
THE POWER OF EXTENDED TOP-DOWN TREE TRANSDUCERS�

ANDREAS MALETTIy , JONATHAN GRAEHLz , MARK HOPKINSx , AND KEVIN KNIGHT{

Abstract. Extended top-down tree transducers (transducteurs g�en�eralis�es descendants [Arnold,
Dauchet: Bi-transductions de forêts. ICALP'76. Edinburgh University Press. 1976]) received renewed
interest in the �eld of Natural Language Processing. Here those transducers are extensively and
systematically studied. Their main properties are identi�ed and their relation to classical top-down
tree transducers is exactly characterized. The obtained properties completely explain the Hasse
diagram of the induced classes of tree transformations. In addition, it is shown that most interesting
classes of transformations computed by extended top-down tree transducers are not closed under
composition.

Key words. tree transducer, natural language processing, hierarchy, composition closure

AMS subject classi�cations. 68Q45 (primary), 68T50 (secondary)

1. Introduction. The �elds of tree automata (see [16, 17] for surveys) and com-
putational linguistics (see [23, 20] for surveys) were once tightly integrated. For exam-
ple, top-down tree transducers were devised by Thatcher [27] and Rounds [25], the
latter of whom wanted to model the transformational grammars of natural language
proposed by Chomsky [4] in the 1960s. For the most part, the �elds subsequently
went separate ways. By the 1990s, automata researchers had invented new models
based on other concerns. Among these, we �nd:

� bottom-up tree transducers [28] and attributed tree transducers [15],
� macro tree transducers [5, 13] and modular tree transducers [14],
� tree bimorphisms [2], and various models with synchronization (e.g., [24]).

Computational linguists had returned to using simpler transducer models based on
strings. Finite state transducers [19] are straightforward to write down, and it is
easy to add probabilities to them and to train them on large quantities of linguistic
data. The designer's goal is to capture a set of linguistic pairs of strings, e.g., a set of
pairs (se; sf) where se is an English sentence and sf is its French translation. Finite
state transducers are also closed under composition, which allows designers to model
a complex translation as a cascade of several simpler translations.

However, �nite state transducers are not expressive enough for many applications
in natural language processing. Recently, computational linguists have turned back to
tree transducer models for problems such as machine translation, question answering,
and summarization. In these applications, it is important to directly manipulate the
hierarchical structure imposed on sentences of natural language, e.g., moving complete
syntactical structures or processing di�erent structures in di�erent manners. Here the
designer's goal is to capture a set of linguistic pairs of trees. For example, we want a
formalism to represent pairs (te; tf), where te is a parse tree of an English sentence
and tf is a parse tree of its French translation.

In contrast to the string case, computational linguists are faced with a wealth of
tree transducer formalisms to choose from. Expressiveness is a critical concern: e.g., is

�Corresponding author. Andreas Maletti. Universitat Rovira i Virgili, Departament de Filologies
Rom�aniques, Av. Catalunya 35, 43002 Tarragona, Spain. E-mail: andreas.maletti@urv.cat

yInternational Computer Science Institute, Berkeley, USA. This author was supported by a fel-
lowship within the Postdoc-Programme of the German Academic Exchange Service (DAAD).

zInformation Sciences Institute, University of Southern California, USA. E-mail: graehl@isi.edu
xUniversit�at Potsdam, Germany. E-mail: mark.andrew.hopkins@gmail.com
{Information Sciences Institute, University of Southern California, USA. E-mail: knight@isi.edu

1

2 A. Maletti, J. Graehl, M. Hopkins, K. Knight

S

Here SINV

am I

) S

I VP

am here

Fig. 1.1. Example of a local rotation.

the model powerful enough to capture what is observed in empirical translation data?
Other concerns include representational succinctness and computational complexity.

Shieber [26] and others have argued that top-down tree transducers [27, 25]
are generally inadequate for linguistic tasks because they cannot straightforwardly
model local rotation, i.e., the reordering of tree components at di�ering tree depths.
An example of such a rotation is shown in Fig. 1.1. Top-down tree transducers are
frowned upon because they must copy and delete to model such tree transformations,
and general copying causes many operations to become intractable or impossible.

To address these drawbacks, a generalization of top-down tree transducers, called
extended top-down tree transducers, was originally conceived by [25] and has been
further pursued by [6, 1, 18, 21]. The extended transducer does not su�er from the
representational inadequacies outlined above, and thus has emerged as a promising
candidate for use in linguistic tasks. Rules in an extended transducer have left-hand
sides with multiple symbols (not counting variables like x1; x2; : : :). For example, to
model Fig. 1.1, we write an extended transducer rule like this:

q(S(x1; SINV(x2; x3)))! S(q(x3);VP(q(x2); q(x1))) :

We contrast this with a top-down tree transducer (which has exactly one symbol on
the left-hand sides), where we must employ copying and deleting:

q(S(x1; x2))! S(r(x2);VP(s(x2); q(x1)))

r(SINV(x1; x2))! q(x2)

s(SINV(x1; x2))! q(x1) :

Rules in an extended transducer may also have no symbol on the left-hand side, e.g.:
q(x1)! S(r(x1)).

This paper provides a �rst thorough analysis of extended top-down tree transduc-
ers. The goal is an exact characterization of the power of extended tree transducers
in terms of the power of top-down tree transducers. To this end, we identify three
key properties that we label (X1) �nite look-ahead, (X2) deep attachment of variables,
and (X3) in�nitely many outputs for one input. Actually, �nite look-ahead is a weak
form of the bottom-up property: checking followed by deletion [9]. Deep attachment
of variables will allow us to specify local rotations easily. Finally, the last property
makes it possible to have nondeterministic choice independent of input symbols.

It is known that linear (i.e., non-copying) top-down tree transducers do not have
these features. They can only be simulated at the expense of either (a) adding them
explicitly (e.g., top-down tree transducers with regular look-ahead [10]) or (b) drop-
ping the linearity condition. We demonstrate under which circumstances these for-
mal properties make extended transducers more expressive than their non-extended
counterparts. In fact, we exactly characterize the inclusion relations between various
classes of transformations computed by extended top-down tree transducers (Fig. 4.5),

Extended Top-down Tree Transducers 3

thereby proving that the three mentioned properties are indeed the distinguishing fea-
tures of extended top-down tree transducers.

Two simple classes of transformations, namely attenings and shu�es, which
are essential in the applications in Natural Language Processing, are formally in-
troduced. These simple classes of transformations are among those computable by
extended top-down tree transducers that do not employ copying or deleting (\linear
and nondeleting"). It is shown that no class of transformations computable by linear
extended top-down-tree transducers is closed under composition if it contains at least
one of the two simple classes of transformations, and all transformations computed by
linear and nondeleting top-down tree transducers. For attenings this was essentially
shown by Arnold and Dauchet [1, 2]. Unfortunately, this negative result implies
that most interesting classes of transformations computed by extended top-down tree
transducers are not closed under composition.

The paper is structured as follows. Section 2 recalls basic notions and the notion
of extended top-down tree transducers with regular look-ahead. In Sect. 3, we present
an example of an extended top-down tree transducer and highlight the short-comings
of top-down tree transducers. We proceed in Sect. 4 with a detailed study of the
expressive power of extended tree transducers. In this section, we derive the properties
(X1), (X2), and (X3). Section 5 is devoted to the closure under composition. We end
the paper with Conclusions in Sect. 6.

2. Preliminaries.

2.1. Sets, relations, and trees. We denote the set of nonnegative integers
by N. For every n 2 N, the subset f1; 2; : : : ; ng is denoted by [n]. We �x the
set X = fx1; x2; : : : g of (formal) variables and let Xn = fxi j i 2 [n]g for ev-
ery n 2 N. Now, let A, B, and C be sets. A relation from A to B is a subset
of A � B. Let R � A � B and R0 � B � C. The inverse relation of R, denoted
by R�1, is f(b; a) j (a; b) 2 Rg and the composition of R and R0, denoted by R ;R0, is
f(a; c) j 9b 2 B : (a; b) 2 R; (b; c) 2 R0g. These notions extend to classes of relations
in the standard manner. A relation on A is a subset of A � A. For every L � A we
denote by idL the relation f(a; a) j a 2 Lg. The reexive and transitive closure of a
relation R � A�A is denoted by R�. Finally, by P(A) we denote the power set (i.e.,
the set of all subsets) of A.

