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Abstract

We consider (subclasses of) polynomial bottom-up and top-down tree series transduc-
ers over a partially ordered semiring A = (A,⊕,�,0,1,�), and we compare the classes
of tree-to-tree-series and o-tree-to-tree-series transformations computed by such transduc-
ers. Our main result states the following. If, for some a ∈ A with 1 � a, the semi-
ring A is a weak a-growth semiring and either (i) the semiring A is additively idempotent
and x, y ∈ {polynomial, deterministic, total, deterministic and total, homomorphism}, or (ii)
1 ≺ 1⊕ 1 and x, y ∈ {deterministic, deterministic and total, homomorphism}, then the state-
ments x�BOT(A) on y�BOTo(A) and x�BOT(A) on y�TOP(A) hold. Therein x�BOTmod(A)
for mod ∈ {ε, o} denotes the class of mod-tree-to-tree-series transformations computed by
bottom-up tree series transducers, which have property x, over the semiring A (the class
y�TOP(A) is de�ned similarly for top-down tree series transducers). Besides, on denotes in-
comparability with respect to set inclusion.

1 Introduction

Tree series transducers [Kui99, EFV02, FGV02, FV03] were introduced as a generalization of
tree transducers [Rou70, Tha70, Eng75] and weighted tree automata [Sei94, Kui98, Boz99]. Both
historical predecessors of tree series transducers have successfully been motivated from and ap-
plied in practice. Speci�cally, tree transducers are motivated from syntax-directed translations
in compilers [Iro61, Eng81, FV98], and they are applied in, e.g., functional program analysis and
transformation [Küh98, GKV03, Jür03, VK04], linguistics [MC99, KMM00, MMM01, KMMM03],
generation of pictures [Dre00, Dre01], and query languages of XML databases [BMN02, EM03].
Weighted tree automata have been applied to code selection in compilers [FSW94] and tree pat-
tern matching [Sei92]. Moreover, a rich theory of tree transducers was developed (cf. [Eng75,
Bak79, Eng82, GS84, NP92, CDG+97, GS97, FV98] as seminal or survey papers and monographs)
during the seventies, whereas weighted tree automata just recently received some attention (e.g.,
[Sei92, Sei94, Kui98, Bor03, BV03, DPV03, DV03, ÉK03]).

Roughly speaking, tree series transducers capture both (a) the way of translating input trees
into output trees, as it is inherent in bottom-up and top-down tree transducers, and (b) the
computation of a weight (or cost) in a semiring, as it is inherent in weighted tree automata. More
formally, a (bottom-up or top-down) tree series transducer is a tuple M = (Q,Σ,∆,A, D, µ),
wherein Q is a �nite set of states, Σ and ∆ are ranked alphabets of input and output symbols,
respectively, A = (A,⊕,�,0,1) is a semiring, D ⊆ Q is a set of designated states (also called
�nal states if M is bottom-up or initial states if M is top-down), and µ = (µk | k ∈ N ) is a
(bottom-up or top-down) tree representation. Such a tree representation consists of mappings
µk : Σ(k) −→ A〈〈T∆(X)〉〉Q×Q(Xk)∗ , in which T∆(X) denotes the set of ∆-trees indexed by variables
of X, A〈〈T∆(X)〉〉 denotes the set of mappings ϕ : T∆(X) −→ A (called formal tree series), and
A〈〈T∆(X)〉〉Q×Q(Xk)∗ denotes the set of (Q × Q(Xk)∗)-matrices over A〈〈T∆(X)〉〉. Using mod-
substitution of tree series (with mod ∈ {ε, o}; cf. [EFV02, FV03]) in order to substitute tree
series into tree series of the form µk(σ)q,w, we can impose a Σ-algebraic structure on A〈〈T∆〉〉Q
and thereby obtain the unique Σ-homomorphism hmod

µ : TΣ −→ A〈〈T∆〉〉Q. Then the mod-tree-
to-tree-series transformation computed by M (for short: mod-t-ts transformation) is the mapping
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τmod
M : TΣ −→ A〈〈T∆〉〉 de�ned by τmod

M (s) =
∑
q∈D h

mod
µ (s)q. Thus, for a given input tree

s ∈ TΣ, M computes a (possibly in�nite) set supp(τmod
M (s)) =

{
t ∈ T∆

∣∣ (τmod
M (s), t) 6= 0

}
of

output trees and associates a coe�cient (τmod
M (s), t) ∈ A to every such output tree t ∈ T∆. Note

that (τmod
M (s), t) denotes the application ϕ(t) with ϕ = τmod

M (s). For every so-called polynomial tree
series transducerM and input tree s ∈ TΣ, the set supp(τmod

M (s)) of computed and relevant output
trees is �nite. Polynomial bottom-up and top-down tree series transducers over the boolean semi-
ring B = ({0, 1},∨,∧, 0, 1) essentially are bottom-up and top-down tree transducers, respectively
(cf. Section 4 of [EFV02]).

In the same way as tree transducers, also tree series transducers can have particular properties,
e.g., they can be deterministic, total, deterministic and total, or they are homomorphisms (cf.,
e.g., [Eng75]). The classes of mod-t-ts transformations computed by bottom-up and top-down tree
series transducers having the property x (e.g., being deterministic) over a semiring A are denoted
by x�BOTmod(A) and x�TOPmod(A), respectively.

In [FV03] several classes of the form x�BOTmod(A) and x�TOPmod(A) have been compared
with each other with respect to set inclusion. For instance, it was proved that,

• for every x ∈ {polynomial,deterministic, total,deterministic and total,homomorphism} and
semiring A, we have x�TOP(A) = x�TOPo(A) (cf. Theorem 5.2 of [FV03]),

• p�BOT(N∞) on p�BOTo(N∞), where p stands for the property of being polynomial, N∞ =
(N ∪ {+∞},+, ·, 0, 1) is the semiring of non-negative integers, and on denotes the usual
incomparability with respect to set inclusion (cf. Corollary 5.18 of [FV03]), and

• p�BOT(T) on p�BOTo(T), where T = (N ∪ {+∞},min,+, (+∞), 0) is the tropical semiring
(cf. Corollary 5.23 of [FV03]).

The latter two incomparability results motivated us to investigate the question whether this
incomparability also holds for semirings di�erent from N∞ and T. In this paper we answer this
question in the a�rmative. Additionally, we compare classes of t-ts transformations which are
computed by di�erent types of tree series transducers, i.e., bottom-up and top-down tree series
transducers. Our main result is Theorem 5.10 which states the following:

If A = (A,⊕,�,0,1,�) is a partially ordered, weak a-growth semiring for some a ∈ A
with 1 � a, and

• x, y ∈ {polynomial,deterministic, total,deterministic and total,homomorphism}
and, additionally, A is additively idempotent, or

• x, y ∈ {deterministic,deterministic and total,homomorphism} and 1 � 1⊕ 1,

then the statements x�BOT(A) on y�BOTo(A) and x�BOT(A) on y�TOP(A) hold.

Let us explain some more details concerning this theorem and then brie�y discuss the way to
prove it. A partially ordered semiring A = (A,⊕,�,0,1,�) is a semiring (A,⊕,�,0,1) together
with a partial order � ⊆ A×A such that the order is preserved by the operations ⊕ and �. Roughly
speaking, a partially ordered semiring is weak a-growth semiring, if (i) there is an element a ∈ A
which has no period (i.e., for every two integers i, j ∈ N we have ai 6= aj , if and only if i 6= j),
and (ii) whenever an = a1 � b � a2 ⊕ d for some semiring elements a1, a2 ∈ A \ {0} and b, d ∈ A,
then b � am for some m ∈ N (cf. De�nition 5.8 for the de�nition of weak a-growth). The latter
condition requires that every element, which might occur in a decomposition of an, can be bounded
by a power of a. In particular, the following semirings are weak a-growth semirings:

• the semiring (N ∪ {+∞},+, ·, 0, 1,≤) of non-negative integers is a weak 2-growth semiring,

• the tropical semiring (N ∪ {+∞},min,+, (+∞), 0,≤) is a weak 1-growth semiring,

• the arctic semiring (N ∪ {−∞},max,+, (−∞), 0,≤) is a weak 1-growth semiring, and
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• the formal language semiring (P(S∗),∪, ◦, ∅, {ε},⊆) for some alphabet S is a weak s-growth
semiring for every s ∈ S.

In order to prove the non-inclusion results (necessary for the incomparabilities) of the main
theorem, we use the partial order on the semiring and establish a framework of mappings called
coe�cient majorizations. For a given tree series transducer M , a coe�cient majorization is a
mapping f : N+ −→ A such that for every n ∈ N+ the semiring element f(n) is an upper bound
of the set Cmod

M (n), which is the set of all coe�cients generated from input trees of height n, i.e.,

Cmod
M (n) =

{
(hmod
µ (s)q, t)

∣∣ q ∈ Q, s ∈ TΣ, t ∈ supp(hmod
µ (s)q),height(s) = n

}
.

Now, as usual, given two classes T1 and T2 of mod1-t-ts transformations and mod2-t-ts transfor-
mations, respectively, we can prove T1 6⊆ T2 by (i) proving that some mapping f is a majorization
mapping for the class T2 and (ii) constructing a tree series transducer M such that τmod1

M ∈ T1

and Cmod1
M (n) grows faster than f(n). For the particular classes in which we are interested in this

paper, this is achieved in Lemma 5.9.
Coe�cient majorizations have been investigated for the speci�c case in which the coe�cient

(hmod
µ (s)q, t) is the height or size of the output tree t and n is the height or size of the input tree,

e.g., for bottom-up tree transducers (follows in a straightforward manner from Theorem 3.15 in
[Eng75]), for top-down tree transducers (cf. Lemma 3.27 of [FV98]), for attributed tree transducers
(cf. Lemma 3.3 of [Eng81] and Lemma 5.40 of [FV98]), and for macro tree transducers (cf. Lemma
3.3 of [Eng81] and Lemma 4.23 of [FV98]).

This paper is structured as follows. Section 2 recalls the relevant basic mathematical notions
and notations, particularly partially ordered semirings, tree series, and substitution of tree series.
Section 3 presents the de�nition of tree series transducers from [EFV02] in some detail along with
the de�nition of several subclasses of tree series transducers. Section 4 establishes the coe�cient
majorization for the cost of any relevant output tree computed by a polynomial tree series trans-
ducer, which is bottom-up or top-down. Therein we require some properties of the underlying
semiring; namely, the semiring (A,⊕,�,0,1) is supposed to be partially ordered, i.e., there is a
partial order � ⊆ A × A, which is preserved by the two operations ⊕ and �, and 1 � 1 ⊕ 1.
In particular, any naturally ordered semiring ful�ls these conditions. Finally, in Section 5 the
incomparability results outlined above are derived.

2 Preliminaries

In this section we present some basic notions and notations required in the sequel. The �rst
subsection recalls partial orders (cf. [DP02]) and associated notions. Words (cf. [MS97]) and
trees (cf. [GS84, GS97]) are considered in the second subsection, whereas the third subsection is
dedicated to algebraic structures and, in particular, (partially ordered) semirings [Kui97, HW98,
Gol99]. Finally, this section is concluded by the presentation of formal tree series (cf. [BR82,
Kui97]) and two de�nitions of substitutions for formal tree series (cf. [EFV02, FV03]).

2.1 Partial Orders

The set {0, 1, 2, . . . } of all non-negative integers is denoted by N, and the set N\{0} of all positive
integers is denoted by N+. For every two integers i, j ∈ N the interval [i, j] denotes the subset
{n ∈ N | i ≤ n ≤ j }, and we use [j] to abbreviate [1, j]. Recall that the cardinality of a �nite set
S, i.e., the number of elements of S, is denoted by card(S), and for every set S the set of all subsets
of S, also called the power set of S, is denoted by P(S).

Given a non-empty set A, a binary relation � ⊆ A × A is called partial order (on A), if � is
(i) re�exive, i.e., for every element a ∈ A we have a � a, (ii) antisymmetric, i.e., for every two
elements a1, a2 ∈ A the facts a1 � a2 and a2 � a1 imply a1 = a2, and (iii) transitive, i.e., for every
three elements a1, a2, a3 ∈ A with a1 � a2 and a2 � a3 also a1 � a3 holds.
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The pair (A,�) is termed partially ordered set, and we represent the pair by A alone whenever
� is understood from the context. Let a1, a2 ∈ A. The fact that neither a1 � a2 nor a2 � a1

(or equivalently: a1 and a2 are incomparable) is expressed as a1 on a2. In case there are no
incomparable elements, the partial order � is said to be a total order. As usual, the strict order
≺ ⊆ A×A corresponding to a partial order � is derived by de�ning a1 ≺ a2, if and only if a1 � a2

and a1 6= a2.
Let S ⊆ A. An element u ∈ A is called upper bound of S, if s � u for every element s ∈ S. The

set of all upper bounds of S is denoted by ↑S, and the least element of ↑S, also called supremum
of S, is denoted by supS, if it exists. If, for every non-empty and �nite subset S ⊆ A, there is an
upper bound (i.e., ↑S 6= ∅), then A is called directed. Moreover, should even the supremum supS
exist for every non-empty and �nite subset S ⊆ A, then (A,�) is said to be a ∨-semilattice (read:
supremum-semilattice).

Next we de�ne mappings between partially ordered sets (A,�A) and (B,�B) which are com-
patible with the order. An order-preserving mapping f : A −→ B is a mapping satisfying for
every two elements a1, a2 ∈ A with a1 �A a2 the condition f(a1) �B f(a2). Finally, we recall
the notion of majorizations. Let f : D −→ A be a mapping and g = ( gi | i ∈ I ) be a family of
mappings each of type gi : D −→ A for a set D and an index set I. The mapping f is said to
be a majorization of g, if f(d) ∈ ↑ { gi(d) | i ∈ I } for every element d ∈ D, and the majorization
f is called tight, if f(d) = sup { gi(d) | i ∈ I } for every element d ∈ D (hence a majorization can
only be tight, if these suprema exist). Note that, in particular, if f(d) ∈ { gi(d) | i ∈ I } for every
element d ∈ D, then f is tight.

2.2 Words and trees

By a word of length n ∈ N we mean an element of the n-fold Cartesian product Sn = S×· · ·×S of
a set S. The set of all words over S is denoted by S∗, where the particular element () ∈ S0, called
the empty word, is displayed as ε. The length of a word w ∈ S∗ is denoted by |w|; thus |ε| = 0.

