o_M(s),\alpha) \leq c$

13

Sharpness of the approximation

If \mathfrak{A} is *additively idempotent* or M is *deterministic*, then the given approximation is *sharp*, i.e. given suitable c, u, there exists a M such that

$$(\forall n \in \mathbb{N})(\exists s \in \mathcal{T}_{\Sigma}) \text{ height}(s) = n \ (\exists t \in \mathcal{T}_{\Delta}) : \quad (\tau_M^{\text{mod}}(s), t) = f_M^{\text{mod}}(n)$$

Proof: by Construction of a suitable M

Let p-BOT(\mathfrak{A}) = { $\tau_M \mid M$ is a polynomial bottom-up transducer over \mathfrak{A} } and similarly also p-BOT^o(\mathfrak{A}), d-BOT(\mathfrak{A}), d-BOT^o(\mathfrak{A}).

Incomparability results

Lemma:

- partially ordered semiring ${\mathfrak A}$ ordered via a consistent order \preceq
- semiring \mathfrak{A} additively idempotent
- exists $c \in A$ such that $(\forall i, j \in \mathbb{N})$ with i < j the condition $c^i \prec c^j$ holds

p-BOT $(\mathfrak{A}) \bowtie p$ -BOT $^{o}(\mathfrak{A})$

Proof: by contradiction using M and $N = (\{*\}, \Sigma, \Delta, \mathfrak{A}, \{*\}, \nu)$, where

$$\Sigma = \{\gamma^{(1)}, \alpha^{(0)}\} \qquad \Delta = \{\sigma^{(2)}, \alpha^{(0)}\}$$

 $\nu_0(\alpha)_{*,\varepsilon} = c \alpha \text{ and } \nu_1(\gamma)_{*,*} = c \sigma(x_1, x_1).$

Incomparability results (cont'd)

Lemma:

• exists $c \in A$ such that $(\forall i, j \in \mathbb{N})$ with $i \neq j$ the condition $c^i \neq c^j$ holds

d-BOT $(\mathfrak{A}) \bowtie d$ -BOT $^{o}(\mathfrak{A})$

Lemma:

- A finite or \mathfrak{A} commutative
- $x \in \{n, l\}$ (non-deleting or linear)
- $(\forall a \in A)(\exists i, j \in \mathbb{N})$ with i < j such that $a^i = a^j$

either dx-BOT $(\mathfrak{A}) \subseteq dx$ -BOT $^{o}(\mathfrak{A})$ or dx-BOT $(\mathfrak{A}) \supseteq dx$ -BOT $^{o}(\mathfrak{A})$