An alphabet is a nonempty and �nite set, of which the elements are called symbols.
The set of all �nite sequences (words) over a set � is denoted by �� where " denotes
the empty sequence (the empty word). We denote concatenation of words u and w
by u:w or simply by the juxtaposition uw. The length of w is denoted by jwj.

Let � be an alphabet and rk: � ! N. Then (�; rk) is a ranked alphabet, and a
symbol � 2 � has rank rk(�). In the sequel, we simply write � instead of (�; rk),
whenever the mapping rk is clear from the context or arbitrary. Moreover, we denote
the set f� 2 � j rk(�) = kg by �k for every k 2 N. Whenever we want to make the
rank of a symbol � 2 � explicit, we write �(k) where k = rk(�). Thus, � = f�(2); �(0)g
de�nes a ranked alphabet with a binary (i.e., rank 2) symbol � and a nullary (i.e.,
rank 0) symbol �.

Let � be a ranked alphabet and V a set. The set of �-trees indexed by V , denoted
by T�(V), is the smallest set T such that (i) V � T and (ii) for every � 2 �k and
t1; : : : ; tk 2 T also �(t1; : : : ; tk) 2 T . We generally assume that � \ V = ; and thus
write �() simply as � for every � 2 �0. Given 2 �1, we abbreviate ((� � � (t) � � �))
with n symbols on top of t 2 T�(V) simply by

n(t). Finally, we write T� for T�(;).

4 A. Maletti, J. Graehl, M. Hopkins, K. Knight

The set of positions of t 2 T�(V), denoted by pos(t) � N�, is inductively de�ned
by pos(v) = f"g for every v 2 V and

pos(�(t1; : : : ; tk)) = f"g [fi:w j i 2 [k]; w 2 pos(ti)g

for every � 2 �k and t1; : : : ; tk 2 T�(V). Let t; t
0 2 T�(V) and w 2 pos(t). The label

of t at position w is denoted by labt(w), and the subtree of t that is rooted at w is
denoted by subt(w). These notions can be de�ned inductively by labv(") = v and
subv(") = v for every v 2 V and

lab�(t1;:::;tk)(w) =

(
� if w = "

labti(w
0) if w = i:w0 for some i 2 [k]

sub�(t1;:::;tk)(w) =

(
�(t1; : : : ; tk) if w = "

subti(w
0) if w = i:w0 for some i 2 [k]

for every � 2 �k and t1; : : : ; tk 2 T�(V). For every Z � � [V we write posZ(t)
for fw 2 pos(t) j labt(w) 2 Zg. If Z = fzg, then we simply write posz(t) instead
of posZ(t). We say that z 2 Z occurs card(posz(t)) times in t. Finally, t[t0]w denotes
the tree that is obtained from t by replacing the subtree subt(w) at w by t0.

The height of t, which is denoted by ht(t), is maxfjwj+1 j w 2 pos(t)g. By var(t)
we denote the set fv 2 V j posv(t) 6= ;g, and every v 2 var(t) occurs in t. The tree t is
V -linear (respectively, V -nondeleting), if every v 2 V occurs at most (respectively, at
least) once in t. For every V -linear t 2 T�(V) and v 2 var(t), we identify the unique
element of posv(t) with posv(t).

Next we recall substitution of trees. Let � : V ! T�(V). Then t� is inductively
de�ned for every v 2 V by v� = �(v) and for every � 2 �k and t1; : : : ; tk 2 T�(V)
by �(t1; : : : ; tk)� = �(t1�; : : : ; tk�). Occasionally, we also write t[v �(v) j v 2 V]
for t� to avoid the explicit de�nition of �. In the special case that V = Xn for some
n 2 N, we also write t[�(x1); : : : ; �(xn)] for t�. Finally, let us recall OI-substitution
of sets of trees. Now, let � : V ! P(T�(V)). Then v� = �(v) for every v 2 V
and �(t1; : : : ; tk)� = f�(u1; : : : ; uk) j u1 2 t1�; : : : ; uk 2 tk�g for every � 2 �k and
t1; : : : ; tk 2 T�(V). For L � T�(V) we de�ne L� =

S
t2L t�. In the special case that

V = Xn for some n 2 N, we also write t[�(x1); : : : ; �(xn)] and L[�(x1); : : : ; �(xn)] for
t� and L�, respectively.

Next, we introduce two essential concepts. Two trees s; t 2 T�(X) match (or: are
uni�able) if labs(w) = labt(w) for every w 2 pos�(s)\pos�(t). For example, �(x1; x1)
matches �(�; �) with � 2 �2 and �; � 2 �0 even though � 6= �. Now, suppose
that s and t match, and let W � posX(s) \ pos(t) be a set of common positions
that are labeled by a variable in s. Then the W -combination of s and t, denoted
by s ./W t, is de�ned by s ./W t = (� � � ((s[subt(w1)]w1

)[subt(w2)]w2
) � � �)[subt(wn)]wn

where W = fw1; : : : ; wng. Thus,

�(x1; x1) ./f1g �(�; �) = �(�; x1) and �(x1; x1) ./f1;2g �(�; �) = �(�; �) :

Note that ht(s ./W t) � max(ht(s); ht(t)). If W = posX(s) \ pos(t), then we simply
write ./ instead of ./W and call s ./ t, which in that case is equal to t ./ s (up to a
renaming of variables), a (least) uni�er of s and t.

2.2. Tree languages and tree transformations. Any subset of T�(V) is a
tree language. Next we identify two important classes of tree languages. A tree

Extended Top-down Tree Transducers 5

Table 2.1

Classes of tree transformations.

Class of transformations XTOPR XTOPF XTOP TOPR TOPF TOP
computed by xttR xttF xtt tdttR tdttF tdtt

language L � T� has �nite depth if there exists a �nite set T � T�(X1) such that
L = T [T�]. For example, T� has �nite depth because T� = fx1g[T�].

The recognizable tree languages are de�ned via a class of automata. A (determin-
istic) bottom-up tree automaton [16] (dta, for short) is a tuple M = (Q;�; F; �) such
that Q is an alphabet of states, � is a ranked alphabet of input symbols, F � Q is a set
of �nal states, and � = (��)�2� is a family of transition mappings with �� : Q

k ! Q

for every � 2 �k. We extend � to a mapping b� : T� ! Q as follows:

b�(�(t1; : : : ; tk)) = ��(b�(t1); : : : ; b�(tk))
for every � 2 �k and t1; : : : ; tk 2 T�. For every q 2 Q we denote ft 2 T� j b�(t) = qg
by L(M)q. The tree language accepted by M is L(M) =

S
q2F L(M)q. A tree lan-

guage L is recognizable (or: regular) if there exists a dta M such that L = L(M).
We note that every �nite depth tree language is recognizable because every �nite tree
language is recognizable, T� is recognizable, and the recognizable tree languages are
closed under OI-substitution [16, Theorem II.4.6].

Next, we recall the central concept of an extended top-down tree transducer [6, 1,
18, 21] (we follow the de�nitions of [22]). We immediately add regular look-ahead [10]
to the device in order to present a model that generalizes all required transducing
devices. Let Q be a �nite set, � and � be ranked alphabets, and T � T�(X).
By Q(T) we denote the set fq(t) j q 2 Q; t 2 Tg. The variable x 2 X occurs
in u 2 T�(Q(T)) if there exist q 2 Q and t 2 T such that (i) x occurs in t and (ii) q(t)
occurs in u. An extended top-down tree transducer with regular look-ahead (xttR, for
short) is a tuple M = (Q;�;�; I; R; c) where

(i) Q is an alphabet of states,
(ii) � and � are ranked alphabets of input and output symbols,
(iii) I � Q is a set of initial states,
(iv) R is a �nite set of rules of the form q(t) ! u with q 2 Q and t 2 T�(X)

X-linear and u 2 T�(Q(X)) such that every x 2 X that occurs in u also occurs in t,
and

(v) c : R ! P(T�) is a look-ahead restriction such that c(r) is recognizable for
every r 2 R.
In the sequel, we often simply write (q(t) ! u) 2 R and understand that q 2 Q,
t 2 T�(X), and u 2 T�(Q(X)). For every r = (q(t)! u) 2 R we denote by del(r) the
set of positions w 2 posX(t) such that labt(w) does not occur in u. Since every rule
(q(t)! u) 2 R has an X-linear left-hand side t, for every x 2 var(t) we occasionally
identify posx(t) with its unique element.