Every non-empty and �nite set S is called alphabet of which elements are termed symbols.
A ranked alphabet is de�ned to be a pair (Σ, rk), wherein Σ is an alphabet and the mapping
rk : Σ −→ N associates to every symbol of Σ its �nite rank. For every k ∈ N we use Σ(k) ⊆ Σ
to denote the set of symbols having rank k, i.e., Σ(k) = {σ ∈ Σ | rk(σ) = k }. In the following, we
will usually assume that the rk-mapping is implicitly given. Hence we identify (Σ, rk) with Σ and
specify the ranked alphabet by listing the elements of Σ with their ranks put in parentheses as
superscripts as in {σ(2), α(0)}, for example. The maximal rank of the ranked alphabet Σ, denoted
by mxΣ, is de�ned to be the maximal integer m ∈ N such that Σ(m) 6= ∅. If mxΣ = 1, then Σ is
said to be a unary ranked alphabet.

Let Σ be a ranked alphabet and X = {xi | i ∈ N+ } be a countable set of (formal) variables. The
set of (�nite, labeled, and ordered) Σ-trees indexed by V ⊆ X, denoted by TΣ(V ), is inductively
de�ned to be the smallest set T such that (i) V ∪ Σ(0) ⊆ T and (ii) for every k ∈ N+, symbol
σ ∈ Σ(k), and k elements t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . The set TΣ of ground Σ-trees is an
abbreviation for TΣ(∅).

Let V ⊆ X be a subset of X, and let t ∈ TΣ(V ) be a Σ-tree indexed by V . The number of
occurrences of a given variable v ∈ V in t is denoted by |t|v. The tree t is called linear in V
(non-deleting in V ), if every variable v ∈ V occurs at most once, i.e., |t|v ≤ 1, (at least once, i.e.,
|t|v ≥ 1) in t. Observe that in order for a tree to be non-deleting, the set V needs to be �nite. Since
we will often deal with �nite subsets V ⊂ X, we introduce for every integer n ∈ N the denotation
Xn to stand for the set {xi | i ∈ [n] } (note that X0 = ∅).

We distinguish a subset T̂Σ(Xn) ⊆ TΣ(Xn) as follows. Let a tree t ∈ TΣ(Xn) be in T̂Σ(Xn),
if and only if for every index i ∈ [n] the variable xi occurs exactly once in t, i.e., |t|xi = 1, and
reading the leaves of the tree t left-to-right, the variables occur in the order x1, . . . , xn. Note that
elements of T̂Σ(Xk) are linear and non-deleting in Xn and T̂Σ(X0) = TΣ.

We recursively de�ne the standard mapping height : TΣ(V ) −→ N+ by the following equalities:

• for every tree t ∈ V ∪ Σ(0): height(t) = 1 and
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• for every k ∈ N+, symbol σ ∈ Σ(k), and k trees t1, . . . , tk ∈ TΣ(V ):

height(σ(t1, . . . , tk)) = 1 + max {height(ti) | i ∈ [k] } .

Given an integer n ∈ N, a Σ-tree t ∈ TΣ(Xn) indexed by Xn, and n trees s1, . . . , sn ∈ TΣ(V ),
the expression t[s1, . . . , sn] denotes the result of replacing (in parallel), for every index i ∈ [n],
every occurrence of xi in the tree t with the tree si, i.e., xj [s1, . . . , sn] = sj for every index j ∈ [n]
and for every integer k ∈ N, symbol σ ∈ Σ(k), and k trees t1, . . . , tk ∈ TΣ(Xn)

(σ(t1, . . . , tk))[s1, . . . , sn] = σ(t1[s1, . . . , sn], . . . , tk[s1, . . . , sn]).

Let Σ be a ranked alphabet with just a single non-nullary symbol, i.e.,
⋃
k∈N+

Σ(k) = {σ}. The
set of fully balanced trees (over Σ) is de�ned to be the smallest subset T ⊆ TΣ such that Σ(0) ⊆ T
and, whenever t ∈ T , also σ(t, . . . , t) ∈ T .

2.3 Monoids and (partially ordered) semirings

Amonoid is de�ned to be an algebraic structure A = (A,⊗,1) consisting of a carrier set A together
with a binary operation ⊗ : A×A −→ A and a constant element 1 ∈ A, such that the operation ⊗
is associative, i.e., for every three elements a1, a2, a3 ∈ A the equality a1⊗(a2⊗a3) = (a1⊗a2)⊗a3

is met, and the constant element 1 is the unit element with respect to operation ⊗, i.e., for every
element a ∈ A we demand a⊗ 1 = 1⊗ a = a. Further, the monoid A is said to be commutative, if
for every two elements a1, a2 ∈ A the equality a1 ⊗ a2 = a2 ⊗ a1 is ful�lled.

By a semiring (with one and absorbing zero) we mean an algebraic structure A = (A,⊕,�,0,1)
with the operations of addition ⊕ and multiplication �, of which (A,⊕,0) and (A,�,1) are
monoids, also called the additive monoid and the multiplicative monoid, respectively. Addition-
ally, the former monoid is required to be commutative and the monoids are connected via the
distributivity laws, i.e., for every three elements a1, a2, a3 ∈ A the equalities a1 � (a2 ⊕ a3) =
(a1 � a2)⊕ (a1 � a3) and (a1 ⊕ a2)� a3 = (a1 � a3)⊕ (a2 � a3) hold, and the absorption laws, i.e.,
for every element a ∈ A it holds that a� 0 = 0� a = 0. By convention, we assume that multipli-
cation has a higher (binding) priority than addition, e.g., we read a1 ⊕ a2 � a3 as a1 ⊕ (a2 � a3).

As usual, for every element a ∈ A and integer n ∈ N we denote by an the multiplication a�· · ·�a
containing n-times the factor a and set a0 = 1. Moreover, given a family ( ai ∈ A | i ∈ [n] ) of
semiring elements ai, we also use the sum notation

∑
i∈[n] ai = a1 ⊕ · · · ⊕ an to denote the sum,

i.e., the result of the addition, of all elements of the family and the product notation
∏
i∈[n] ai =

a1 � · · · � an to abbreviate the product, i.e., the result of the multiplication, of all elements of
the family, where the order is determined by the total order 1 < . . . < n on the index set. Note
that

∑
i∈[0] ai = 0 and

∏
i∈[0] ai = 1. Finally, we will also use the sum notation with arbitrary

index sets, given that only �nitely many summands are non-zero, exploiting the fact that ⊕ is
commutative, i.e., the order in which elements are summed up is irrelevant.

Important semirings are, for example,

• the semiring of the non-negative integers N∞ = (N ∪ {+∞},+, ·, 0, 1) with the common
operations of addition and multiplication extended to (+∞) as follows: for every element
a ∈ N+ ∪ {+∞} both a+ (+∞) = (+∞) + a = (+∞) and a · (+∞) = (+∞) · a = (+∞),

• the tropical semiring T = (N ∪ {+∞},min,+, (+∞), 0) with minimum and addition both
extended to (+∞) such that (+∞) is the unit element with respect to min and + is the
addition of the semiring N∞,

• the arctic semiring A = (N ∪ {−∞},max,+, (−∞), 0) with maximum and addition both
extended to (−∞) such that (−∞) is the unit element with respect to max and + is the
addition of the semiring N∞,

• the boolean semiring B = ({0, 1},∨,∧, 0, 1) with the usual operations of disjunction and
conjunction as addition and multiplication, respectively,
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• the semiring Z4 = ({0, 1, 2, 3},+, ·, 0, 1) with the following operation tables,

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

· 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

• the min-max semiring over the reals Rmin,max = (R ∪ {+∞,−∞},min,max, (+∞), (−∞))
with the common minimum and maximum operation, and

• the language semiring LS = (P(S∗),∪, ◦, ∅, {ε}) for some alphabet S with set union as
addition and concatenation of words, lifted to sets of words, as multiplication.

Several more examples of semirings can be found, e.g., in [HW98, Gol99]. For the sake of simplicity,
we assume 0 6= 1 for all semirings we consider, i.e., we ignore the trivial semiring with the singleton
carrier set.

Semirings having a �nite carrier set are called �nite semirings, and a commutative semiring
A = (A,⊕,�,0,1) is de�ned to be a semiring, in which the multiplicative monoid (A,�,1) is
commutative. Moreover, the semiring A is called additively idempotent, if the addition ful�ls
1 ⊕ 1 = 1. In additively idempotent semirings we immediately have a ⊕ a = a for every element
a ∈ A by distributivity.

Finally, the semiring A is called multiplicatively periodic, if for every element a ∈ A there exist
non-negative integers i, j ∈ N such that i < j and ai = aj . Any di�erence j − i for such integers i
and j is called a period of the element a. The smallest period of a is usually called the period of
a. Consequently, the semiring A is called multiplicatively non-periodic, if it is not multiplicatively
periodic. Note that a multiplicatively non-periodic semiring is necessarily in�nite, and a �nite
semiring must apparently be multiplicatively periodic.

Table 1 summarizes the properties of each of the above mentioned important semirings, where
S is an arbitrary non-trivial, i.e., card(S) > 1, alphabet. If S is a singleton, then the semiring LS
is commutative.

additively multiplicatively
semiring commutative idempotent �nite periodic
N∞ yes no no no
A yes yes no no
T yes yes no no
B yes yes yes yes
Z4 yes no yes yes

Rmin,max yes yes no yes
LS no yes no no

Table 1: Various semirings and their properties.

Now we consider semirings of which the carrier set is a partially ordered set. In principle, we
could allow any partial order on the carrier set, but in our context it is more useful to consider a
partial order such that the operations of the semiring are actually order-preserving. Thus, given a
semiring A = (A,⊕,�,0,1) and a partial order � ⊆ A× A, we say that � partially orders A or,
equivalently, the semiring A is partially ordered (by �), if the following two conditions are satis�ed
for every four elements a1, a2, b1, b2 ∈ A:

(OP⊕) if a1 � a2 and b1 � b2, then the inequality a1 ⊕ b1 � a2 ⊕ b2 holds and

(OP�) if a1 � a2 and b1 � b2, then we have a1 � b1 � a2 � b2.

The literature contains several di�erent notions of partially ordered semirings. For example,
in [HW98, Gol99] order-preservation with respect to the multiplication (OP�) is only demanded

6



for multiplication with positive elements a ∈ A, i.e., 0 � a. However, the positive elements of
such a partially ordered semiring form a partially ordered sub-semiring according to our de�nition.
In contrast, the de�nition of partially ordered semirings in [Kui97], additionally, requires every
element to be positive.

In the sequel we will denote a semiring A = (A,⊕,�,0,1) partially ordered by � simply by
A = (A,⊕,�,0,1,�) and call it totally ordered, if� is a total order. The set PA = { a ∈ A |0 � a }
is called the (additive) positive cone of the semiring A (via �), whereas NA = { a ∈ A | a � 0 } is
de�ned to be the (additive) negative cone of the semiring A (note PA ∩NA = {0}). Moreover, we
say that the partially ordered semiring A has the monotonicity property (MO⊕), if

(MO⊕) the inequality 1 � 1⊕ 1 holds.

Note that property (MO⊕) implies that for every element a ∈ A the inequality a � a ⊕ a holds.
Moreover, every additively idempotent and partially ordered semiring trivially satis�es property
(MO⊕). Finally, if every semiring element of a partially ordered semiring is comparable to its
additive unit 0, then Observation 2.1 characterizes property (MO⊕).

2.1 Observation (Property (MO⊕) characterized)
Let A = (A,⊕,�,0,1,�) be a partially ordered semiring. If A = PA ∪ NA, then the following
statements are equivalent.

(i) The semiring A ful�ls property (MO⊕).

(ii) For every element a ∈ NA the condition a = a⊕ a holds.

(iii) The semiring A is additively idempotent or A = PA.

Proof. We prove the implications (i) implies (iii), (iii) implies (ii), and (ii) implies (i).

• (i) → (iii): By assumption 1 � 1⊕ 1. Since 1 ∈ (PA ∪NA), either 1 ∈ PA or 1 ∈ NA \ {0}.
In the former case 0 � 1 and, consequently, 0 � a for every element a ∈ A by (OP�). Thus
A = PA. In the latter case 1 ≺ 0 and thereby also 1⊕ 1 � 1 by (OP⊕). Together with the
assumption 1 � 1⊕1 we have 1⊕1 = 1 by antisymmetry. Hence A is additively idempotent.

• (iii) → (ii): Assume that A = PA. Then, since PA ∩NA = {0}, it holds that NA = {0} and
clearly 0 = 0 ⊕ 0. On the other hand, if A is additively idempotent, then the statement is
trivial.

• (ii) → (i): Since A = PA ∪NA, we either have 1 ∈ PA or 1 ∈ NA \ {0}. In the former case
0 � 1, thus 1 � 1⊕ 1 by (OP⊕), and in the latter case 1 = 1⊕ 1 by assumption. Hence the
semiring ful�ls property (MO⊕). �

We conclude that a totally ordered semiring possesses property (MO⊕), if and only if the
semiring is partially ordered according to the de�nition of [Kui97] or additively idempotent. The
next observation groups together some simple statements concerning partially ordered semirings.
Basically, the statements lift several conditions like (OP⊕), (OP�), and (MO⊕) from exactly two
elements to several elements. The proofs are straightforward and therefore left to the reader.

2.2 Observation (Basic properties of partially ordered semirings)
Let A = (A,⊕,�,0,1,�) be a partially ordered semiring.

(i) Let n ∈ N, and moreover, let ( ai ∈ A | i ∈ [n] ) and ( bi ∈ A | i ∈ [n] ) be two families of
semiring elements such that for every index i ∈ [n] the inequality ai � bi holds. Then∑
i∈[n] ai �

∑
i∈[n] bi and

∏
i∈[n] ai �

∏
i∈[n] bi.

(ii) Assume that the semiring A has property (MO⊕), and let a ∈ A be a semiring element. For
every two integers m,n ∈ N+, if m ≤ n, then we conclude

∑
i∈[m] a �

∑
i∈[n] a. Note that

m = 0 is excluded, because there may be an element a ∈ A with 0 6� a.
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(iii) Let b ∈ A be an element with 1 � b. For every two integers m,n ∈ N with m ≤ n the
inequality bm � bn holds. �

Generalizing the usual total order ≤ on the non-negative integers, some semirings are partially
ordered by a partial order de�ned in terms of the semiring addition. For instance, consider the
relation v ⊆ A × A, de�ned for every two elements a1, a2 ∈ A by a1 v a2, if and only if there
exists an element a ∈ A such that a1 ⊕ a = a2. The semiring A is said to be naturally ordered,
if the relation v is a partial order (actually it su�ces to show that v is antisymmetric). We will
always write v for the natural order.

The next theorem of [Kui97] establishes that naturally ordered semirings are partially ordered
by v. In addition, they always ful�l property (MO⊕) and have a directed carrier set.

2.3 Theorem (Theorem 2.1 of [Kui97])
Let A = (A,⊕,�,0,1) be a naturally ordered semiring.

(i) For every element a ∈ A the condition 0 v a holds.

(ii) Addition and multiplication are order-preserving (with respect to the natural order v), i.e.,
(OP⊕) and (OP�) are met. �

Thus, A = (A,⊕,�,0,1,v) is a partially ordered semiring with property (MO⊕), which follows
from Observation 2.1, and directed carrier set by Observation 2.4. Note that a similar statement
can be derived for additively idempotent semirings. Namely, an additively idempotent semiring
induces a ∨-semilattice partially ordering the semiring (e.g., [Wec92]).

2.4 Observation (Semirings and directedness)
Let A = (A,⊕,�,0,1,�) be a partially ordered semiring with A = PA ∪NA. Then the carrier set
A is directed.

Proof. Let S ⊆ A be a �nite and non-empty subset. Further, let u =
∑
{ a | a ∈ S ∩ PA }, which

is a �nite sum. We prove u ∈ ↑S, which implies that the carrier set A is directed. Apparently,
0 � u by Observation 2.2(i). Hence a � u for every negative element a ∈ S ∩NA. Moreover, a � u
for every positive element a ∈ S ∩ PA by Observation 2.2(i). Consequently, by A = PA ∪NA we
conclude a � u for every a ∈ S; hence u ∈ ↑S. �

Table 2 displays the order-related properties of the introduced semirings. Therein, column 3
identi�es a partial order, which partially orders the semiring, and the properties to the right of
column 3 are relative to that particular partial order.

naturally partially totally property
semiring A ordered ordered ordered (MO⊕) PA NA

N∞ yes yes (by ≤) yes yes N ∪ {+∞} {0}
A yes yes (by ≤) yes yes N ∪ {−∞} {−∞}
T yes yes (by v) yes yes N ∪ {+∞} {+∞}
T yes yes (by ≤) yes yes {+∞} N ∪ {+∞}
B yes yes (by v) yes yes {0, 1} {0}
Z4 no no

Rmin,max yes yes (by v) yes yes R ∪ {+∞,−∞} {+∞}
LS yes yes (by ⊆) no yes P(S∗) {∅}

Table 2: Various semirings and their order-related properties.

Let A = (A,⊕,�,0,1,�) be a partially ordered semiring. In the sequel we will often consider
partially ordered semirings with property (MO⊕) and, in some cases, directed carrier set. Thus,
Table 3 summarizes the relation between other properties (naturally ordered, totally ordered,
and additively idempotent) and the aforementioned ones. For example, if the semiring A is totally
ordered, then the carrier setA is directed, while, in general, it cannot be concluded that the semiring
A has property (MO⊕). The counterexamples which illustrate the two negative statements of
Table 3 are as follows.

8



implies directedness of
Property . . . implies property (MO⊕) the carrier set A

naturally ordered (� = v) yes (cf. Thm. 2.3) yes (cf. Thm. 2.3)
additively idempotent yes no
additively idempotent and A = PA ∪NA yes yes (cf. Obs. 2.4)
totally ordered no yes
totally ordered and A = PA yes (cf. Obs. 2.1) yes

Table 3: Relating various properties of a partially ordered semiring A = (A,⊕,�,0,1,�).

• The semiring B with the trivial partial order = is additively idempotent, but the carrier set
is not directed, because ↑{0, 1} = ∅.

• The semiring ({0, 1, 2},+, ·, 0, 1,�) completely determined by 1 + 1 = 2 + 1 = 2 + 2 = 2
and 2 · 2 = 2 (note that the remaining cases are such that 0 and 1 are unit elements with
respect to addition and multiplication, respectively, and 0 is absorbing), is totally ordered
by 2 ≺ 1 ≺ 0, but 1 + 1 ≺ 1.

2.4 Formal tree series

Let ∆ be a ranked alphabet and V ⊆ X be a subset of variables. Every mapping ϕ : T∆(V ) −→ A
from ∆-trees indexed by V into a semiring A = (A,⊕,�,0,1) is called (formal) tree series (over
∆, V , and A). We use A〈〈T∆(V )〉〉 to denote the set of all formal tree series over ∆, V , and A.
Given a tree t ∈ T∆(V ), we usually write (ϕ, t), termed the coe�cient of t, instead of ϕ(t) and∑
t∈T∆(V )(ϕ, t) t instead of the tree series ϕ. For example,∑

t∈T∆(V )

height(t) t

is the tree series, which associates to every tree its height.
The support of a tree series ϕ ∈ A〈〈T∆(V )〉〉 is the set supp(ϕ) = { t ∈ T∆(V ) | (ϕ, t) 6= 0 }.

Whenever supp(ϕ) is a singleton, ϕ is said to be a monomial, and ϕ is said to be polynomial, if
supp(ϕ) is �nite. The set of all polynomial formal tree series (over ∆, V , and A) is denoted by
A〈T∆(V )〉. Moreover, if there is an element a ∈ A such that for every tree t ∈ T∆(V ) the coe�cient
(ϕ, t) = a is constant, then the tree series ϕ is said to be constant, and we use ã to abbreviate such
a tree series ϕ.

Tree substitution can be generalized to tree languages [ES77, ES78] as well as tree series. Fol-
lowing the IO-substitution approach, the common de�nition of tree series substitution found, for
example, in [EFV02] lets n ∈ N be an integer, ϕ ∈ A〈〈T∆(Xn)〉〉 be a tree series, and (ψ1, . . . , ψn) ∈
A〈〈T∆(V )〉〉n be an n-tuple of tree series. (Pure) substitution of the tuple (ψ1, . . . , ψn) into the
tree series ϕ, denoted by ϕ←− (ψ1, . . . , ψn), is then de�ned by

ϕ←− (ψ1, . . . , ψn) =
∑

t∈supp(ϕ),
(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t)�

∏
i∈[n]

(ψi, ti)
)
t[t1, . . . , tn]. (1)

Irrespective of the number of occurrences of a formal variable xi for some i ∈ [n], the coe�cient
(ψi, ti) is taken into account exactly once, even if the variable does not appear at all in the tree t.
This particularity led to the introduction of a di�erent notion of substitution de�ned in [FV03] as
follows.

ϕ
o←− (ψ1, . . . , ψn) =

∑
t∈supp(ϕ),

(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t)�

∏
i∈[n]

(ψi, ti)|t|xi

)
t[t1, . . . , tn]. (2)

This notion of substitution, called o-substitution, takes the coe�cient (ψi, ti) into account as often
as the corresponding formal variable xi appears in the tree t. The next proposition lists some
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properties common to both types of substitution. In particular, consider the third property in case
the modi�er mod is o, i.e., o-substitution is used.

2.5 Proposition (Proposition 3.4 of [FV03])
Let n ∈ N be an integer and A = (A,⊕,�,0,1) be a semiring. Moreover, let ϕ ∈ A〈〈T∆(Xn)〉〉 and
ψ1, . . . , ψn ∈ A〈〈T∆(V )〉〉 for some V ⊆ X. Then for every modi�er mod ∈ {ε, o} and index i ∈ [n]
we have

(i) ϕ
mod←− () = ϕ,

(ii) 0̃ mod←− (ψ1, . . . , ψn) = 0̃, and

(iii) ϕ
mod←− (ψ1, . . . , ψi−1, 0̃, ψi+1, . . . , ψn) = 0̃. �

Finally, in [Kui99] a notion of substitution based on the OI-substitution approach [ES77, ES78]
is introduced. There the number of occurrences of a certain formal variable is taken into account
as well. However, in this paper we will exclusively deal with the IO-substitution approach.

3 Tree series transducers

In this section we recall the notions of bottom-up and top-down tree series transducers from
[EFV02]. Figure 1 attempts to display the automata and transducer concepts subsumed by tree
series transducers. Roughly speaking, moving upwards-left adds weights (costs or multiplicity) to
the current model, moving upwards-right performs the generalization from strings to trees, and
�nally, moving left-to-right adds an output component to the current model.

weighted tree
automaton

L ∈ A〈〈TΣ〉〉

tree series
transducer

τ : TΣ −→ A〈〈T∆〉〉

weighted automaton

L ∈ A〈〈Σ∗〉〉

weighted transducer

τ : Σ∗ −→ A〈〈∆∗〉〉

tree automaton

L ⊆ TΣ

tree transducer

τ : TΣ −→ P(T∆)

string automaton

L ⊆ Σ∗

generalized
sequential machine

τ : Σ∗ −→ P(∆∗)

Figure 1: Generalization hierarchy

Before we proceed with the de�nition of tree series transducers, we recall some basic notions
concerning matrices. Let I and J be countable index sets and let S be a set of entries. An (I×J)-
matrix over S is a mappingM : I×J −→ S. The set of all matrices over S with indices of I×J is
denoted by SI×J . The element M(i, j) is called the (i, j)-entry of the matrix M and also written
as Mi,j . If it is understood that the matrix M is a row-vector or column-vector (i.e., I or J is a
singleton set, respectively), then we generally omit the element of the singleton set when indexing
elements of the matrix M . Accordingly, we write, for example, M I instead of M I×{1}, whenever
we do not want to stress that the matrix M is a column-vector.

Next we de�ne tree representations which encode the transitions and output trees of tree series
transducers. Let Q be a �nite set representing the state set of a tree series transducer. For every
subset V ⊆ X we abbreviate the set { q(v) | q ∈ Q, v ∈ V } by Q(V ). Roughly speaking, the tree
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representation is a family of mappings, each of which maps an input symbol to a matrix indexed
by states (more formally, by a state and an element of Q(X)∗). The entries of those matrices are
tree series over ∆, X, and A, where ∆ is the output ranked alphabet and A is the carrier set of
some semiring A = (A,⊕,�,0,1).

3.1 De�nition (Tree representation)
Given a �nite set Q of states, input and output ranked alphabet Σ and ∆, respectively, and a
semiring A = (A,⊕,�,0,1), we de�ne a tree representation (over Q, Σ, ∆, and A) to be a family
(µk | k ∈ N ) of mappings, where for every k ∈ N the mapping µk has type

µk : Σ(k) −→ A〈〈T∆(X)〉〉Q×Q(Xk)∗ ,

and for every σ ∈ Σ(k) we have µk(σ)q,w 6= 0̃ for only �nitely many indices (q, w) ∈ Q×Q(Xk)∗.
Moreover, for every index (q, w) ∈ Q×Q(Xk)∗ we demand µk(σ)q,w ∈ A〈〈T∆(X|w|)〉〉Q×Q(Xk)|w|

.

• The tree representation µ is called bottom-up, if for every integer k ∈ N, input symbol
σ ∈ Σ(k), and index (q, w) ∈ Q × Q(Xk)∗ with µk(σ)q,w 6= 0̃ we have w = q1(x1) . . . qk(xk)
for some states q1, . . . , qk ∈ Q.

• The tree representation µ is called top-down, if for every integer k ∈ N, input symbol σ ∈ Σ(k),
and index (q, w) ∈ Q×Q(Xk)∗ we have supp(µk(σ)q,w) ⊆ T̂∆(X|w|).

Finally, if for every k ∈ N, input symbol σ ∈ Σ(k), and index (q, w) ∈ Q × Q(Xk)∗ the tree
series µk(σ)q,w is polynomial, i.e., µk(σ)q,w ∈ A〈T∆(X)〉, then the tree representation µ is called
polynomial. �

Note that polynomial tree representations are �nitely representable, due to the �niteness of the
input ranked alphabet Σ and the fact that for every k ∈ N almost all entries in the matrices in
the range of the mappings µk are the constant zero tree series 0̃. A tree series transducer is now
basically just a tree representation together with supportive information about the state set Q, the
input and output ranked alphabet, and the semiring. Additionally, we distinguish certain states,
which will be called designated states. Depending on the mode of traversing the input, these might
be initial or �nal states.

3.2 De�nition (Tree series transducer)
A tree series transducer (over Σ and ∆) is de�ned as a six-tuple M = (Q,Σ,∆,A, D, µ), where

• Q and D ⊆ Q are non-empty, �nite sets of states and designated states, respectively,

• Σ and ∆ are the input and output ranked alphabet, respectively; both disjoint to Q;

• A = (A,⊕,�,0,1) is a semiring, and

• µ is a tree representation over Q, Σ, ∆, and A.

The tree series transducerM inherits the properties bottom-up, top-down, and polynomial from its
tree representation, i.e., M is called bottom-up (top-down, polynomial), if the tree representation
µ is bottom-up (top-down, polynomial). In case of a bottom-up (top-down) tree series transducer,
the set D of designated states is also called set of �nal states (initial states). �

For the rest of the paper we only consider polynomial tree series transducers which are bottom-
up or top-down. For an investigation of general tree series transducers, we refer the reader to
[EFV02, FV03]. In order to have a concise notation, we drop the variables from the second
index component in the tree representation of a bottom-up tree representation, e.g., we write
µk(σ)q,(q1,...,qk) instead of µk(σ)q,(q1(x1),...,qk(xk)), if µ is a bottom-up tree representation.

3.3 De�nition (Subclasses of bottom-up tree series transducers)
Let M = (Q,Σ,∆,A, F, µ) be a bottom-up tree series transducer. We say that the bottom-up tree
series transducer M is
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• deterministic, if for every k ∈ N, input symbol σ ∈ Σ(k), and k states q1, . . . , qk ∈ Q there
exists at most one state q ∈ Q such that µk(σ)q,(q1,...,qk) 6= 0̃, and for such a state q ∈ Q the
cardinality of the set supp(µk(σ)q,(q1,...,qk)) is at most one,

• total, if F = Q and for every k ∈ N, input symbol σ ∈ Σ(k), and k states q1, . . . , qk ∈ Q there
exists at least one state q ∈ Q such that µk(σ)q,(q1,...,qk) 6= 0̃,

• and a homomorphism, if it is total and deterministic with a singleton set Q. �

Similarly these concepts (of determinism, totality, and homomorphism) can be de�ned for top-
down tree series transducers.