The semantics of xttR is given by rewriting [10]. For the sake of simplicity, let
us assume that Q is disjoint with both � and �. Now, let �; � 2 T�(Q(T�)) and
r = (q(t)! u) 2 R. We say that � rewrites to � using r, denoted by �)r

M �, if there
exist a position w 2 pos(�) and a substitution � : var(t)! T� such that

(i) sub�(w) = q(t�),
(ii) t� 2 c(r), and
(iii) � = �[u0]w where u0 = u[q(x) q(x�) j q 2 Q; x 2 var(t)].

6 A. Maletti, J. Graehl, M. Hopkins, K. Knight

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

N

door

)� S

CONJ

wa-
[and]

S0

V

ra'aa
[saw]

NP

N

ate
[the boy]

NP

N

albab
[the door]

Fig. 3.1. English-to-Arabic translation on syntax trees.

Condition (ii) is called the look-ahead check. Let)M be
S
r2R)

r
M . The tree trans-

formation computed by M is �M = f(t; u) 2 T��T� j 9q 2 I : q(t))
�
M ug. Two xttR

M and M 0 are equivalent if �M = �M 0 . The class of tree transformations computed
by xttR is denoted by XTOPR. We defer examples of xttR to the next section.

Let M = (Q;�;�; I; R; c) be an xttR. We say that M has �nite look-ahead
if c(r) has �nite depth for every r 2 R, and we say that M has no look-ahead if
c(r) = T� for every r 2 R. We use xttF as an abbreviation for xttR with �nite
look-ahead and xtt as an abbreviation for xttR with no look-ahead. For xtt we
drop the look-ahead restriction c and just write (Q;�;�; I; R). Moreover, M is a
top-down tree transducer [27, 25] (for short: tdtt) if all rules r 2 R have the form
r = (q(�(x1; : : : ; xk)) ! u) for some q 2 Q, � 2 �k, and u 2 T�(Q(X)). We use the
abbreviations tdttR, tdttF, and tdtt with the obvious meaning.

Since we deal with �nite state devices here, we generally assume that the look-
ahead restriction of each xttR is given by dta (respectively, �nite subsets of T�(X1))
for regular (respectively, �nite) look-ahead. We use the denotations listed in Table 2.1
for classes of transformations.

Next we de�ne some more properties of xttR. The xttR M is linear (respectively,
nondeleting) if for every rule (q(t) ! u) 2 R and x 2 var(t) there exist at most
(respectively, at least) one q 2 Q and w 2 pos(u) such that labu(w) = q(x). Finally,
M is input-"-free if no rule r 2 R is of the form q(x)! u for some q 2 Q, x 2 X, and
u 2 T�(Q(X)). We use the pre�xes \l", \n", and \e" to restrict the introduced classes
of transformations to those computed by linear, nondeleting, and input-"-free devices,
respectively. Combinations of pre�xes are also allowed with the obvious e�ect. Thus,
ln-TOP denotes the class of all transformations computed by linear and nondeleting
tdtt.

Finally, we introduce two types of tree transformations. A tree transforma-
tion � : T� ! T� is a attening (respectively, a shu�e) if there exists a linear and non-
deleting input-"-free xttM = (Q;�;�; I; R) such that �M = � and card(pos�(u)) = 1
[respectively, card(pos(t)) = card(pos(u))] for every rule (q(t) ! u) 2 R. We denote
the classes of all attenings and shu�es by FLAT and SHUF, respectively.

3. A complete example. Figure 3.1 shows a tree transformation from the
realm of English-to-Arabic translation. We desire a collection of rules that allow us to
transform the English input tree into the Arabic output tree, in a top-down fashion.

Extended Top-down Tree Transducers 7

One such rule set R is:

q(x1)! qS(x1) (r1)

q(x1)! S(CONJ(wa-); qS(x1)) (r2)

qS(S(x1;VP(x2; x3)))! S0(qV(x2); qNP(x1); qNP(x3)) (r3)

qV(V(saw))! V(ra'aa) (r4)

qNP(NP(DT(the);N(boy)))! NP(N(ate)) (r5)

qNP(NP(DT(the);N(door)))! NP(N(albab)) (r6)

These six rules make up part of a linear and nondeleting xtt M = (Q;�;�; I; R) with
� Q = fq; qS; qV; qNPg,

� � = fS(2);NP(2);VP(2);DT(1);N(1);V(1); the(0); boy(0); saw (0); door (0)g,

� � = fS(2); S0
(2)
;CONJ(1);V(1);N(1);NP(1);wa-(0); ra'aa(0); ate (0); albab(0)g,

and
� I = fqg.

When applied in proper sequence, they are su�cient to execute the desired transfor-
mation:

q(S(NP(DT(the);N(boy));VP(V(saw);NP(DT(the);N(door)))))

)r2
M S(CONJ(wa-); qS(S(NP(DT(the);N(boy));VP(V(saw);

NP(DT(the);N(door))))))

)r3
M S(CONJ(wa-); S0(qV(V(saw)); qNP(NP(DT(the);N(boy)));

qNP(NP(DT(the);N(door)))))

)r4
M S(CONJ(wa-); S0(V(ra'aa); qNP(NP(DT(the);N(boy)));

qNP(NP(DT(the);N(door)))))

)r5
M S(CONJ(wa-); S0(V(ra'aa);NP(N(ate)); qNP(NP(DT(the);N(door)))))

)r6
M S(CONJ(wa-);S0(V(ra'aa);NP(N(ate));NP(N(albab))))

Since q 2 I, the pair of trees displayed in Fig. 3.1 is in the tree transformation �M
computed by M .

There are several linguistic facts to account for here. First, there is the word-order
inversion from English (subject-verb-object) to Arabic (verb-subject-object), which
happens regardless of the sizes of the input subject, verb, and object subtrees. This
general inversion is captured in rule r3. Such a local rotation is hard to capture with
top-down tree transducers, requiring copying and deleting. Rule r3 accomplishes the
task through the deep attachment of variables in its left-hand side.

Second is the insertion of Arabic \wa-" (meaning \and"). Sentences in Arabic
often begin with this particle, which does not appear in English. Rules r1 and r2
model the decision a translator faces, to either insert \wa-" or not. Input-epsilon
rules (i.e., rules that have no input symbol on their left-hand side such as r1 and r2)
are very convenient here, and while it may be possible to place a bound on the output
and eliminate the input-epsilon rules, this would come at the cost of creating a more
complex transducer. Moreover, a probabilistic version of this transducer requires that
probabilities for r1 and r2 sum to one, and this would have to be maintained during
epsilon removal.

Third is the translation of the two-word phrase \the boy" into one word \ate".
This is problematic for nondeleting top-down transducers. A rule with (English) left-
hand side qNP(NP(x1; x2)) can only create the monadic (Arabic) output NP(N(: : :))

8 A. Maletti, J. Graehl, M. Hopkins, K. Knight

q

�

x1 �

� x2

!

q

x2

�

x1 �

x1 2

�

./ �

�

x1

= �

�

�

x1 2

�

Fig. 4.1. Example rule r, look-ahead obligation s, look-ahead restriction tr, and uni�er (see
Theorem 4.1).

at the expense of deletion. Moreso, �nite look-ahead is needed to properly restrict the
application of such a rule.

Of course, full-scale language translation involves many more complexities, but as
we can see, this example already raises some theoretical issues related to the current
paper.

4. Expressive Power. In this section, we explore the expressive power of ex-
tended top-down tree transducers. We provide a complete characterization of the
inclusion relations (see Fig. 4.5) of the introduced classes of transformations. In
particular, we relate xttR and its restricted variants to the well-known tdttR and its
restricted variants. Except for Theorem 4.1 we only consider the nondeletion property
in conjunction with the linearity property. In total, we investigate 18 classes of trans-
formations computed by xttR and 9 classes of transformations computed by tdttR.

In order to present concise results, we establish one more notation. We write in-
equalities (or equalities) with some of the pre�xes in brackets (e.g., see Theorem 4.1).
Such inequalities shall represent several inequalities in the following way. For each
pre�x � in brackets, we either opt to take the pre�x and then consistently replace [�]
by � throughout or to omit it and remove [�]. Let us note that the consistent re-
placement is important, i.e., we either take all occurrences of the same pre�x or omit
all of them. For example, ln-XTOP = ln-XTOPF is an instance of the statement of
Theorem 4.1 whereas ln-XTOP = l-XTOPF is not.