3.4 De�nition (Subclasses of top-down tree series transducers)
Let M = (Q,Σ,∆,A, I, µ) be a top-down tree series transducer. We say that the top-down tree
series transducer M is

• deterministic, if the set I of initial states is a singleton, for every k ∈ N, input symbol
σ ∈ Σ(k), and state q ∈ Q there exists at most one word w ∈ Q(Xk)∗ such that µk(σ)q,w 6= 0̃,
and for such a word w ∈ Q(Xk)∗ the cardinality of the set supp(µk(σ)q,w) is at most one,

• total, if for every k ∈ N, input symbol σ ∈ Σ(k), and state q ∈ Q there exists at least one
word w ∈ Q(Xk)∗ such that µk(σ)q,w 6= 0̃,

• and a homomorphism, if it is total and deterministic with a singleton set Q. �

Note that a deterministic tree series transducer is necessarily polynomial. Finally, we should
assign a formal semantics to polynomial tree series transducers. In fact, we de�ne two di�erent
semantics; namely, we de�ne the tree-to-tree-series transformation and the o-tree-to-tree-series
transformation computed by a polynomial tree series transducer. Both are de�ned in the very
same manner; the only di�erence is the type of substitution used.

3.5 De�nition (Semantics of polynomial tree series transducers)
LetM = (Q,Σ,∆,A, D, µ) be a polynomial tree series transducer over semiringA = (A,⊕,�,0,1).

(i) For every modi�er mod ∈ {ε, o}, integer k ∈ N, and input symbol σ ∈ Σ(k) the tree repre-
sentation µ induces a mapping

µk(σ)
mod

:
(
A〈〈T∆〉〉Q

)k −→ A〈〈T∆〉〉Q

de�ned componentwise for every state q ∈ Q and k vectors R1, . . . , Rk ∈ A〈〈T∆〉〉Q by

µk(σ)
mod

(R1, . . . , Rk)q =
∑

w∈Q(Xk)∗,
w=(q1(xi1 ),...,ql(xil

))

µk(σ)q,w
mod←−

(
(Ri1)q1 , . . . , (Ril)ql

)
.

Note that (
A〈〈T∆〉〉Q,

(
µk(σ)

mod
∣∣∣ k ∈ N, σ ∈ Σ(k)

))
de�nes a Σ-algebra, and TΣ is the free Σ-algebra. Thus there exists a unique homomorphism
hmod
µ : TΣ −→ A〈〈T∆〉〉Q, which is de�ned for every k ∈ N, input symbol σ ∈ Σ(k), and k

trees s1, . . . , sk ∈ TΣ by

hmod
µ (σ(s1, . . . , sk)) = µk(σ)

mod
(hmod
µ (s1), . . . , hmod

µ (sk)).

(ii) The mod-tree-to-tree-series transformation, abbreviated mod-t-ts transformation, computed
by the polynomial tree series transducer M is the mapping τmod

M : TΣ −→ A〈〈T∆〉〉 speci�ed
for every input tree s ∈ TΣ by τmod

M (s) =
∑
q∈D h

mod
µ (s)q. �
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3.6 Example (Height bottom-up tree series transducer)
The bottom-up tree series transducerM = ({∗},Σ,∆,A, {∗}, µ) over the arctic semiring with input
ranked alphabet Σ = {σ(2), α(0)}, output ranked alphabet ∆ = {α(0)}, and tree representation µ
de�ned by

µ2(σ)∗,(∗,∗) = max(1 x1 , 1 x2) and µ0(α)∗,ε = 1 α

is total and polynomial, but not deterministic and, consequently, no homomorphism. For every
input tree s ∈ TΣ the o-t-ts transformation computed by M is τoM (s) = height(s) α. To illustrate
the previous de�nition, we prove this property by structural induction over the input tree s ∈ TΣ.

Induction base: Let the input tree be s = α. Then

τoM (α)
Def. 3.5(ii)

=
∑
q∈{∗}

hoµ(α)q = hoµ(α)∗
Def. 3.5(i)

= (µ0(α)
o
())∗

Def. 3.5(i)
= µ0(α)∗,ε

o←− ()
Prop. 2.5(i)

= µ0(α)∗,ε = 1 α = height(α) α.

Induction step: Let the input tree be s = σ(s1, s2) for some input trees s1, s2 ∈ TΣ. Note that
a0 = 0 in the arctic semiring. Further, recall that Equation (2) refers to the de�ning equation of
o-substitution found in Subsection 2.4. We compute

τoM (σ(s1, s2))
Def. 3.5(ii)

=
∑
q∈{∗}

hoµ(σ(s1, s2))q = hoµ(σ(s1, s2))∗

Def. 3.5(i)
= (µ2(σ)

o
(hoµ(s1), h

o
µ(s2)))∗

Def. 3.5(i)
=

∑
(q1,q2)∈{∗}2

µ2(σ)∗,(q1,q2)
o←− (hoµ(s1)q1 , h

o
µ(s2)q2)

= µ2(σ)∗,(∗,∗)
o←− (hoµ(s1)∗, h

o
µ(s2)∗)

= (max(1 x1, 1 x2))
o←− (

∑
q∈{∗}

hoµ(s1)q,
∑
q∈{∗}

hoµ(s2)q)

Def. 3.5(ii)
= (max(1 x1, 1 x2))

o←− (τoM (s1), τoM (s2))
I.H.= (max(1 x1, 1 x2))

o←− (height(s1) α , height(s2) α)
Eq. (2)

= max(1 + height(s1)1 + height(s2)0, 1 + height(s1)0 + height(s2)1) α
= max(1 + height(s1), 1 + height(s2)) α
= (1 + max(height(s1),height(s2))) α = height(σ(s1, s2)) α.

Note that the facts supp(max(1x1, 1x2)) = {x1, x2} and supp(τoM (s1)) = supp(τoM (s2)) = {α} are
used in the line, where Equation (2) was applied. �

In the sequel we will be interested in a comparison of the computational power of subclasses
of bottom-up and top-down tree series transducers. More precisely, to every class of restricted
bottom-up or top-down tree series transducers, where the restriction is characterized by some of
the properties of De�nition 3.3 and De�nition 3.4, we associate the class of all mod-t-ts trans-
formations computed by such tree series transducers. Then we compare such classes of mod-t-ts
transformations by means of set inclusion. The next de�nition establishes shorthands for such
classes of mod-t-ts transformations also taking the two di�erent notions of substitution into ac-
count.

3.7 De�nition (Classes of mod-t-ts transformations)
Let A = (A,⊕,�,0,1) be a semiring and mod ∈ {ε, o}. The class of all mappings

( τ : TΣ −→ A〈〈T∆〉〉 |Σ,∆ ranked alphabets )
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of mod-t-ts transformations computed by polynomial bottom-up tree series transducers over the
semiring A is denoted by p�BOTmod(A). Moreover, the class d�BOTmod(A) (t�BOTmod(A),
dt�BOTmod(A), h�BOTmod(A)) is de�ned to be the class of all mod-t-ts transformations computed
by deterministic (total, deterministic and total, homomorphism) bottom-up tree series transducers
over A.

Likewise, we use the classes p�TOPmod(A), d�TOPmod(A), t�TOPmod(A), dt�TOPmod(A),
and h�TOPmod(A) to stand for the corresponding classes of mod-t-ts transformations computed
by top-down tree series transducers over A. �

3.8 Theorem (Lemma 5.1 and Theorem 5.2 of [FV03])
(i) Let M = (Q,Σ,∆,A, I, µ) be a polynomial top-down tree series transducer. Then for every

input tree s ∈ TΣ and state q ∈ Q we have hµ(s)q = hoµ(s)q.

(ii) For every x ∈ {p,d, t,dt,h} the equality x�TOP(A) = x�TOPo(A) holds. �

Next we recall a property of deterministic tree series transducers which are bottom-up or top-
down. Roughly speaking, the addition of the underlying semiring is completely irrelevant concern-
ing computations of a deterministic tree series transducer, i.e., all computations are performed in
the multiplicative monoid of the semiring A. Formally speaking, the proposition shows that the
conditions imposed on the tree representation µ of a deterministic tree series transducer can be
lifted to the level of the homomorphic extension hmod

µ for any modi�er mod ∈ {ε, o}.

3.9 Proposition (Proposition 3.12 of [EFV02])
Let M = (Q,Σ,∆,A, D, µ) be a deterministic (bottom-up or top-down) tree series transducer and
mod ∈ {ε, o}. Then for every input tree s ∈ TΣ there exists at most one state q ∈ Q such that
hmod
µ (s)q 6= 0̃, and if hmod

µ (s)q 6= 0̃, then it is a monomial. Hence τmod
M (s) is either 0̃ or a monomial.

Proof. The proof of the statement concerning mod = ε can be found in Proposition 3.12 of
[EFV02], and the proof of the statement with mod = o uses exactly the same argumentation. �

Before we proceed with the next section, we explicitly exclude certain non-interesting tree series
transducers. We will call a tree series transducerM = (Q,Σ,∆,A, D, µ) non-trivial, if Σ(0) 6= ∅ and
there exist an integer k ∈ N, an input symbol σ ∈ Σ(k), and a state q ∈ Q such that µk(σ)q,ε 6= 0̃.
Hence, in particular, for bottom-up tree series transducers, non-triviality implies that there exists
a nullary input symbol α ∈ Σ(0) satisfying the condition above. Moreover, the above de�nition
implies ∆(0) 6= ∅ for every non-trivial tree series transducer M . Let M be a trivial tree series
transducer. Then the tree series τmod

M (s) is the constant zero tree series, i.e., τmod
M (s) = 0̃, for

every input tree s ∈ TΣ and modi�er mod ∈ {ε, o}. Since this particular case is not interesting,
we will assume that all tree series transducers, which are considered in the rest of the paper, are
non-trivial.

4 Coe�cient majorization

Throughout the rest of the paper A = (A,⊕,�,0,1,�) will be a partially ordered semiring with
property (MO⊕). Thus, for example, the semiringsN∞, A, T, B, Rmin,max, and LS for an alphabet
S are suitable semirings, whereas Z4 is excluded. Moreover, M = (Q,Σ,∆,A, D, µ) will always
be a non-trivial polynomial tree series transducer over the semiring A, which is bottom-up in
Subsection 4.2 and top-down in Subsection 4.3. Finally, let mod ∈ {ε, o}.

4.1 The general approach

In this section we will approximate the cost of an output tree which is in the support of a tree series
in the range of the mod-t-ts transformation computed by M . More precisely, we derive mappings,
called coe�cient majorizations, f : N+ −→ A such that for every n ∈ N+ the approximation
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f(n) ∈ ↑Cmod
M (n) holds, where the set Cmod

M (n) ⊆ A of coe�cients generated by M on input trees
of height n is de�ned to be

Cmod
M (n) =

{
(hmod
µ (s)q, t)

∣∣ q ∈ Q, s ∈ TΣ,height(s) = n, t ∈ supp(hmod
µ (s)q)

}
.

This gives rise to a property of polynomial tree series transducers. We will exploit this property in
the sequel to reprove some recent results and also provide some insight into the relation between
the two di�erent modes of traversing the input tree, i.e., bottom-up and top-down, and the two
types of substitution, i.e., pure and o-substitution, established in the previous section.

We start by de�ning some constants associated with the polynomial tree series transducer M .
Later on they will provide the abstraction from a concrete tree series transducer used in our
majorizations.

4.1 De�nition (Constants associated with a polynomial tree series transducer)
We de�ne the following constants representing basic facts of M = (Q,Σ,∆,A, D, µ):

• the maximal rank rM ∈ N of M is de�ned by rM = mxΣ,

• the number dM ∈ N+ of follow-up states (or: successor states), is de�ned by

dM =


1 , if M is deterministic

card(Q) , if M is bottom-up and not deterministic

card(Q) · rM , otherwise

,

• the maximal support cardinality eM ∈ N is de�ned by

eM = max
{

card(supp(µk(σ)q,w))
∣∣∣ k ∈ N, σ ∈ Σ(k), q ∈ Q,w ∈ Q(Xk)∗

}
,

• the maximal variable degree uM,mod ∈ N is de�ned by

uM,mod =

rM , if mod = ε

max k∈N,σ∈Σ(k),q∈Q,
w∈Q(Xk)∗,t∈supp(µk(σ)q,w)

∑
x∈X|w|

|t|x , if mod = o ,

• and the maximal length vM ∈ N of the second index in any matrix in the range of µk is
de�ned by

vM = max
{
|w|

∣∣∣ k ∈ N, σ ∈ Σ(k), q ∈ Q,w ∈ Q(Xk)∗, µk(σ)q,w 6= 0̃
}
.

�

Let us discuss those constants in some more detail. The constant rM represents the maximal
number of direct subtrees of any tree. Of course, this number coincides with the maximal rank of
the input symbols. Next we consider a state q ∈ Q and a word w ∈ Q(Xk)∗ such that µk(σ)q,w 6= 0̃.
The constant dM represents the number of possible combinations for a single symbol of the word
w. For a deterministic tree series transducer dM is apparently 1 by Proposition 3.9. Given that M
is bottom-up, we have only card(Q) choices for the state, because the variable of Xk is uniquely
determined by the position in the word w. Finally, for polynomial top-down tree series transducers
we have card(Q) · k choices, which is bound from above by card(Q) · rM .

The intention of the constant eM is obvious. Since M is polynomial, the constant eM is well-
de�ned. Lastly, the constants uM,mod and vM ful�l a similar purpose. They both limit the
number of factors representing subtree weights in any multiplication occurring due to Equation (1)
or Equation (2). The bottom-up case is handled by the constant uM,mod, where according to
Equation (1) at most rM such factors occur and according to Equation (2) there are at most as
many such factors as there are variables in the tree selected out of the tree representation. In the
top-down case there is no di�erence between pure substitution and o-substitution. Thus, there are
at most as many factors as the length of the longest word w ∈ Q(Xk)∗ with µk(σ)q,w 6= 0̃.

Note that uM,mod and vM are well-de�ned; for the former we need that the tree series transducer
M is polynomial. Additionally, vM = rM , if M is bottom-up, and vM = uM,o, if M is top-down.

15



4.2 De�nition (Upper bound of the coe�cients of µ)
An element c ∈ A with 1 � c is called an upper bound of the coe�cients of µ, if

c ∈ ↑
(
{1} ∪

{
(µk(σ)q,w, t)

∣∣∣ k ∈ N, σ ∈ Σ(k), q ∈ Q,w ∈ Q(Xk)∗, t ∈ supp(µk(σ)q,w)
})

.
�

Note that such a c ∈ A need not exist in general. However, the existence of such a c can be
assured, for example, by demanding that the carrier set of the semiring is directed. In the following,
we will often assume an upper bound c of the coe�cients of µ, and apparently, to obtain the best
results, c should be chosen as small as possible; hence c should be the supremum of the coe�cients
occurring in µ, if it exists.