Our �rst result concerns �nite look-ahead. Namely, we show that the expressive
power of xtt and xttF coincides. In essence, this shows that the non-shallow left-hand
sides enable xtt to perform �nite look-ahead. We call this intrinsic property of xtt: xtt
have �nite look-ahead. Now let us discuss how to prove the statement. The key idea
is to store the \still-to-be-checked" look-ahead, called look-ahead obligation, into the
state. The initial states have no look-ahead obligation, so their look-ahead obligation
should be x1, which matches every tree. Now suppose that we are in a state q with
look-ahead obligation s. Further suppose we want to execute a rule r 2 R with look-
ahead restriction tr 2 T�(X1). If s and tr do not match, then the rule r cannot be
applied now. Otherwise, we �rst combine the look-ahead obligation s with the look-
ahead restriction tr. In fact, s ./ tr represents the combined look-ahead. Then we
match the combined look-ahead with the left-hand side of the rule. If the match does
not succeed, then the rule cannot be applied. The principal idea now is to reduce
the combined look-ahead by the part matched to the left-hand side and distribute
the rest as look-ahead obligation to the states in the right-hand side of the rule. The
only problem are deletions because then we cannot delegate the look-ahead obligation.
Thus, we extend the left-hand side, so that such look-ahead obligations are always
met.

Extended Top-down Tree Transducers 9

hq; si

�

�

�

� x2

!

hq; 2(�)i

x2

Fig. 4.2. Resulting rule (see Theorem 4.1).

Let us illustrate the above approach on a quick example. Suppose that

r = q(�(x1; �(�; x2)))! (q(x2))

is a rule with look-ahead restriction tr = �((�); x1). Moreover, suppose that we
want to construct the rule with look-ahead obligation s = �(x1; �(x1;

2(�))). Then
we realize that the look-ahead obligation matches the look-ahead restriction and the
uni�er is �((�); �(x1;

2(�))); we display those trees in Fig. 4.1. Clearly, this uni�er
matches the input tree in the left-hand side of the rule. However, the variable x1
is deleted in the example rule, so we resolve the look-ahead and replace x1 by (�).
Moreover, we see that the look-ahead 2(�) needs to be forwarded as look-ahead
obligation to the call of the state q in the right-hand side. Thus, we construct the
rule hq; si(�((�); �(�; x2)))! (hq; 2(�)i(x2)), which is depicted in Fig. 4.2. Note
that we use hq; si instead of (q; s) for improved readability. In general, if the states
of an xttR are tuples, then we write ha1; : : : ; ani instead of (a1; : : : ; an) to increase
readability.

Theorem 4.1 (Extended tree transducers have �nite look-ahead).

[l] [n] [e]-XTOP = [l] [n] [e]-XTOP
F

Proof. One inclusion is trivial. For the other direction, let M = (Q;�;�; I; R; c)
be an xttF. Since M has �nite look-ahead, c(r) has �nite depth for every rule r 2 R.
Moreover, for every r 2 R let Tr � T�(X1) be a �nite set such that c(r) = Tr[T�].
Without loss of generality, suppose that Tr is a singleton for every r 2 R, i.e., there
exists a tree tr 2 T�(X1) such that Tr = ftrg. If this condition is not met, then we
can split the rule r 2 R with Tr = ft1; : : : ; tng into n copies r1; : : : ; rn. Moreover, we
assume, without loss of generality, that x1 =2 var(t) for every (q(t)! u) 2 R.

Let n = maxfht(tr) j r 2 Rg and S = fs 2 T�(X1) j ht(s) � ng. Clearly, S is
�nite. We construct the xttM 0 = (Q�S;�;�; I�fx1g; R

0) as follows. For every rule
r = (q(t) ! u) 2 R and s 2 S such that s matches tr and s0 = s ./ tr matches t, we
construct one rule (hq; si(t0)! u0) 2 R0 where t0 and u0 are constructed as follows:

(i) Let W = del(r) \ pos(s0) [see the paragraph below the de�nition of xttR in
Section 2.2 for the de�nition of del(r)] and t00 = t ./W s0. Note that x1 =2 var(t). We
obtain t0 from t00 by simply renaming each occurrence of x1 in t00 to a variable x 2 X
such that t0 is X-linear.

(ii) For every x 2 var(t) let

restrs0;t(x) =

(
subs0(w) if w 2 pos(s0) where w = posx(t)

x1 otherwise.

Then u0 = u[p(x) hp; restrs0;t(x)i(x) j p 2 Q; x 2 var(t)].

10 A. Maletti, J. Graehl, M. Hopkins, K. Knight

Note that W = ; in item (i) provided that M is nondeleting. Thus, t0 = t in this
case. Moreover, we observe that every x 2 X occurs as often in u0 as it occurs in u.
Consequently, M 0 is linear (respectively, nondeleting and input-"-free) whenever M
is so. Finally, let us sketch a proof of �M 0 = �M . It can be proved that

q(t))�
M u () hq; si(t))�

M 0 u

for every q 2 Q, input tree t 2 T�, output tree u 2 T�, and look-ahead obliga-
tion s 2 S such that s matches t. Both directions of this statement can be shown
in a straightforward fashion by induction on the length of the derivations. Then
f(t; u) j 9q 2 I : hq; x1i(t))

�
M 0 ug clearly equals f(t; u) j 9q 2 I : q(t))�

M ug and
hence �M 0 = �M .

We showed that xtt have �nite look-ahead. Consequently, the next question is
whether they also have regular look-ahead. In Lemma 4.3 we prove that xtt do not
necessarily have regular look-ahead. In essence, this allows us to conclude that �nite
look-ahead is indeed the maximal look-ahead power that xtt possess in general. We
prepare the result by a simple normalization property. Let M = (Q;�;�; I; R; c) be
an xttR. The rule r 2 R is a chain rule if r = (q(x) ! p(x)) for some p; q 2 Q and
x 2 X.

Lemma 4.2 (Elimination of chain rules). For every xttR M there exists an equiv-
alent xttR without chain rules, which is linear (respectively, nondeleting) whenever M
is so.

Proof. The proof is straightforward and omitted. It uses the fact that recognizable
tree languages are closed under intersection [16, Theorem II.4.2].

Now we prove that xtt do not necessarily have regular look-ahead. Obviously, for
every recognizable language L � T� over the input ranked alphabet and u 2 T� over
the output ranked alphabet, there is a linear tdttR M such that �M = f(t; u) j t 2 Lg.
However, we prove that for certain L and u there exists no xtt equivalent to M .
Clearly, this de�ciency is due to the lack of regular look-ahead.

Lemma 4.3 (Extended tree transducers do not have regular look-ahead).

l-TOPR 6� XTOP

Proof. Let � = f�(2); �(0)g and � = f�(0)g. Moreover, let

L = f�(t1; t2) j t1; t2 2 T�; 9(w1; w2) 2 pos�(t1)�pos�(t2) : jw1j and jw2j are eveng :

Intuitively, L contains all trees that have the symbol � at the root and both direct
subtrees have an occurrence of � at an odd level (where we suppose that the root
is on level 1). For example, t = �(�; �) is in L but �(t; t) is not. Let t0 = � and
tn+1 = �(tn; tn) for every n 2 N. Then tn 2 L i� n is odd. It is an easy exercise to
prove that L is recognizable.

Let � = f(t; �) j t 2 Lg and (f?g;�;�; f?g; frg; c) be the linear tdttR with
r = (?(�(x1; x2)) ! �) and c(r) = L. Obviously, it computes � , and consequently,
� 2 l-TOPR. It remains to prove that � =2 XTOP.

Suppose that there exists an xtt that computes � . By Lemma 4.2, there also
exists an xtt M = (Q;�;�; I; R) without chain rules that computes � . Let

n = maxfht(t) j (q(t)! u) 2 Rg

be the maximal height of a tree on the left-hand side of a rule. Since (t2n+1; �) 2 �
there must exist an initial state q 2 I such that q(t2n+1))

�
M �. Consider a derivation

Extended Top-down Tree Transducers 11

�

�

s t

u

7! �

s t u

Fig. 4.3. Example attening where s, t, and u are arbitrary trees.

q(t2n+1))
r
M �)�

M � with r 2 R and � 2 T�(Q(T�)). Let r = (q(t) ! u) for some
t 2 T�(X) and u 2 T�(Q(X)). It is immediately clear that u must be either (i) � or
(ii) p(x) for some p 2 Q and x 2 var(t). Next we distinguish those two cases.