Next we introduce particular mappings, namely cardinality majorizations, sum majorizations,
and coe�cient majorizations. The �rst of which, i.e., cardinality majorizations, given a positive
integer n ∈ N+ are supposed to limit the cardinality of the support of the tree series hmod

µ (s)q for
every state q ∈ Q and input tree s ∈ TΣ of height n. We will see later that thereby it also limits
the cardinality of the support of the tree series τmod

M (s).
The second type of majorizations shall provide an upper bound of the n-fold sum of a semiring

element a ∈ A. This mapping represents internal knowledge of the operations of the concrete
semiring and is provided externally. Using the semiring of non-negative integers N∞, this mapping
might, for example, be g(n, a) = n · a for every positive integer n ∈ N+ and semiring element
a ∈ N ∪ {+∞}. Moreover, this mapping also allows to omit unnecessary details, for the mapping
is only required to approximate the sum; it need not return the precise sum.

The �nal type, i.e., the coe�cient majorizations, given n ∈ N+ are supposed to limit all non-zero
coe�cients generated by M on input trees of height n, i.e., a coe�cient majorization f must ful�l
f(n) ∈ ↑Cmod

M (n).

4.3 De�nition (Several majorizations)
• Any mapping l : N+ −→ N+ satisfying for every n ∈ N+, input tree s ∈ TΣ of height n,
and state q ∈ Q the condition card(supp(hmod

µ (s)q)) ≤ l(n) is called cardinality majorization
(with respect to M).

• Any mapping g : N+ ×A −→ A such that for every n ∈ N+ and semiring element a ∈ A we
have

∑
i∈[n] a � g(n, a) is called sum majorization (with respect to A).

• Any mapping f : N+ −→ A satisfying for every n ∈ N+, input tree s ∈ TΣ of height n,
state q ∈ Q, and output tree t ∈ supp(hmod

µ (s)q) the property (hmod
µ (s)q, t) � f(n) is called

coe�cient majorization (with respect to M).
Finally, a mapping f : N+ −→ A is said to be a coe�cient majorization for a class of mod-t-ts

transformations T = ( τi : TΣ −→ A〈〈T∆〉〉 | i ∈ I ), if for every τi ∈ T, input tree s ∈ TΣ of height
n ∈ N+, and output tree t ∈ supp(τi(s)) the condition (τi(s), t) � f(n) holds. �

The careful reader might have noticed that we used the term majorization rather informally.
At this stage we will show that the de�ned notions really are majorizations in the strict sense, but
will continue to use the more liberal version frequently in the following. Roughly speaking, we call
a mapping majorization, if it limits another mapping or family of mappings from above �using less
information�.

We start by exhibiting the family of mappings for which a cardinality majorization l is a ma-
jorization. Let BM,s,q,mod : N+ −→ N+ be the mapping de�ned for every input tree s ∈ TΣ, state
q ∈ Q, and integer n ∈ N+ by the following case analysis.

BM,s,q,mod(n) =

{
card(supp(hmod

µ (s)q)) , if n = height(s)
1 , otherwise

.

Now it is easily seen that l is a cardinality majorization, if and only if l is a majorization for the
mappings BM,s,q,mod. Sum majorizations are apparently majorizations, and, �nally, a coe�cient
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majorization f is a majorization for the following family of mappings. Let CM,s,q,t,mod : N+ −→ A
be a mapping de�ned for every input tree s ∈ TΣ, state q ∈ Q, output tree t ∈ T∆, and integer
n ∈ N+ by the following case analysis.

CM,s,q,t,mod(n) =

{
(hmod
µ (s)q, t) , if n = height(s), t ∈ supp(hmod

µ (s)q)
f(n) , otherwise

.

Lastly, we call a sum majorization order-preserving, if it is order-preserving with respect to the
point-wise order on N+ ×A, which is de�ned for every two integers n1, n2 ∈ N+ and two semiring
elements a1, a2 ∈ A by (n1, a1) � (n2, a2), if and only if n1 ≤ n2 and a1 � a2. We continue
by providing an example for each of the above de�ned majorizations using our running example
bottom-up tree series transducer of Example 3.6. We highlight that every majorization of the
example is order-preserving; a property which will be required often in the sequel.

4.4 Example (Continuing Example 3.6)
Let M be the (non-trivial) polynomial bottom-up tree series transducer of Example 3.6 and let
mod = o. Recall that the arctic semiring A (over which M is de�ned) ful�ls the general conditions
of this section.

• The mapping l : N+ −→ N+ de�ned by l(n) = 1 for every positive integer n ∈ N+ is a
cardinality majorization by card(T∆) = 1. Moreover, l trivially preserves the natural order
on N+, i.e., a ≤ b for positive integers a, b ∈ N+ implies l(a) ≤ l(b).

• The mapping g : N+ × (N ∪ {−∞}) −→ N ∪ {−∞} de�ned by g(n, a) = a for every n ∈ N+

and semiring element a ∈ N∪ {−∞} is a sum majorization due to the additive idempotency
of A. Note that g is also order-preserving.

• The mapping f : N+ −→ N ∪ {−∞} de�ned by f(n) = n is a coe�cient majorization, which
is easily derived from Example 3.6. �

Now we discuss the general approach used to derive a �rst coe�cient majorization. Let s ∈ TΣ

be an input tree. Using an order-preserving cardinality majorization l and an order-preserving
sum majorization g, we can introduce the ample coe�cient majorization associated with l, g, and
c. The di�erent modi�ers, i.e., mod = ε or mod = o, are taken care of by the maximal variable
degree uM,mod (cf. De�nition 4.1) in case M is bottom-up, while the mod-t-ts transformations
computed by top-down tree series transducers using on the one hand mod = ε and on the other
hand mod = o do not di�er, i.e., τM = τoM (cf. Lemma 5.1 of [FV03]).

Roughly speaking, if the input tree s has height 1, then every support element of hmod
µ (s)q has

cost at most c, where c is an upper bound of the coe�cients of µ (cf. De�nition 4.2). Given an
input tree s of height n + 1, we �rst compute an upper bound of all subtrees of height at most
n. Since those weights are multiplied in Equation (1) and Equation (2), we take the result of
the recursive call to the uM,mod-th power, if M is bottom-up, and to the vM -th power, if M is
top-down. Recall that uM,mod and vM are de�ned such that they hold the maximal number of
multiplications in any product generated by a substitution. The �nal factor is provided by the tree
representation, and thus c again provides a suitable upper bound of this factor.

Finally, by substitution, equal trees might arise such that the costs of those are going to be
summed up. The cardinality majorization l with the help of the sum majorization g is going to
provide an upper bound of this sum as we will see in Theorem 4.7 and Theorem 4.15.

In the subsections to follow we distinguish the two modes of traversing the input tree, namely
bottom-up and top-down. In particular, in the top-down subsection we will casually refer to the
bottom-up subsection, because the derived majorizations generally have the same structure such
that properties only depending on the structure neatly carry over to the top-down case.
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4.2 The bottom-up case

Recall that in this subsection M is always a (non-trivial) polynomial bottom-up tree series trans-
ducer. Moreover, let l be an order-preserving cardinality majorization and g be an order-preserving
sum majorization. Lastly, let c be an upper bound of the coe�cients of µ (cf. De�nition 4.2). Ac-
cording to the outline just presented, we obtain the following coe�cient majorization.

4.5 De�nition (Ample coe�cient majorization)
For every n ∈ N+ we recursively de�ne the ample coe�cient majorization fbotM,mod,g,l,c : N+ −→ A
associated with l, g, and c to be

fbotM,mod,g,l,c(n) =

{
c , if n = 1
g((dM )rM · eM · l(n− 1)rM , c� fbotM,mod,g,l,c(n− 1)uM,mod) , if n > 1

.
�

Thus the ample coe�cient majorization depends on a cardinality majorization l and a sum
majorization g, both of which are order-preserving, the modi�er mod, the upper bound c, and the
polynomial bottom-up tree series transducer M (or more speci�cally: a few characteristics of M).
Next we prove that the ample coe�cient majorization associated with l, g, and c is order-preserving
with respect to the total order on N+ and the partial order on the semiring.

4.6 Lemma (The ample coe�cient majorization is order-preserving)
The ample coe�cient majorization fbotM,mod,g,l,c associated with l, g, and c is order-preserving, and
for every n ∈ N+ the condition 1 � fbotM,mod,g,l,c(n) holds.

Proof. We �rst analyze two di�erent cases.

Case (i): Let uM,mod = 0, then fbotM,mod,g,l,c(n)uM,mod = 1. For every n ∈ N+ we get

fbotM,mod,g,l,c(n) =

{
c , if n = 1
g((dM )rM · eM · l(n− 1)rM , c) , if n > 1

,

which shows that fbotM,mod,g,l,c is order-preserving in this case, because l and g are order-preserving.
Moreover, 1 � fbotM,mod,g,l,c(n) due to the facts 1 � c and a �

∑
i∈[k] a � g(k, a) for every k ∈ N+

and a ∈ A by Observation 2.2(ii).

Case (ii): Let uM,mod 6= 0. First we prove that 1 � fbotM,mod,g,l,c(n) for every n ∈ N+ using induc-
tion on the integer n.

Induction base: Let n = 1. Then fbotM,mod,g,l,c(n) = c and thus 1 � fbotM,mod,g,l,c(n) by De�ni-
tion 4.2.

Induction step: Let n > 1. By induction hypothesis 1 � fbotM,mod,g,l,c(n − 1) and, due to
Observation 2.2(iii), also 1 � fbotM,mod,g,l,c(n − 1)uM,mod . Since 1 � c, we can also conclude
fbotM,mod,g,l,c(n−1)uM,mod � c�fbotM,mod,g,l,c(n−1)uM,mod , due to property (OP�). Finally, ((dM )rM ·
eM · l(n− 1)rM ) ∈ N+ and, consequently, by Observation 2.2(ii)

1 � fbotM,mod,g,l,c(n− 1)uM,mod � c� fbotM,mod,g,l,c(n− 1)uM,mod

�
∑

i∈[(dM )rM ·eM ·l(n−1)rM ]

c� fbotM,mod,g,l,c(n− 1)uM,mod

� g((dM )rM · eM · l(n− 1)rM , c� fbotM,mod,g,l,c(n− 1)uM,mod) = fbotM,mod,g,l,c(n),

which proves the statement.

Next we prove order-preservation. Assume an arbitrary n ∈ N+. By Observation 2.2(iii) the
property fbotM,mod,g,l,c(n) � fbotM,mod,g,l,c(n)uM,mod holds due to 1 � fbotM,mod,g,l,c(n). Using the argu-
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mentation found in the previous induction step we obtain

fbotM,mod,g,l,c(n) � fbotM,mod,g,l,c(n)uM,mod � c� fbotM,mod,g,l,c(n)uM,mod

�
∑

i∈[(dM )rM ·eM ·l(n)rM ]

c� fbotM,mod,g,l,c(n)uM,mod

� g((dM )rM · eM · l(n)rM , c� fbotM,mod,g,l,c(n)uM,mod) = fbotM,mod,g,l,c(n+ 1),

which completes the proof. �

Finally, we can now provide the property that every ample coe�cient majorization associated
with an order-preserving cardinality majorization l, an order-preserving sum majorization g, and
an upper bound c of the coe�cients of µ really provides a coe�cient majorization.

4.7 Theorem (Coe�cient majorization)
The ample coe�cient majorization fbotM,mod,g,l,c is indeed a coe�cient majorization, i.e., for every
integer n ∈ N+, state q ∈ Q, input tree s ∈ TΣ of height n, and output tree t ∈ supp(hmod

µ (s)q) we
have

(hmod
µ (s)q, t) � fbotM,mod,g,l,c(n)

and thus fbotM,mod,g,l,c(n) ∈ ↑CM (n). Moreover, (τmod
M (s), t′′) � g(card(Q), fbotM,mod,g,l,c(n)) for every

t′′ ∈ supp(τmod
M (s)).

Proof. Recall the constants rM , dM , eM , and uM,mod of De�nition 4.1. We now prove the �rst
statement by structural induction over the input tree s ∈ TΣ.

Induction base: Let α ∈ Σ(0) be an input symbol and s = α be the input tree of height 1. Since
t ∈ supp(hmod

µ (α)q), we have

(hmod
µ (α)q, t)

Def. 3.5(i)
= (µ0(α)q,ε, t) � c = fbotM,mod,g,l,c(1).

Induction step: Let k ∈ N+ be an integer, σ ∈ Σ(k) be an input symbol, s1, . . . , sk ∈ TΣ be trees,
and s = σ(s1, . . . , sk) be the input tree of height n. Note that throughout the proof we will use
the statements of Observation 2.2 without explicit reference.

(hmod
µ (σ(s1, . . . , sk))q, t)

Def. 3.5(i)
=

 ∑
(q1,...,qk)∈Qk

µk(σ)q,(q1,...,qk)
mod←− (hmod

µ (s1)q1 , . . . , h
mod
µ (sk)qk

), t


Eq. (1), (2)

=
∑

w=(q1,...,qk)∈Qk,
t=t′[t1,...,tk], t′∈supp(µk(σ)q,w),

(∀i∈[k]): ti∈supp(hmod
µ (si)qi

)

(µk(σ)q,w, t′)�
∏
i∈[k]

(hmod
µ (si)qi , ti)

mi

where for every index i ∈ [k] : mi =

{
|t′|xi , if mod = o

1 , if mod = ε

I.H. & Lem. 4.6
�

∑
w=(q1,...,qk)∈Qk,

t=t′[t1,...,tk], t′∈supp(µk(σ)q,w),

(∀i∈[k]): ti∈supp(hmod
µ (si)qi

)

c�
∏
i∈[k]

fbotM,mod,g,l,c(height(si))mi

Lem. 4.6
�

∑
w=(q1,...,qk)∈Qk,

t=t′[t1,...,tk], t′∈supp(µk(σ)q,w),

(∀i∈[k]): ti∈supp(hmod
µ (si)qi

)

c� fbotM,mod,g,l,c(n− 1)m1+···+mk
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P
i∈[k]mi≤uM,mod

�
∑

w=(q1,...,qk)∈Qk,
t=t′[t1,...,tk], t′∈supp(µk(σ)q,w),

(∀i∈[k]): ti∈supp(hmod
µ (si)qi

)

c� fbotM,mod,g,l,c(n− 1)uM,mod

†
�

∑
w=(q1,...,qk)∈Qk,
t′∈supp(µk(σ)q,w),

(∀i∈[k]): ti∈supp(hmod
µ (si)qi

)

c� fbotM,mod,g,l,c(n− 1)uM,mod

�
∑

j∈[(dM )k·eM ·
Q

i∈[k] l(height(si))]

c� fbotmod,M,g,l,c(n− 1)uM,mod

l order-pres.
�

∑
j∈[(dM )k·eM ·l(n−1)k]

c� fbotM,mod,g,l,c(n− 1)uM,mod

�
∑

j∈[(dM )rM ·eM ·l(n−1)rM ]

c� fbotM,mod,g,l,c(n− 1)uM,mod

� g((dM )rM · eM · l(n− 1)rM , c� fbotM,mod,g,l,c(n− 1)uM,mod)

= fbotM,mod,g,l,c(n).

The step at † is governed by t ∈ supp(hmod
µ (s)q), which implies that there exists at least one

non-zero summand of the sum. This concludes the proof of the �rst statement which easily allows
us to derive the latter property.

(τmod
M (s), t′′)

Def. 3.5(ii)
=

∑
q∈D

(hmod
µ (s)q, t′′) =

∑
q∈{ p∈D | t′′∈supp(hmod

µ (s)p) }
(hmod
µ (s)q, t′′)

Obs. 2.2(i)

�
∑

q∈{ p∈D | t′′∈supp(hmod
µ (s)p) }

fbotM,mod,g,l,c(n)
Obs. 2.2(ii)

�
∑
q∈Q

fbotM,mod,g,l,c(n)

� g(card(Q), fbotM,mod,g,l,c(n))

The step labeled Obs. 2.2(ii) is possible, because
{
p ∈ D

∣∣ t′′ ∈ supp(hmod
µ (s)p)

}
6= ∅. Hence, we

have proved the latter statement. �

Continuing with the running example, we derive the ample coe�cient majorization associated
with the cardinality majorization and sum majorization given in Example 4.4 and c = 1 for the
polynomial bottom-up tree series transducer M presented in Example 3.6 with mod = o.

4.8 Example (Continuing Example 3.6)
LetM = ({∗},Σ,∆,A, {∗}, µ) be the polynomial bottom-up tree series transducer of Example 3.6.
First we recall that the arctic semiring is partially ordered by ≤ and ful�ls property (MO⊕); thus
the ample coe�cient majorization according to De�nition 4.5 is de�ned.

The constants of De�nition 4.1 can be instantiated to

rM = 2, dM = 1, eM = 2, uM,o = 1,

and we let l be the order-preserving cardinality majorization and g be the order-preserving sum
majorization both presented in Example 4.4, i.e., for every n ∈ N+ and semiring element a ∈
N ∪ {−∞} we have l(n) = 1 and g(n, a) = a. Finally, we let c = 1, which is an upper bound of
the coe�cients of µ according to De�nition 4.2. Hence, we obtain the following ample coe�cient

20



majorization fbotM,o,g,l,1 associated with l, g, and 1. For every integer n ∈ N+

fbotM,o,g,l,1(n) =

{
1 , if n = 1
g(12 · 2 · l(n− 1)2, 1 + fbotM,o,g,l,1(n− 1)1) , if n > 1

=

{
1 , if n = 1
1 + fbotM,o,g,l,1(n− 1) , if n > 1

= n.

Theorem 4.7 applied to this example yields that for every integer n ∈ N+, input tree s ∈ TΣ

of height n, and output tree t ∈ supp(hoµ(s)∗) the majorization (hoµ(s)∗, t) ≤ n holds, which is
consistent with the fact (τoM (s), α) = height(s) proved in Example 3.6. Note, furthermore, that
fbotM,o,g,l,1 coincides with the coe�cient majorization presented in Example 4.4. �

Up to now, we have derived a mapping fbotM,mod,g,l,c which limits the costs generated by M

on an output subtree. By de�nition, fbotM,o,g,l,c depends on two more mappings, i.e., an order-
preserving cardinality majorization l : N+ −→ N+ and an order-preserving sum majorization
g : N+ ×A −→ A. The sum majorization g is highly semiring speci�c and needs to be provided
from outside, i.e., it cannot be deduced from properties of M . Later we will see, how restrictions
on the semiring allow an easy de�nition of this mapping. The cardinality majorization l, which is
required to be order-preserving in De�nition 4.5, limits the support cardinality of the tree series
computed. This mapping was also supplied from outside, but now we will directly associate to M
an easy cardinality majorization lbotM , which can be used instead of the cardinality majorization l
coming from outside. Next we show how to achieve this.

Given a polynomial bottom-up tree series transducer M = (Q,Σ,∆,A, F, µ), a modi�er mod ∈
{ε, o}, and an integer n ∈ N+, we will limit the cardinality of the support of the tree series hmod

µ (s)q
for every input tree s ∈ TΣ of height n and state q ∈ Q. The idea is to pessimistically assume that
given an integer k ∈ N, pairs of di�erent trees (t, t′) ∈ T∆(Xk)2, and (t1, t′1), . . . , (tk, t

′
k) ∈

(
T∆

)2
,

the trees t[t1, . . . , tk] and t′[t′1, . . . , t
′
k] are di�erent. This is � of course � not true in general, but it

is appropriate for our cardinality majorization, because the number of di�erent trees in the support
might only be overestimated.

4.9 De�nition (Ample cardinality majorization)
The ample cardinality majorization associated with M is the mapping lbotM : N+ −→ N+ de�ned for
every n ∈ N+ by

lbotM (n) = (dM )
P

i∈[1,n−1] r
i
M · (eM )

P
i∈[0,n−1] r

i
M =

{
eM , if n = 1
(dM )rM · eM · lbotM (n− 1)rM , if n > 1

.
�

Recall that for the de�nition of the ample coe�cient majorization associated with lbotM , some
order-preserving sum majorization g, and c in De�nition 4.5, lbotM is required to be order-preserving.
We show this fact in the following observation.

4.10 Observation (The ample cardinality majorization is order-preserving)
The ample cardinality majorization lbotM de�ned in De�nition 4.9 is order-preserving.

Proof. We need to show that the mapping lbotM : N+ −→ N+ given by

lbotM (n) = d
(
P

i∈[1,n−1] r
i
M )

M e
(
P

i∈[0,n−1] r
i
M )

M

is order-preserving. This, however, is immediate by dM 6= 0 and eM 6= 0. �
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4.11 Lemma (Ample cardinality majorization)
The ample cardinality majorization associated with M is a cardinality majorization, i.e., for every
integer n ∈ N+, state q ∈ Q, and input tree s ∈ TΣ of height n the statement

card(supp(hmod
µ (s)q)) ≤ lbotM (n)

holds.

Proof. We prove the statement by structural induction over the input tree s ∈ TΣ.

Induction base: Let α ∈ Σ(0) be an input symbol, and let s = α be the input tree of height 1.
Then

card(supp(hmod
µ (α)q))

Def. 3.5(i)
= card(supp(µ0(α)q,ε)) ≤ eM = lbotM (1).

Induction step: Let k ∈ N+ be an integer, σ ∈ Σ(k) be an input symbol, s1, . . . , sk ∈ TΣ be input
subtrees, and s = σ(s1, . . . , sk) be the input tree of height n.

card(supp(hmod
µ (σ(s1, . . . , sk))q))

Def. 3.5(i)
= card

(
supp

( ∑
w=(q1,...,qk)∈Qk

µk(σ)q,w
mod←− (hmod

µ (s1)q1 , . . . , h
mod
µ (sk)qk

)
))

Eq. (1), (2)
= card

(
supp

( ∑
w=(q1,...,qk)∈Qk,
t′∈supp(µk(σ)q,w),

(∀i∈[k]): ti∈supp(hmod
µ (si)qi

)

(
(µk(σ)q,w, t′)�

∏
i∈[k]

(hmod
µ (si)qi , ti)

mi
)
t′[t1, . . . , tk]

))

where for every index i ∈ [k] : mi =

{
|t′|xi , if mod = o

1 , if mod = ε

I.H. & Prop. 3.9
≤ (dM )k · eM · lbotM (height(s1)) · . . . · lbotM (height(sk))

Obs. 4.10
≤ (dM )k · eM · lbotM (n− 1)k

≤ (dM )rM · eM · lbotM (n− 1)rM

= lbotM (n) �

Finally, we use the ample cardinality majorization lbotM as particular parameter in the ample co-
e�cient majorization and obtain the following coe�cient majorization fbotM,mod,g,c = fbot

M,mod,g,lbotM ,c
,

which now only depends on the constants, an order-preserving sum majorization, and c.

4.12 Corollary (fbot
M,mod,g,lbotM ,c

is a coe�cient majorization)

The ample coe�cient majorization fbotM,mod,g,c : N+ −→ A associated with g and c de�ned for every
integer n ∈ N+ by

fbotM,mod,g,c(n) =

{
c , if n = 1
g(lbotM (n), c� fbotM,mod,g,c(n− 1)uM,mod) , if n > 1

is a coe�cient majorization, i.e., for every integer n ∈ N+, state q ∈ Q, input tree s ∈ TΣ of height
n, and output tree t ∈ supp(hmod

µ (s)q) we have

(hmod
µ (s)q, t) � fbotM,mod,g,c(n)

and thus fbotM,mod,g,c(n) ∈ ↑CM (n). Moreover, (τmod
M (s), t′′) � g(card(Q), fbotM,mod,g,c(n)) for every

t′′ ∈ supp(τmod
M (s)).

Proof. We just supply the ample cardinality majorization lbotM associated with M as the order-
preserving cardinality majorization to the ample coe�cient majorization de�ned in De�nition 4.5.
By Theorem 4.7 we obtain the stated. �
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4.3 The top-down case

In this subsection we consider polynomial top-down tree series transducers and derive similar ma-
jorizations for them. Thus, M always denotes a (non-trivial) polynomial top-down tree series
transducer in this subsection. Moreover, we again let l be an order-preserving cardinality ma-
jorization, g be an order-preserving sum majorization, and c be an upper bound of the coe�cients
of µ.

4.13 De�nition (Ample coe�cient majorization)
For every n ∈ N+ we de�ne the ample coe�cient majorization f topM,g,l,c : N+ −→ A associated with
l, g, and c to be

f topM,g,l,c(n) =

{
c , if n = 1
g((dM )1+vM · eM · l(n− 1)vM , c� f topM,g,l,c(n− 1)vM ) , if n > 1

�

Note the structural similarity of f topM,g,l,c and the ample coe�cient majorization associated with

l, g, and c of a polynomial bottom-up tree series transducer. Also note that f topM,g,l,c does not
depend on mod.

4.14 Lemma (Ample coe�cient majorization is order-preserving)
The ample coe�cient majorization f topM,g,l,c associated with l, g, and c is order-preserving and for

every n ∈ N+ the condition 1 � f topM,g,l,c(n) holds.

Proof. The proof is analogous to the one of the bottom-up case found in Lemma 4.6 making a
case analysis for vM rather than uM,mod. �

Even the main theorem stating that the ample coe�cient majorization is a coe�cient majoriza-
tion and its proof can be translated in a straightforward manner to the top-down case. The general
approach remains the same, though there are some notational changes, so we resupply the proof.
Due to Theorem 3.8(i) we can drop the modi�er mod ∈ {ε, o}.

4.15 Theorem (Coe�cient majorization)
The ample coe�cient majorization f topM,g,l,c is a coe�cient majorization, i.e., for every integer
n ∈ N+, state q ∈ Q, input tree s ∈ TΣ of height n, and output tree t ∈ supp(hµ(s)q) we have

(hµ(s)q, t) � f topM,g,l,c(n)

and thus f topM,g,l,c(n) ∈ ↑CM (n). Moreover, (τM (s), t′′) � g(card(Q), f topM,g,l,c(n)) for every t′′ ∈
supp(τM (s)).

Proof. The proof of the latter statement is identical to the proof of the corresponding statement
of Theorem 4.7. Thus, we continue with the former statement. Recall the constants dM , eM , and
vM of De�nition 4.1. We prove the statement by structural induction over the input tree s ∈ TΣ.

Induction base: Let α ∈ Σ(0) be an input symbol and s = α be the input tree of height 1. Since
t ∈ supp(hµ(α)q),

(hµ(α)q, t)
Def. 3.5(i)

= (µ0(α)q,ε, t) � c = f topM,g,l,c(1).

Induction step: Let k ∈ N+ be an integer, σ ∈ Σ(k) be an input symbol, s1, . . . , sk ∈ TΣ be trees,
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and s = σ(s1, . . . , sk) be the input tree of height n.

(hµ(σ(s1, . . . , sk))q, t)

Def. 3.5(i)
=

 ∑
k′∈N,w=(q1(xi1 ),...,qk′ (xi

k′
))∈(Q(Xk))k′

µk(σ)q,w ←− (hµ(si1)q1 , . . . , hµ(sik′ )qk′ ), t


Eq. (1)

=
∑

k′∈N,w=(q1(xi1 ),...,qk′ (xi
k′

))∈(Q(Xk))k′ ,

t=t′[t1,...,tk′ ],t
′∈supp(µk(σ)q,w),

(∀j∈[k′]): tj∈supp(hµ(sij
)qj

)

(µk(σ)q,w, t′)�
∏
j∈[k′]

(hµ(sij )qj , tj)

I.H. & Lem. 4.14
�

∑
k′∈N,w=(q1(xi1 ),...,qk′ (xi

k′
))∈(Q(Xk))k′ ,

t=t′[t1,...,tk′ ],t
′∈supp(µk(σ)q,w),

(∀j∈[k′]): tj∈supp(hµ(sij
)qj

)

c�
∏
j∈[k′]

f topM,g,l,c(height(sij ))

Lem. 4.14
�

∑
k′∈N,w=(q1(xi1 ),...,qk′ (xi

k′
))∈(Q(Xk))k′ ,

t=t′[t1,...,tk′ ],t
′∈supp(µk(σ)q,w),

(∀j∈[k′]): tj∈supp(hµ(sij
)qj

)

c� f topM,g,l,c(n− 1)k
′

k′≤vM

�
∑

k′∈N,w=(q1(xi1 ),...,qk′ (xi
k′

))∈(Q(Xk))k′ ,

t=t′[t1,...,tk′ ],t
′∈supp(µk(σ)q,w)

(∀j∈[k′]): tj∈supp(hµ(sij
)qj

)

c� f topM,g,l,c(n− 1)vM

†
�

∑
k′∈N,w=(q1(xi1 ),...,qk′ (xi

k′
))∈(Q(Xk))k′ ,

t′∈supp(µk(σ)q,w),(∀j∈[k′]): tj∈supp(hµ(sij
)qj

)

c� f topM,g,l,c(n− 1)vM

�
∑

j′∈
h“P

j∈[0,vM ](dM )j
”
·eM ·

Q
j∈[vM ] l(height(sij

))
i c� f topM,g,l,c(n− 1)vM

�
∑

j′∈[(dM )1+vM ·eM ·l(n−1)vM ]

c� f topM,g,l,c(n− 1)vM

� g((dM )1+vM · eM · l(n− 1)vM , c� f topM,g,l,c(n− 1)vM )

= f topM,g,l,c(n)

The step at † is governed by the fact t ∈ supp(hµ(s)q), because thereby there exists at least one
summand of the sum. �

Finally we also derive an ample cardinality majorization for polynomial top-down tree series
transducers.