(i) Since q(t2n+1))
r
M �, we know that t matches t2n+1. Clearly, ht(t) � n,

and consequently, t also matches t2n+2. Then q(t2n+2))
r
M � and (t2n+2; �) 2 �M ,

which yields that M does not compute � .
(ii) Clearly, posx(t) 6= " since M has no chain rules. Let posx(t) = iw for some

i 2 f1; 2g and w 2 pos(subt(i)). By t2n+1 = �(t2n; t2n) we have � = p(subt2n(w)).
With t0 = �(t2n+(i�1); t2n+(2�i)) we obtain q(t0))r

M � because t matches t0 and
subt0(iw) = subt2n(w). Consequently, q(t0))r

M �)�
M � and (t0; �) 2 �M , which

yields that M does not compute � .
We showed that both cases are contradictory, which proves that � =2 XTOP.
However, all nondeleting devices have regular look-ahead. This is well known for

tdtt and can similarly be shown for input-"-free xtt and xtt. For the result on tdtt
we reconsider [10, Theorem 2.8] in the nondeleting case and then [9, Theorem 2.9].
The proof for xtt is left as an exercise.

Theorem 4.4 (Nondeleting transducers have regular look-ahead).

ln-TOP = ln-TOPR and ln [e]-XTOP = ln [e]-XTOP
R

To complete the picture concerning look-ahead, let us show that tdtt become
stronger when adding �nite look-ahead. It is known that tdttR are more powerful
than tdtt [10, Corollary 2.3]. The power of tdttF is clearly between tdtt and tdttR.
The next lemma shows that TOP is strictly included in TOPF.

Lemma 4.5 (Top-down tree transducers do not have �nite look-ahead).

l-TOPF 6� TOP and lne-XTOP 6� TOP

Proof. It is obvious that � = f(�(�; �); �)g is not in TOP. However, a linear
tdttF with one state ? can easily compute � using the rule r = (?(�(x1; x2)) ! �)
with c(r) = f�(�; �)g. Moreover, a linear, nondeleting, input-"-free xtt with one
state ? and the rule ?(�(�; �))! � also computes � . In fact, l-TOPF and lne-XTOP
contain every �nite transformation.

With these results we already characterized the e�ect of the look-ahead compo-
nent on the power of transducers. But so far, we have not compared xtt with tdtt
apart from the �nite look-ahead component. In fact, xtt possess another property,
here called deep attachment of variables, that separates it from tdtt. This feature can
be used to implement local rotations of the kind demonstrated in Figs. 1.1 and 3.1.
In particular, it allows us to implement attenings (see Fig. 4.3 and rule r3 in Sec-
tion 3) and shu�es (as in Fig. 1.1). From the de�nition of attenings and shu�es,
the following lemma is immediate.

12 A. Maletti, J. Graehl, M. Hopkins, K. Knight

q

�

�

x1 �

x2 �

x3

! �

q

x1

p

x2

q

x3

hq; "i

�

x1 x2

! �

hq; 1i

x1

hp; 21i

x1

hq; "i

x2

Fig. 4.4. Example rule and resulting rule (see Theorem 4.8).

Lemma 4.6 (All xtt can atten and shu�e).

FLAT � lne-XTOP and SHUF � lne-XTOP

Thus, we identi�ed another feature of xtt. However, we will see in Theorem 4.8
that nonlinear tdttR can simulate deep attachment of variables with the help of copy-
ing and deleting. Thus, we now only show that attening and shu�e cannot be
implemented by linear tdttR.

Lemma 4.7 (Linear tdttR can neither atten nor shu�e).

FLAT 6� l-TOPR and SHUF 6� l-TOPR

Proof. Both statements are immediate by Theorem 5.2 because l-TOPR is closed
under composition by [10, Theorem 2.11].

We already remarked that the property deep attachment of variables can be simu-
lated by nonlinear and deleting tdttR. In fact, we show how to simulate an input-"-free
xttR by a nonlinear tdttR. In case of an xtt we can simulate it with a tdttF. The �nite
look-ahead is needed because xtt in general have �nite look-ahead (see Theorem 4.1
and Lemma 4.5).

Let us illustrate the idea of the construction on a small example. Suppose the
input is an xtt and has the rule q(�(�(x1; �(x2; �)); x3)) ! �((q(x1)); p(x2); q(x3)).
In the constructed tdttF, we check the principal shape of the left-hand side by the
�nite look-ahead restriction. Moreover, we use auxiliary states that walk down the
input tree to the point of the deep attachment. Thus, we construct the rule

hq; "i(�(x1; x2))! �((hq; 1i(x1)); hp; 21i(x1); hq; "i(x2))

with look-ahead restriction �(�(x1; �(x1; �)); x1). Both mentioned rules are displayed
in Fig. 4.4. The state p was originally called on x2, and now we call hp; wi(xi) where
w = 21 and i = 1. Observe that iw = posx2(t) where t is the input tree in the
left-hand side of the original rule. Moreover, we generate the support rules

hq; 1i(�(x1; x2))! hq; "i(x1)

hp; 21i(�(x1; x2))! hp; 1i(x2)

hp; 1i(�(x1; x2))! hp; "i(x1) :

These support rules allow us to walk down the input tree to the desired positions. We
arrive at the required input subtree in a state hq; "i for some q 2 Q. As previously

Extended Top-down Tree Transducers 13

discussed, we construct one rule using such a state for every rule in the original xtt.
In essence, the application of a rule of the xtt is simulated by a corresponding rule of
the tdtt followed by several applications of auxiliary rules.

Theorem 4.8 (Copying and deletion yield deep attachment of variables).

e-XTOP = TOPF and e-XTOPR = TOPR

Proof. One inclusion is trivial in both statements with the help of Theorem 4.1.
Let M = (Q;�;�; I; R; c) be an input-"-free xttR. Let T = ft j (q(t) ! u) 2 Rg,
and let W be the smallest post�x-closed (i.e., if vw 2 W , then also w 2 W) set that
contains

S
t2T posX(t). We construct the tdttR M 0 = (Q�W;�;�; I �f"g; R0; c0) as

follows:
(i) R0 contains for every rule r = (q(t) ! u) 2 R with t = �(t1; : : : ; tk) for

some � 2 �k and t1; : : : ; tk 2 T�(X) the following rule r0

hq; "i(�(x1; : : : ; xk))! u[p(x) hp; wi(xi) j p 2 Q; x 2 var(t); i 2 [k]; posx(t) = iw]

and c0(r0) = c(r) \ (t[x x1 j x 2 var(t)])[T�].
(ii) R0 contains for every q 2 Q, � 2 �k, and iw 2W with i 2 [k] the following

rule r00 with c0(r00) = T�.

hq; iwi(�(x1; : : : ; xk))! hq; wi(xi)

The intersection in the look-ahead restriction in item (i) creates a recognizable
tree language provided that c(r) is recognizable [16, Theorem II.4.2]. If c(r) = T�
for every r 2 R (i.e., M has no look-ahead), then M 0 has �nite look-ahead. Thus,
M 0 has regular (respectively, �nite) look-ahead wheneverM has regular (respectively,
no) look-ahead. Moreover, we immediately observe that the rules in the second item
allow hq; wi(t))�

M 0 hq; "i(subt(w)) for every q 2 Q, t 2 T�, and w 2 pos(t). In fact,
there exists exactly one such derivation. Thus, the states hq; wi can be used to walk
down the input tree t to position w.

It remains to show that �M 0 = �M . This is mostly straightforward; here we
only show how M 0 simulates the application of a rule r given in the �rst item with
the help of the rule r0. The main proof obligation is q(s))�

M v exactly when
hq; "i(s))�

M 0 v for every q 2 Q, s 2 T�, and v 2 T�. We only prove one di-
rection, so let q(s))r

M � for some q 2 Q, s 2 T�, r = (q(t) ! u) 2 R, and
� 2 T�(Q(T�)). There exists a substitution � : X ! T� such that s = t� and
� = u[p(x) p(x�) j p 2 Q; x 2 var(t)]. Moreover, t� 2 c(r). We �rst observe that
t� 2 c0(r0) and thus the rule r0 is applicable to hq; "i(s). We obtain hq; "i(s))r0

M 0 u0

with u0 = u[p(x) hp; wi(ti�) j p 2 Q; x 2 var(t); i 2 [k];posx(t) = iw]. Clearly,
we have hp; wi(ti�))

�
M 0 hp; "i(subti�(w)). The latter equals hp; "i(subt�(iw)). Since

labt(iw) = x, we obtain subt�(iw) = x�. Consequently, hq; "i(s))r0

M 0 u0)�
M 0 u00

where

u00 = u[p(x) hp; "i(x�) j p 2 Q; x 2 var(t)] = �[p(t) hp; "i(t) j p 2 Q; t 2 T�] :

The application of the induction hypothesis then proves this direction. The argument
for the converse direction uses that the derivation hq; wi(t))�

M 0 hq; "i(subt(w)) is
unique.