4.16 De�nition (Ample cardinality majorization)
The ample cardinality majorization associated with M is the mapping ltopM : N+ −→ N+ de�ned for
every n ∈ N+ by

ltopM (n) =

{
eM , if n = 1
(dM )1+vM · eM · ltopM (n− 1)vM , if n > 1

.
�

4.17 Observation (The ample cardinality majorization is order-preserving)
The ample cardinality majorization ltopM de�ned in De�nition 4.16 is order-preserving. �
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4.18 Lemma (Ample cardinality majorization)
The ample cardinality majorization associated with M is a cardinality majorization, i.e., for every
integer n ∈ N+, state q ∈ Q, and input tree s ∈ TΣ of height n the statement

card(supp(hmod
µ (s)q)) ≤ ltopM (n)

holds.

Proof. The proof proceeds along the lines of the corresponding one concerning the bottom-up
case (cf. Lemma 4.11) with just minor changes, most of which were already outlined in the proof
of Theorem 4.15. Hence we leave the actual proof to the reader. �

4.19 Corollary (f top

M,g,ltopM

is a coe�cient majorization)

The ample coe�cient majorization f topM,g,c : N+ −→ A associated with g and c de�ned for every
integer n ∈ N+ by

f topM,g,c(n) =

{
c , if n = 1
g(ltopM (n), c� f topM,g,c(n− 1)vM ) , if n > 1

is a coe�cient majorization. Moreover, (τM (s), t′′) � g(card(Q), f topM,g,c(n)) for every tree t′′ ∈
supp(τM (s)).

Proof. We just supply the ample cardinality majorization ltopM associated with M as the order-
preserving cardinality majorization to the ample coe�cient majorization de�ned in De�nition 4.13.
By Theorem 4.15 we obtain the statements. �

Again note the similarity of the coe�cient majorizations f topM,g,c and f
bot
M,mod,g,c for a top-down

and a bottom-up tree series transducer. To be speci�c, only the constants uM,mod and vM exchange
their place and, moreover, we already observed that vM = uM,o, thus the majorizations even
become equal in case mod = o.

5 Incomparability results

In the �rst part of this section we will reprove two recent results from [FV03] concerning growth
properties of polynomial bottom-up tree series transducers using our coe�cient majorization ap-
proach (i.e., using Theorem 4.7). The second part then focuses on some simpli�ed coe�cient
majorization, which allows us to derive incomparability results for classes of mod-t-ts transforma-
tions computed by polynomial bottom-up as well as top-down tree series transducers.

5.1 Lemma (Lemma 5.14 of [FV03])
Let N = (Q,Σ,∆,N∞, F, ν) be a polynomial bottom-up tree series transducer with input ranked
alphabet Σ = {σ(2), α(0)}, output ranked alphabet ∆ = {α(0)}, and +∞ does not occur as coe�-
cient in any tree series of the tree representation ν. There exists a constant b ∈ N such that for
every input tree s ∈ TΣ the approximation (τoN (s), α) ≤ bheight(s) holds.

Proof. We can instantiate Theorem 4.7, because the semiring of non-negative integers N∞ is
totally ordered by ≤. Also, since every element n ∈ N ∪ {+∞} is in the positive cone (i.e.,
0 ≤ n), the semiring has property (MO⊕) by Observation 2.1. The constants of De�nition 4.1 are
instantiated as follows: rN = mxΣ = 2, eN ≤ card(T∆(X2)) = 3, and uN,o ≤ 1. Moreover, since
the set N is directed, an upper bound c ∈ N of the coe�cients of ν exists.

We choose the sum majorization g : N+ × (N ∪ {+∞}) −→ N ∪ {+∞} to be g(n, a) = n · a for
every integer n ∈ N+ and semiring element a ∈ N ∪ {+∞}. We note that g is order-preserving.
Finally, we select the cardinality majorization l : N+ −→ N+ de�ned by l(n) = 1 for every

25



integer n ∈ N+, which is trivially order-preserving and a cardinality majorization due to the fact
card(supp(hoν(s)q)) ≤ card(T∆) = 1 for every input tree s ∈ TΣ and state q ∈ Q. Hence

fbotN,o,g,l,c(n) =

{
c , if n = 1
(dN )2 · eN · c · fbotN,o,g,l,c(n− 1)uN,o , if n > 1

≤ (3 · (dN )2 · c)n−1 · c

and by setting b = 3 · card(Q) · (dN )2 · c 6= +∞, because c 6= +∞, we obtain by Theorem 4.7 and
0 ≤ n for every n ∈ N ∪ {+∞} (note that Theorem 4.7 only holds for output trees in the support
of the output tree series, hence the condition 0 ≤ n is necessary): (τoN (s), α) ≤ bheight(s). �

5.2 Lemma (Lemma 5.16 of [FV03])
Let N = (Q,Σ,∆,N∞, F, ν) be a polynomial bottom-up tree series transducer with unary input
ranked alphabet Σ and +∞ does not occur as coe�cient in any tree series of the tree representation
ν. Then there is a constant b ∈ N such that for every input tree s ∈ TΣ and output tree t ∈ T∆

the approximation (τN (s), t) ≤ bheight(s)2 holds.

Proof. Corollary 4.12 is applicable, because N∞ ful�ls the general restrictions imposed on the
semiring. Apparently, the constants of De�nition 4.1 are instantiated as follows: rN = mxΣ = 1
and uN,ε = 1. Again, since N is directed, there exists an upper bound c ∈ N of the coe�cients
of ν. Using the order-preserving sum majorization g : N+ × (N ∪ {+∞}) −→ N ∪ {+∞} de�ned
for every integer n ∈ N+ and semiring element a ∈ N ∪ {+∞} by g(n, a) = n · a and the order-
preserving ample cardinality majorization lbotN : N+ −→ N+ associated with N of De�nition 4.9,
which is an order-preserving cardinality majorization (due to Observation 4.10 and Lemma 4.11),
we obtain

fbotN,ε,g,c(n) =

{
c , if n = 1
(dN )n−1 · (eN )n · c · fbotN,ε,g,c(n− 1) , if n > 1

= (dN )
P

i∈[1,n−1] i · (eN )
P

i∈[2,n] i · cn

≤ (dN · eN · c)
(n+2)·(n+1)

2 ,

which implies the bound shown in the lemma by setting b = card(Q) · (dN · eN · cN )3 as follows.

Since 0 ≤ n for every element n ∈ N ∪ {+∞} and (dN · eN · c)
(n+2)·(n+1)

2 ≤ bheight(s)2 , we obtain
(τN (s), t) ≤ bheight(s)2 by Theorem 4.7. �

In [FV03] the following corollary is proved using essentially Lemma 5.1 and Lemma 5.2 together
with some examples required to show incomparability.

5.3 Corollary (Corollary 5.18 of [FV03])

p�BOT(N∞) on p�BOTo(N∞) �

Using the same approach one can also reprove Lemma 5.19 and Lemma 5.21 of [FV03]. Those
two lemmata are used to prove Corollary 5.23 of [FV03], which essentially states the above for the
tropical semiring.

As already pointed out, given certain additional restrictions the ample coe�cient majorization
can be simpli�ed further. For example, if the tree series transducer is deterministic, then the
addition of the semiring has no in�uence on the cost computation (cf. Proposition 3.9), because
the costs are computed solely in the multiplicative monoid. Hence we can drop any restrictions
concerning the addition and set the order-preserving sum majorization g : N+ ×A −→ A required
in De�nition 4.5 and De�nition 4.13 simply to g(n, a) = a for every integer n ∈ N+ and semiring
element a ∈ A. Likewise we can perform this simpli�cation, if the underlying semiring is additively
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idempotent (and the polynomial tree series transducer need not be deterministic). Summing up, we
arrive at the following corollary, which shows that, under these conditions a very simple mapping,
called coe�cient approximation, is a coe�cient majorization. Recall that M = (Q,Σ,∆,A, D, µ)
is a (non-trivial) polynomial tree series transducer, and c is an upper bound of the coe�cients of
µ.

5.4 De�nition (Coe�cient approximation)
For every semiring element a ∈ A and integer z ∈ N the mapping fa,z : N+ −→ A de�ned for

every integer n ∈ N+ by fa,z(n) = a
P

i∈[0,n−1] z
i

is called coe�cient approximation. �

5.5 Corollary (Coe�cient approximation)
Let mod ∈ {ε, o}. If (i) A is additively idempotent or (ii) M is deterministic, then the coe�cient
approximation fc,z : N+ −→ A, where

z =

{
uM,mod , if M is bottom-up

vM , if M is top-down

is a coe�cient majorization (with respect to M). Moreover (τmod
M (s), t) � fc,z(n) for every integer

n ∈ N+, input tree s ∈ TΣ of height n, and output tree t ∈ supp(τmod
M (s)).

Proof. To show that fc,z is a coe�cient majorization, we show that fc,z is equal to the ample
coe�cient majorization fbotM,mod,g,l,c or f topM,g,l,c (depending on whether M is bottom-up or top-
down) for a particular cardinality majorization l and a particular sum majorization g. Let us �rst
consider case (ii), i.e., M is deterministic. Here we set g(n, a) =

∑
i∈[n] a for every integer n ∈ N+

and semiring element a ∈ A. Apparently, this is an order-preserving sum majorization. Moreover,
we let l(n) = 1 for every integer n ∈ N+, which is an order-preserving cardinality majorization
due to Proposition 3.9. Finally, we note that by determinism dM = 1 and eM = 1, thus the �rst
argument of the sum majorization g will always be 1.

In case (i) we let l be an arbitrary order-preserving cardinality majorization, e.g., we could
set l = lbotM if M is bottom-up, and l = ltopM if M is top-down, and de�ne the sum majorization
g : N+ ×A −→ A by g(n, a) = a for every integer n ∈ N+ and semiring element a ∈ A. Note
that g is an order-preserving sum majorization, because the semiring is assumed to be additively
idempotent.

We continue in both cases by showing that fc,z(n) = h(n), where

h =

{
fbotM,mod,g,l,c , if M is bottom-up

f topM,g,l,c , if M is top-down
.

We prove this by induction on n as follows. Note that the induction base is handled in the �rst
case of the case analysis, while the second case constitutes the induction step.

h(n) =

{
c , if n = 1
g((dM )x · eM · l(n− 1)y, c� h(n− 1)z) , if n > 1

where x = y = rM and z = uM,mod, if M is bottom-up,

otherwise x = 1 + vM and y = z = vM

=

{
c , if n = 1
c� h(n− 1)z , if n > 1

I.H.=

{
c

P
i∈[0,1−1] z

i

, if n = 1

c�
(
c

P
i∈[0,n−2] z

i)z
, if n > 1

=

{
c

P
i∈[0,1−1] z

i

, if n = 1

c
P

i∈[0,n−1] z
i

, if n > 1

= c
P

i∈[0,n−1] z
i

= fc,z(n).
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Thus h = fc,z and by Theorem 4.7 and Theorem 4.15 it follows that fc,z is a coe�cient majorization.
It remains to show the latter statement of the corollary. In case (i) we have

(τmod
M (s), t)

Def. 3.5(ii)
=

∑
q∈D

(hmod
µ (s)q, t) �

∑
q∈D

fc,z(height(s))
†
= fc,z(height(s)),

where at † we used that A is idempotent. In case (ii) we conclude that for some state p ∈ Q

(τmod
M (s), t)

Def. 3.5(ii)
=

∑
q∈D

(hmod
µ (s)q, t)

Prop. 3.9
= (hmod

µ (s)p, t) � fc,z(height(s)).
�

Let us have a look on classes of mod-t-ts transformations. Therefore, we distinguish two cases.
Firstly, let A be additively idempotent. Then fc,z is a coe�cient majorization for the class of mod-
t-ts transformations computed by polynomial bottom-up tree series transducers N , which have
c as an upper bound of their tree representation and z = uN,mod. Moreover, fc,z is a coe�cient
majorization for the class of mod-t-ts transformations computed by polynomial top-down tree series
transducers N , which have c as an upper bound of their tree representation and z = vN . Secondly,
in case the semiring A is not additively idempotent, fc,z is a majorization for the corresponding
classes of mod-t-ts transformations computed by deterministic tree series transducers.

The following lemma provides the order-preservation of the coe�cient approximation de�ned
in De�nition 5.4 with respect to each subscript and argument. This allows us to provide upper
bounds of the subscripts and argument in order to obtain an upper bound of the cost of an output
tree.

5.6 Lemma (Coe�cient approximations are order-preserving in every argument)
Let a, a′ ∈ A be semiring elements with 1 � a′ � a and let z, z′, n, n′ ∈ N be non-negative integers
with z′ ≤ z and n′ ≤ n. Then fa′,z′(n′) � fa,z(n).

Proof. We prove

fa′,z′(n′) = (a′)
P

i∈[0,n′−1](z
′)i

� a
P

i∈[0,n−1] z
i

= fa,z(n).

By z′ ≤ z also (z′)j ≤ zj for every j ∈ N. Moreover
∑
i∈[0,n′−1](z

′)i ≤
∑
i∈[0,n−1] z

i by n′ ≤ n,
Observation 2.2(ii), and the previous argument. Finally, we apply a′ � a to obtain

(a′)
P

i∈[0,n′−1](z
′)i

� a
P

i∈[0,n′−1] z
i

� a
P

i∈[0,n−1] z
i

by Observation 2.2(iii) using 1 � a′ � a. �

Next we establish that the coe�cient approximation fa,z for deterministic tree series transducers
as well as for polynomial tree series transducers using additively idempotent semirings, i.e., in cases
where fa,z is actually a coe�cient majorization according to Corollary 5.5, is tight (considered as
a coe�cient majorization for the aforementioned classes of mod-t-ts transformations, cf. note
following Corollary 5.5). This result will be used in our main incomparability result to follow (cf.
Lemma 5.9).

5.7 Lemma (Coe�cient approximations are tight)
For every non-negative integer u ∈ N and semiring element c ∈ A with 1 � c,

(i) there exists a homomorphism bottom-up tree series transducer M over Σ = {σ(u), α(0)} and
output ranked alphabet ∆ (with ∆(0) 6= ∅) such that c is an upper bound of the coe�cients
of µ, uM,ε = u, and for every integer n ∈ N+, if there exists a Σ-tree of height n, then there
also exist an input tree s ∈ TΣ of height n and an output tree t ∈ supp(τM (s)) such that

(τM (s), t) = fc,uM,ε
(n),
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(ii) there exists a homomorphism bottom-up tree series transducer M over an input ranked
alphabet Σ (with Σ(0) 6= ∅ and, if u > 0, also

⋃
k∈N+

Σ(k) 6= ∅) and ∆ = {δ(u), α(0)} such
that c is an upper bound of the coe�cient of µ, uM,o = u, and for every integer n ∈ N+, if
there exists a Σ-tree of height n, then there also exist an input tree s ∈ TΣ of height n and
an output tree t ∈ supp(τoM (s)) such that

(τoM (s), t) = fc,uM,o
(n),

(iii) there exists a homomorphism top-down tree series transducer M over an input ranked al-
phabet Σ (with Σ(0) 6= ∅ and, if u > 0, also

⋃
k∈N+

Σ(k) 6= ∅) and ∆ = {δ(u), α(0)} such that
c is an upper bound of the coe�cients of µ, vM = u, and for every integer n ∈ N+, if there
exists any Σ-tree of height n, then there also exist an input tree s ∈ TΣ of height n and an
output tree t ∈ supp(τM (s)) such that

(τM (s), t) = fc,vM
(n).

Consequently, the coe�cient majorization fc,u is tight in the corresponding class of mod-t-ts trans-
formations.

Proof. We prove the statements individually.

(i) Let mod = ε and α ∈ ∆(0). We construct the homomorphism bottom-up tree series trans-
ducer M = ({∗},Σ,∆,A, {∗}, µ) with input ranked alphabet Σ = {σ(u), α(0)} and tree rep-
resentation µ speci�ed by

µ0(α)∗,ε = c α and µu(σ)∗,(∗,...,∗) = c α.

Note uM,ε = u. Moreover, let s ∈ TΣ be the fully balanced tree of height n ∈ N+. A
straightforward structural induction shows that (τM (s), α) = fc,uM,ε

(n) as follows. The
induction base is (τM (α), α) = c = fc,uM,ε

(1). In the induction step we have for every input
tree s = σ(s′, . . . , s′) with subtree s′ ∈ TΣ being a fully balanced tree of height n − 1 the
equality

(τM (σ(s′, . . . , s′)), α)
Def. 3.5(ii)

= (hµ(σ(s′, . . . , s′))∗, α)
Eq. (1)

= (µu(σ)∗,(∗,...,∗), α)� (hµ(s′)∗, α)� · · · � (hµ(s′)∗, α)
Def. 3.5(ii)

= (µu(σ)∗,(∗,...,∗), α)� (τM (s′), α)u

I.H.= c� fc,uM,ε
(height(s′))u

= c� fc,uM,ε
(n− 1)uM,ε

Def. 5.4= fc,uM,ε
(n).

(ii) Let mod = o and α ∈ Σ(0). We construct the homomorphism bottom-up tree series trans-
ducer M = ({∗},Σ,∆,A, {∗}, µ) with the output ranked alphabet ∆ = {δ(u), α(0)} and tree
representation µ speci�ed by

µ0(α)∗,ε = c α and, if u > 0, then µk(σ)∗,(∗,...,∗) = c δ(x1, . . . , x1),

where for some k ∈ N+ we have σ ∈ Σ(k). We note that uM,o = u. Moreover, one can easily
show that for the fully balanced trees s ∈ TΣ of height n ∈ N+ we have (τoM (s), s) = fc,uM,o

(n)
by a similar induction as in item (i).

(iii) Note that the homomorphism top-down tree series transducer required to show this statement
is almost identical to the bottom-up tree series transducer presented in item (ii). Therefore,

29



we just present the tree representation µ and assume that the remaining components are
speci�ed as in item (ii).

µ0(α)∗,ε = c α and, if u > 0, then µk(σ)∗,(∗(x1),...,∗(x1)) = c δ(x1, . . . , xu).

Again vM = u. The proof of statement (iii) is analogous to the ones for the previous items
and therefore it is omitted. �

The main theorem states the incomparability of the classes of mod-t-ts transformations com-
puted by restricted tree series transducers using on the one hand pure substitution, i.e., mod = ε,
and on the other hand o-substitution, i.e., mod = o, over the semiring A with two additional
properties.

The �rst additional property will be a particular multiplicative non-periodicity of the semiring,
namely we require that there is a semiring element a ∈ A such that a has no period and 1 � a.
Thus, we demand the existence of an element a ∈ A such that ai ≺ aj , if and only if i < j for every
two non-negative integers i, j ∈ N. Secondly, we require for every n ∈ N and the previous element
a, if an = a1 � b � a2 ⊕ d for some a1, a2 ∈ A \ {0} and some b, d ∈ A, then there also exists a
non-negative integer m ∈ N such that b � am. Roughly speaking, this property requires that any
element which might occur in a decomposition of the element an can be bounded from above by a
power of the element a. Semirings having those two properties are called weak a-growth semirings.

5.8 De�nition (Weak a-growth semirings)
Let A = (A,⊕,�,0,1,�) be a partially ordered semiring and a ∈ A be a semiring element. The
semiring A is called (multiplicative) weak a-growth semiring, if a has no period in A and for every
integer n ∈ N and every two non-zero elements a1, a2 ∈ A \ {0} and two elements b, d ∈ A such
that an = a1 � b� a2 ⊕ d, there exists an integer m ∈ N such that b � am. �

This property is trivially ful�lled, if there exists an element a ∈ A, which has no period and
1 � a, and for every a1, a2 ∈ A \ {0} the conditions a1 � a1 � a2, a2 � a1 � a2, and 0 � 1 hold.
Among the important semirings

• the semiring of the non-negative integers N∞ partially ordered by ≤ is a weak 2-growth
semiring,

• the tropical semiring T partially ordered by ≤ is a weak 1-growth semiring,

• the arctic semiring A partially ordered by ≤ is a weak 1-growth semiring,

• and the language semiring LS partially ordered by ⊆ for some alphabet S is a weak s-growth
semiring for any s ∈ S.

On the other hand, for every semiring element a the boolean semiring B and the min-max semiring
Rmin,max are no weak a-growth semirings, because they are multiplicatively periodic.

Next we are going to show that given an additively idempotent weak a-growth semiring, the
classes of mod-t-ts transformations computed by polynomial bottom-up tree series transducers
using on the one hand pure substitution (i.e., mod = ε) and on the other hand o-substitution
(i.e., mod = o) are incomparable. Moreover, we also obtain the incomparability of the class of t-ts
transformations computed by polynomial bottom-up tree series transducers and the class of t-ts
transformations computed by polynomial top-down tree series transducers.

Before stating the incomparability theorem, we want to provide a sketch of the proof of it.
Informally speaking, we show both directions by constructing a speci�c polynomial tree series
transducer N using the particular coe�cient a ∈ A, which has no period. Then the approximation
mapping can be applied to every polynomial tree series transducerM , which is supposed to compute
the same mod-t-ts transformation. By a careful choice of the input and output ranked alphabets
we limit the constants uM,mod and vM . We then proceed by showing that the stated tree series
transducer N has a higher growth rate than the polynomial tree series transducer M . Since the
element a ∈ A has no period the growth argument yields the desired contradiction.
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5.9 Lemma (Incomparability results)
Let A = (A,⊕,�,0,1,�) be a partially ordered semiring with property (MO⊕). Moreover, let A
be a weak a-growth semiring for some element a ∈ A such that 1 � a and let

x =

{
p , if A is additively idempotent

d , otherwise
.

We conclude

• h�BOT(A) 6⊆ x�BOTo(A) and h�BOTo(A) 6⊆ x�BOT(A),

• h�BOT(A) 6⊆ x�TOP(A) and h�TOP(A) 6⊆ x�BOT(A).

Proof. First we simultaneously prove h�BOT(A) 6⊆ x�BOTo(A) and h�BOT(A) 6⊆ x�TOP(A).
We consider the ranked alphabet Σ = {σ(2), α(0)} and the ranked alphabet ∆ = {α(0)}. Then, by
Lemma 5.7(i) there is a homomorphism bottom-up tree series transducer M over Σ and ∆ such
that a is an upper bound of the coe�cients of the tree representation of M , uM,ε = rM = 2, and
for every positive integer n ∈ N+ there exist an input tree s ∈ TΣ of height n and an output tree
t ∈ supp(τM (s)) such that (τM (s), t) = fa,uM,ε

(n) = a2n−1.
Now assume that there exists a polynomial tree series transducer N = (Q,Σ,∆,A, F, ν), which

is bottom-up or top-down and in case the semiring is not additively idempotent is also deterministic,
with τoN = τM . Since N is polynomial, there are only �nitely many non-zero coe�cients c1, . . . , ck ∈
A for some non-negative integer k ∈ N occurring in the tree series of the tree representation ν.
Apparently, we can assume that for every coe�cient cj with j ∈ [k] of the tree representation ν there
exist elements aj , āj ∈ A \ {0}, bj ∈ A, and mj ∈ N such that the equality amj = aj � cj � āj ⊕ bj
holds. If there is a coe�cient cj not obeying this property, then it cannot in�uence τoN , because
τoN = τM and every coe�cient appearing in a tree series in the range of τM is a power of a. Thus,
such coe�cients cj can be set to 1.

By the weak a-growth property, there is an ej ∈ N such that cj � aej . Consequently,
maxi∈[k] a

ei = amaxi∈[k] ei is greater than every coe�cient cj and, thus, it is an upper bound
of the coe�cients. Hence c′ = am with m = maxi∈[k] ei is an upper bound of the coe�cients of
ν. By Corollary 5.5 and Lemma 5.6 for every input tree s ∈ TΣ the cost for every output tree
t ∈ supp(τoN (s)) is approximated by

(τoN (s), t) � fc′,1(height(s)) = (c′)height(s) = (am)height(s),

because uN,o ≤ 1 and vN ≤ 1 due to the speci�c form of ∆. However, it is known that there is no
non-negative integer m ∈ N such that m ·n ≥ 2n−1 for every positive integer n ∈ N+. Hence there
exists a positive integer n′ ∈ N+ such that m · n′ < 2n

′ − 1. With this height n′ there also exist an

input tree s′ ∈ TΣ and an output tree t′ ∈ supp(τM (s′)) such that (τM (s′), t′) = fa,2(n′) = a2n′−1,

whereas (τoN (s′), t′) � am·n
′
and am·n

′ ≺ a2n′−1, which yields a contradiction to the assumption
τoN = τM . Consequently, τM is neither in x�BOTo(A) nor in x�TOP(A).

The remaining statements, i.e., h�BOTo(A) 6⊆ x�BOT(A) and h�TOP(A) 6⊆ x�BOT(A), are
established using the input ranked alphabet Σ = {γ(1), α(0)} and output ranked alphabet ∆ =
{σ(2), α(0)}. By Lemma 5.7(ii) there is a homomorphism bottom-up tree series transducer N such
that a is an upper bound of the coe�cients of the tree representation of N and uN,o = 2 and by
Lemma 5.7(iii) there is a homomorphism top-down tree series transducer N ′ with c being an upper
bound of the coe�cients of the tree representation of N ′ and vN ′ = 2. Moreover, for every positive
integer n ∈ N+ there exist input trees s, s′ ∈ TΣ of height n and output trees t ∈ supp(τoN (s)) and
t′ ∈ supp(τN ′(s′)) such that

(τoN (s), t) = fa,uN,o
(n) = a2n−1 and (τN ′(s′), t′) = (τoN ′(s′), t′) = fa,vN′ (n) = a2n−1.

LetM be a polynomial bottom-up tree series transducerM = (Q,Σ,∆,A, F, µ), which additionally
is restricted to be deterministic, if the semiring A is not additively idempotent, with τM = τoN . An
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argumentation, which is analogous to the one in the �rst part of the proof, shows that for every
input tree s ∈ TΣ and output tree t ∈ supp(τM (s)) the condition (τM (s), t) � (c′)height(s) holds,
where c′ = am for some non-negative integer m ∈ N. This again yields the desired contradiction,
which �nally establishes the lemma. �

Using the previous lemma, we are now ready to state the promised incomparability results in
our main theorem.

5.10 Theorem (Incomparability results)
Let A = (A,⊕,�,0,1,�) be a partially ordered semiring with property (MO⊕). Moreover, let A
be a weak a-growth semiring for some element a ∈ A such that 1 � a. For every

x, y ∈

{
{p,d, t,dt,h} , if A is additively idempotent

{d,dt,h} , otherwise

we have
x�BOT(A) on y�BOTo(A) and x�BOT(A) on y�TOP(A).

Proof. The theorem is an immediate consequence of Lemma 5.9. �

Using the previous theorem we can now derive some incomparability results for some speci�c
semirings. Consider the additively idempotent semirings introduced in the preliminaries (i.e., T,
A, B, Rmin,max, and LS). Two of them, namely the boolean semiring B and the min-max semiring
Rmin,max, are not applicable, because they are multiplicatively periodic and, thus, cannot be weak
a-growth semirings. For the remaining ones we derive the following statements.

5.11 Corollary (Instantiating Theorem 5.10)
(i) Let S be an alphabet. For every semiring A ∈ {T,A,LS} we obtain for every x, y ∈
{p,d, t,dt,h} the incomparabilities

x�BOT(A) on y�BOTo(A) and x�BOT(A) on y�TOP(A),

(ii) and for the semiring N∞ we obtain for every x, y ∈ {d,dt,h} the incomparabilities

x�BOT(N∞) on y�BOTo(N∞) and x�BOT(N∞) on y�TOP(N∞).

Proof. Both results are immediate consequences of Theorem 5.10. �

In fact, for x = y = p, the �rst part of Corollary 5.11(ii) is slightly weaker than Corollary 5.18 of
[FV03], because in the latter result classes of polynomial t-ts transformations are compared (and
not only deterministic ones). Also note that, for A = T the �rst part of Corollary 5.11(i) restates
Corollary 5.23 of [FV03].
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