The �nal feature of xtt that gives them additional expressive power when com-
pared to tdtt is the ability to generate arbitrarily large outputs for some input tree

14 A. Maletti, J. Graehl, M. Hopkins, K. Knight

(which was the reason to restrict attention to input-"-free xtt in Theorem 4.8). This
can be achieved with the help of input-epsilon rules, e.g., q(x)! (q(x)). In this case,
the tree in the left-hand side simply shrinks to just a variable. Thus, we see that a
large non-shallow tree in the left-hand side may yield the features of �nite look-ahead
and deep attachment of variables, whereas a left-hand side with only a variable may
lead to in�nitely many output trees for some particular input tree (even for linear
and nondeleting xtt). However, for every input-"-free xttR the set of translations
(i.e., output trees) is �nite for every input tree. By this argumentation, input-"-free
transducers are strictly less powerful than their unrestricted variants.

Lemma 4.9 (Input-"-free transducers generate bounded outputs).

ln-XTOP 6� e-XTOPR

Let us recall the properties of xtt that lead to the separation of xtt and tdtt.
(X1) Finite look-ahead
(X2) Deep attachment of variables
(X3) In�nitely many outputs for one input
Finally, we need to separate linearity and copying as well as nondeletion and

deletion (in the linear case). This is achieved in the same manner as for tdtt.
Lemma 4.10.

TOP 6� l-XTOPR and l-TOP 6� ln-XTOP

Proof. The �rst statement is easily proved since it is known that transformations
of TOP need not preserve recognizability [16, Example II.4.15], whereas the ones
of l-XTOPR do [22, Theorem 4]. Moreover, we note that the transformations used to
prove Theorem 5.2 are both in TOP but not in l-XTOPR (as shown in the proofs).

For the second statement, consider the transformation � = f(t; �) j t 2 T�g where
� = f�(2); �(0)g. It is straightforward to prove that � 2 l-TOP and � =2 ln-XTOP.

Now, we have all necessary results to completely characterize the subset relation-
ships between all introduced classes of transformations computed by xtt. We collect
our knowledge about the power of xttR in a Hasse diagram (see Fig. 4.5) with the
additional convention that all edges are oriented upwards or to the right. As usual, an
edge denotes strict inclusion. Unrelated classes in a Hasse diagram are incomparable
with respect to set inclusion. We do not repeat the look-ahead results of Theorems
4.1 and 4.4, but do present the equalities of Theorem 4.8.

Theorem 4.11. The diagram in Fig. 4.5 is a Hasse diagram.
Proof. The inclusions are trivial or by Theorems 4.1 and 4.8. The non-inclusions

are proved in Lemmata 4.3, 4.5, 4.6, 4.7, 4.9, and 4.10 (note that Lemmata 4.6 and 4.7
together show that lne-XTOP 6� l-TOPR).

5. Closure under composition. In this section, we investigate which of the
introduced classes of transformations are closed under composition. Composition is
useful because it allows designers to break down a complex transformation into a
cascade of simple transformations. These simple transformations can be represented
using simple transducers, which can then be assembled automatically into a single
large transducer that represents the complex transformation. Subsequent operations
(e.g., application to an input tree or an input tree language, pruning, and probabilistic
training) may then be applied to the complex transducer.

Extended Top-down Tree Transducers 15

XTOP XTOPR

l-XTOP l-XTOPR

ln-XTOP
e-XTOP

= TOPF
e-XTOPR

= TOPR

le-XTOP le-XTOPR

lne-XTOP

l-TOPF l-TOPR

TOP

l-TOP

ln-TOP

Fig. 4.5. Hasse diagram of the classes of tree transformations computed by xttR. All edges are
directed to the right or upward.

Let us recall that ln-TOP and l-TOPR are closed under composition. Both com-
position constructions can be found in [3], though the results trace back to [9]. Instead
of linear tdttR, Baker and Engelfriet investigated linear bottom-up tree trans-
ducers [28]. However, Engelfriet [10, Theorem 2.8] showed that linear bottom-up
tree transducers are as powerful as linear tdttR.

Unfortunately, all of the following results are negative. First, any class that
contains l-TOP should have the feature of regular look-ahead to be closed under
composition. This is due to the fact that l-TOPR is the composition closure of l-TOP
by [10, Theorem 2.6] and [9, Lemma 3.2].

Lemma 5.1 (Regular look-ahead is required for closure under composition). If L
is a class of tree transformations such that l-TOP � L � XTOP, then L is not closed
under composition.

Proof. It is known that l-TOPR is the composition closure of l-TOP (see above).
Hence, since l-TOP � L but l-TOPR 6� XTOP by Lemma 4.3, the class L cannot be
closed under composition.

16 A. Maletti, J. Graehl, M. Hopkins, K. Knight

�

n

�

s t

u

7! �

s t u

�

n

�

s t

u

7! �

s �

t u

Fig. 5.1. Illustration of the tree transformations used in the proof of Theorem 5.2.

We have just seen that the composition of transducers with �nite look-ahead (or
even no look-ahead) can only be implemented by a transducer with regular look-ahead.
With respect to feature (X2), a similar problem arises. Intuitively speaking, we show
that compositions of transducers with deep (but �nite) attachment of variables require
a more complicated form of attachment of variables, if they should be implemented
on a single transducer. We will discuss one extension, called regular attachment of
variables, briey after the next lemma, but here we �rst show that linear xttR do not
have it.

In fact, it is proved in [1] and [2, Section 3.4] that no class of transformations
computed by linear xttR (see [22, Theorem 4] for the relation between linear xttR and
bimorphisms) containing ln-TOP and FLAT is closed under composition. Thus, by
Lemma 4.6, no class between lne-XTOP and l-XTOPR is closed under composition
(cf. [22, Corollaries 5 and 18]). We provide an alternative proof of this result and
show that it also holds for shu�es instead of attenings. It should, however, be noted
that in [1, 2] the result is even proved for a subclass of ln-TOP and a superclass of
l-XTOPR.

Theorem 5.2 (Linear xttR do not have regular attachment of variables). If L is
a class of tree transformations such that ln-TOP � L � l-XTOPR and (i) FLAT � L
or (ii) SHUF � L, then L is not closed under composition.

Proof. It su�ces to show the following statements.

ln-TOP ; FLAT 6� l-XTOPR (5.1)

ln-TOP ; SHUF 6� l-XTOPR (5.2)

The former is shown in [2, Section 3.4]. Here we present a proof for both statements.
To this end, let � = f�(2); (1); �(0)g and � = f�(3); �(2); (1); �(0)g. We consider the
tree transformations

�1 = f(�(
n(�(s; t)); u); �(s; t; u)) j n 2 N; s; t; u 2 T�g

�2 = f(�(
n(�(s; t)); u); �(s; �(t; u))) j n 2 N; s; t; u 2 T�g

for (5.1) and (5.2), respectively. The transformations are depicted in Fig. 5.1. Let us
�rst show that �1 can be computed by a composition of a linear and nondeleting tdtt
and a attening and �2 can be computed by a composition of a linear and nondeleting
tdtt and a shu�e. To this end, let M 0 = (f?; d; idg;�;�; f?g; R0) be the linear and
nondeleting tdtt with the rules

?(�(x1; x2))! �(d(x1); id(x2)) id(�(x1; x2))! �(id(x1); id(x2))

d((x1))! d(x1) id((x1))! (id(x1))

d(�(x1; x2))! �(id(x1); id(x2)) id(�)! � :

Extended Top-down Tree Transducers 17

A routine proof shows that

�M 0 = f(�(n(�(s; t)); u); �(�(s; t); u)) j n 2 N; s; t; u 2 T�g :

The tree transformations

� 01 = f(�(�(s; t); u); �(s; t; u)) j s; t; u 2 T�g

� 02 = f(�(�(s; t); u); �(s; �(t; u))) j s; t; u 2 T�g

are a attening and a shu�e, respectively, which is easily shown. Clearly, �M 0 ;� 01 = �1
and �M 0 ; � 02 = �2.

It remains to show that �1; �2 =2 l-XTOPR. Suppose that �1 2 l-XTOPR. Then
there exists a linear xttR M = (Q;�;�; I; R; c) such that �M = �1. Then also
�2 2 l-XTOPR since we can simply replace (keeping the look-ahead) all rules of the
form q(t)! �(u1; u2; u3) in R by q(t)! �(u1; �(u2; u3)) to obtain a linear xttR that
computes �2.

Consequently, it su�ces to prove that �2 =2 l-XTOPR. Suppose that there exists
a linear xttR M = (Q;�;�; I; R; c) such that �M = �2. Without loss of generality,
suppose that M has no chain rules (see Lemma 4.2) and let N be a dta such that for
every r 2 R there exists a subset P of states with c(r) =

S
p2P L(N)p. Moreover, let

n � maxfmax(ht(t); ht(u)) j (q(t)! u) 2 Rg

be larger than the maximal height of input and output trees of R. Additionally, let
n be larger than the number of states of N . For every i 2 N, we denote i(�) simply
by ti. Let p be the state of N that recognizes tn (i.e., tn 2 L(N)p). Since N has at
most n states and ht(tn) = n+1, there exists a tree t0n 2 L(N)p such that t0n 6= tn by
the pumping lemma for dta (see [16]).

Let s = �(n(�(�(tn; tn); tn)); t2n) [see Fig. 5.2 for illustration]. Clearly, there
exists an initial state q 2 I such that q(s))�

M u with u = �(�(tn; tn); �(tn; t2n)). Let
us consider a derivation q(s))r

M �)�
M u where r 2 R and � 2 T�(Q(T�)). We now

distinguish three cases for r.
(i) Let r = (q(t) ! q0(x)) for some t 2 T�(X), q0 2 Q, and x 2 var(t). Then

� = q0(subs(posx(t))). Clearly, s 2 c(r) and posx(t) 6= " because M has no chain
rules. Suppose that posx(t) = 1w for some w 2 pos(subt(1)). Let

s0 = �(n(�(�(tn; tn); tn));
n(t0n)) :

Clearly, s0 2 c(r) because subs0(1) = subs(1) and subs0(2) = n(t0n), which is rec-
ognized in the same state as t2n. Obviously, subs0(posx(t)) = subs(posx(t)) and
labs0(w

0) = labs(w
0) for every w0 2 pos(s) with jw0j < ht(t). Thus, t matches s0 and

q(s0))r
M �)�

M u. This yields (s0; u) 2 �M , which is a contradiction. The case
posx(t) = 2w can be handled in the same manner.

(ii) Now suppose that r = (q(t)! �(u1; u2)) for some u1; u2 2 T�(Q(X)). Since
ht(ui) < ht(subu(i)) for every i 2 f1; 2g, the trees u1 and u2 each contain a variable.
Since M is linear, those variables are distinct. Thus, t = �(i(x1);

j(x2)) for some
i; j 2 N smaller than n (note that, without loss of generality, the variables x1 and x2
can be used). Moreover, this yields that u1 = q1(x) and u2 = q2(y) for some q1; q2 2 Q
and fx; yg = fx1; x2g. We now distinguish two simple subcases. First, let us assume
that x2 = y. Then q2(t2n�j))

�
M �(tn; t2n). Let r

0 = (q0(t0)! �(u01; u
0
2)) 2 R be the

rule that generates the � in the output. Clearly, card(var(t0)) � 1, which yields that

18 A. Maletti, J. Graehl, M. Hopkins, K. Knight

�

n

�

�

n

�

n

�

n

�

2n

�

Fig. 5.2. Input tree s used in the proof of Theorem 5.2.

u01 or u
0
2 does not contain a variable. However, ht(u01) < n and ht(u02) < n, which is

a contradiction. Finally, assume that x2 = x. Then q1(t2n�j))
�
M �(tn; tn). By a

similar line of reasoning, we can also derive a contradiction in this case.
Both cases are contradictory, which allows us to conclude that �2 =2 l-XTOPR.

The transformations used to prove Theorem 5.2 cannot be computed using the
deep but �nite attachment of variables that linear xttR have. Intuitively speaking, the
chain of -symbols is in the way and can be made suitably long. One can immediately
conceive a model of extended top-down tree transducers with regular attachment of
variables (i.e., the attachment of the variables is no longer restricted to �nite depth,
but rather it is given by a regular tree language). Formally, such a transducer is given
by (Q;�;�; I; R; c) where Q, �, �, I, and c are as for xttR and R is a �nite set of
rules of the form hq; Li ! u where q 2 Q, L � T�(X) is a nonempty recognizable tree
language such that there exists n 2 N such that t is Xn-linear and Xn-nondeleting for
every t 2 L, and u 2 T�(Q(Xn)). The semantics is given as if it were the \extended
top-down tree transducer" (Q;�;�; I; R0; c0) where for every rule r = hq; Li ! u of R
and t 2 L, the rule r0 = q(t) ! u is in R0 and its look-ahead is c0(r0) = c(r). Note
that this might yield an \extended top-down tree transducer" with in�nitely many
rules, but the de�nition of the semantics is meaningful also for such transducers.
The properties (linear, nondeleting, etc.) of xttR can be de�ned in a straightforward
fashion also for such transducers.

Let us show such a linear transducer with regular attachment of variables that
computes the translation used in the proof of Theorem 5.2. Let �, �, and �2 be as
they are in the proof of Theorem 5.2. Let M = (f?; idg;�;�; f?g; frg [R0) be the
tree transducer with r = h?; Li ! �(id(x1); �(id(x2); id(x3))) where

L = f�(n(�(x1; x2)); x3) j n 2 Ng

and R0 containing the id-rules of M 0 in the proof of Theorem 5.2. Then M obviously
computes �2. In the following, we do not consider such transducers. Finally, we note
that there are interesting (i.e., non-universal) classes of tree transformations that
contain l-XTOP and are closed under composition. An example of such a class is
the class l-XMBOT of transformations computed by linear extended multi bottom-up
tree transducers [12].

At this point, we already proved that most classes of Fig. 4.5 are not closed
under composition. In addition, we know [10, Corollary 2.4] that TOPR is not closed
under composition. So, it only remains to show that XTOPR is also not closed under
composition. In essence, this is achieved in the same manner as for TOPR. In fact,

Extended Top-down Tree Transducers 19

the next lemma also proves that no class L such that TOP � L � XTOPR is closed
under composition.

We need a new notion for the proof of the following lemma. Let � and � be
ranked alphabets, and let � : � ! P(�) be such that �(�) � �k for every � 2 �k,
i.e., � preserves the rank of symbols. The mapping � is then lifted to a relabel-
ing � : T� ! P(T�) by

�(�(t1; : : : ; tk)) = f�(u1; : : : ; uk) j � 2 �(�);8i 2 [k] : ui 2 �(ti)g

for every � 2 �k and t1; : : : ; tk 2 T�. By REL we denote the class of all relabelings.
Note that a relabeling can be implemented by a linear and nondeleting tdtt with just
a single state, i.e., REL � ln-TOP.

Lemma 5.3 (XTOPR is not closed under composition). If L is a class of tree
transformations such that TOP � L � XTOPR, then L is not closed under composi-
tion.

Proof. Clearly, it is su�cient to prove that REL ; TOP 6� XTOPR. To this end,

let � = f�(2); (1); �(0)g and � = f�(4); �(2);
(1)
1 ;

(1)
2 ; �(0)g. Consider the mapping

� : � ! P(�) given by �(�) = f�g, �() = f1; 2g and �(�) = f�g. Moreover, let
M 0 = (f?; idg;�;�; f?g; R0) be the tdtt with the following rules:

?(�(x1; x2))! �(id(x1); id(x1); id(x2); id(x2))

id(1(x1))! 1(id(x1))

id(2(x1))! 2(id(x1))

id(�)! � :

Clearly, M 0 computes f(�(u1; u2); �(u1; u1; u2; u2)) j u1; u2 2 T�g where the ranked

alphabet � is f
(1)
1 ;

(1)
2 ; �(0)g. Combined with the relabeling � we obtain the tree

transformation

� = f(�(t1; t2); �(u1; u1; u2; u2)) j t1; t2 2 T�0 ; u1 2 �(t1); u2 2 �(t2)g

where �0 = f(1); �(0)g.
It remains to prove that � =2 XTOPR. Let M = (Q;�;�; I; R; c) be an xttR such

that �M = � . Without loss of generality, suppose that M has no chain rules (see
Lemma 4.2). Let n be an integer such that, for every r 2 R, n is larger than the
height of the trees t and u in r = (q(t)! u) and larger than the number of states of
a dta recognizing c(r). In addition, let n be larger than card(R). We denote the tree
i(�) simply by ti for every i 2 N. Consider the input tree s = �(t2n; t2n). Clearly,
there must exist an initial state q 2 I, a rule r 2 R, and trees u1; u

0
1; u2; u

0
2 2 T� such

that (u1; u2) 6= (u01; u
0
2) and

q(s))r
M �)�

M �(u1; u1; u2; u2)

q(s))r
M �)�

M �(u01; u
0
1; u

0
2; u

0
2) :

The previous statement holds because there are less than n rules, but more potential
outputs, i.e.,

card(R) � card(fv j (s; v) 2 �Mg) :

So, at least two successful derivations have to start with the same rule. Moreover,
we observe that fu1; u

0
1; u2; u

0
2g � �(t2n). Now we make a case distinction on the

rule r = (q(t)! u).

20 A. Maletti, J. Graehl, M. Hopkins, K. Knight

(i) Suppose that u = q0(x) for some q0 2 Q and x 2 var(t). This case can easily
be proved along the lines of item (i) in the proof of Theorem 5.2.

(ii) Suppose that u = �(v1; v2; v3; v4) for some v1; v2; v3; v4 2 T�(Q(X)). Since
ht(u1) = ht(u2) = 2n+1 but ht(vi) < n, it is clear that v1, v2, v3, and v4 each contain
a variable. Moreover, it is apparent that they contain only one leaf. Let vi contain
qi(yi) with qi 2 Q and yi 2 X for every i 2 [4]. Clearly,

v1[q1(y1) q1(subs(posy1(t)))])
�
M u1

v2[q2(y2) q2(subs(posy2(t)))])
�
M u01

v3[q3(y3) q3(subs(posy3(t)))])
�
M u2

v4[q4(y4) q4(subs(posy4(t)))])
�
M u02 :

Consequently, q(s))�
M �(u1; u

0
1; u2; u

0
2), which yields (s; �(u1; u

0
1; u2; u

0
2)) 2 �M . This

is a contradiction because (u1; u2) 6= (u01; u
0
2).

Both cases are contradictory, thus � =2 XTOPR.
Theorem 5.4 (Nonclosure under composition). Except ln-TOP and l-TOPR, no

class displayed in Fig. 4.5 is closed under composition.
Proof. The nonclosure results are proved in Lemmata 5.1 and 5.3 and Theo-

rem 5.2.

6. Conclusion and open problems. We have provided a �rst in-depth analy-
sis of extended top-down tree transducers designed for use in computational linguistics
applications. We have demonstrated the circumstances under which extended trans-
ducers improve expressiveness over top-down tree transducers, and we have shown
examples from machine translation that motivate this improved expressiveness. Our
more general aim is to devise models that best explain the transformations we observe
in empirical human language data, and to understand the formal properties of those
models.

Several interesting problems remain open. In the light of composition hierar-
chy results for tree transformations computed by bimorphisms [2] and top-down tree
transducers [11], it is interesting to study the composition closure of a class L of trans-
formations computed by extended tree transducers. We showed that L � L2 where
L2 = L ;L (i.e., the hierarchy does not collapse at the �rst level), but it remains open
whether an in�nite hierarchy is formed (as it is the case for TOP [11]) or whether
Ln = Ln+1 for some n (as it is the case, e.g., for (i) nl-TOP1 [9] or (ii) l-TOP2 [9] or
(iii) B(lne-HOM; lne-HOM)2 [2] or (iv) B(l-HOM; l-HOM)4 [7, 8]).

In addition, it would be interesting to (syntactically) identify classes L such that
ln-TOP � L � ln-XTOP and L is closed under composition. We showed (see The-
orem 5.2) that no such class of transformations can handle attenings or shu�es
[cf. feature (X2)]. Since those features are important, it would also be interesting
to identify classes L � ln-XTOP that can handle attening or shu�e and are closed
under composition (by Theorem 5.2 we necessarily have ln-TOP 6� L).

Acknowledgments. The authors would like to express their heartfelt gratitude
to the reviewers, who improved the article with their insightful remarks. One reviewer
in particular had a huge impact on the article. The remaining errors are, of course,
all ours.

Extended Top-down Tree Transducers 21

REFERENCES

[1] Andr�e Arnold and Max Dauchet, Bi-transductions de forêts, in Proc. 3rd Int. Coll. Au-
tomata, Languages and Programming, Edinburgh University Press, 1976, pp. 74{86.

[2] , Morphismes et bimorphismes d'arbres., Theor. Comput. Sci., 20 (1982), pp. 33{93.
[3] Brenda S. Baker, Composition of top-down and bottom-up tree transductions, Inform. and

Control, 41 (1979), pp. 186{213.
[4] Noam Chomsky, Aspects of the Theory of Syntax, MIT Press, 1965.
[5] Bruno Courcelle and Paul Franchi{Zannettacci, Attribute grammars and recursive pro-

gram schemes, Theor. Comput. Sci., 17 (1982), pp. 163{191 & 235{257.
[6] Max Dauchet, Transductions inversibles de forêts, Th�ese 3�eme cycle, Universit�e de Lille, 1975.

[7] , Transductions de forêts. Bimorphismes de magmo��des, Th�ese d'�Etat, Universit�e de
Lille, 1977.

[8] Max Dauchet and Sophie Tison, Structural complexity of classes of tree languages, in Tree
Automata and Languages, North-Holland, 1992, pp. 327{354.

[9] Joost Engelfriet, Bottom-up and top-down tree transformations|a comparison, Math. Syst.
Theory, 9 (1975), pp. 198{231.

[10] , Top-down tree transducers with regular look-ahead, Math. Syst. Theory, 10 (1976),
pp. 289{303.

[11] , Three hierarchies of transducers, Math. Syst. Theory, 15 (1982), pp. 95{125.
[12] Joost Engelfriet, Eric Lilin, and Andreas Maletti, Extended multi bottom-up tree trans-

ducers, in Proc. 12th Int. Conf. Developments in Language Theory, vol. 5257 of LNCS,
Springer-Verlag, 2008, pp. 289{300.

[13] Joost Engelfriet and Heiko Vogler, Macro tree transducers, J. Comput. System Sci., 31
(1985), pp. 71{146.

[14] , Modular tree transducers, Theor. Comput. Sci., 78 (1991), pp. 267{303.
[15] Zolt�an F�ul�op, On attributed tree transducers, Acta Cybernet., 5 (1981), pp. 261{279.
[16] Ferenc G�ecseg and Magnus Steinby, Tree Automata, Akad�emiai Kiad�o, 1984.
[17] , Tree languages, in Handbook of Formal Languages, G. Rozenberg and A. Salomaa, eds.,

vol. 3, Springer-Verlag, 1997, ch. 1, pp. 1{68.
[18] Jonathan Graehl and Kevin Knight, Training tree transducers, in Proc. 2004 Human Lan-

guage Technology Conf. NAACL, 2004, pp. 105{112.
[19] John E. Hopcroft and Jeffrey D. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 1979.
[20] Daniel Jurafsky and James H. Martin, Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Processing, Prentice-
Hall, 2000.

[21] Kevin Knight and Jonathan Graehl, An overview of probabilistic tree transducers for nat-
ural language processing, in Proc. 6th Int. Conf. Intelligent Text Processing and Compu-
tational Linguistics, 2005, pp. 1{24.

[22] Andreas Maletti, Compositions of extended top-down tree transducers, Inform. Comput., 206
(2008), pp. 1187{1196.

[23] Chris Manning and Hinrich Sch�utze, Foundations of Statistical Natural Language Process-
ing, MIT Press, 1999.

[24] Jean-Claude Raoult, Rational tree relations, Bull. Belg. Math. Soc., 4 (1997), pp. 149{176.
[25] William C. Rounds, Mappings and grammars on trees, Math. Syst. Theory, 4 (1970), pp. 257{

287.
[26] Stuart M. Shieber, Synchronous grammars as tree transducers, in Proc. 7th Int. Workshop

Tree Adjoining Grammar and Related Formalisms, 2004, pp. 88{95.
[27] James W. Thatcher, Generalized2 sequential machine maps, J. Comput. System Sci., 4 (1970),

pp. 339{367.
[28] , Tree automata: an informal survey, in Currents in the Theory of Computing, Prentice

Hall, 1973, pp. 143{172.

