
O.H. Ibarra and B. Ravikumar (Eds.): CIAA 2008, LNCS 5148, pp. 132–140, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Tree-Series-to-Tree-Series Transformations

Andreas Maletti?

International Computer Science Institute
1947 Center Street, Suite 600, Berkeley CA-94704, USA

maletti@icsi.berkeley.edu

Abstract. We investigate the tree-series-to-tree-series (ts-ts) transfor-
mation computed by tree series transducers. Unless the used semiring is
complete, this transformation is, in general, not well-defined. In practice,
many used semirings are not complete (like the probability semiring). We
establish a syntactical condition that guarantees well-definedness of the
ts-ts transformation in arbitrary commutative semirings. For positive
(i. e., zero-sum and zero-divisor free) semirings the condition actually
characterizes the well-definedness, so that well-definedness is decidable
in this scenario.

1 Introduction

Tree series transducers [1,2] are a generalization of tree transducers [3,4,5,6,7].
The framework Tiburon [8] implements a generalization of top-down tree se-
ries transducers [2] using various weight structures such as the Boolean semi-
ring ({0, 1},∨,∧) and the probability semiring (R,+, ·). Such tree series trans-
ducers compute both a tree-to-tree-series (t-ts) and a tree-series-to-tree-series
(ts-ts) transformation, where a tree series is a mapping assigning a weight to
each tree. The t-ts transformation is always well-defined, but the ts-ts transfor-
mation is well-defined only for complete semirings [9,10] such as the Boolean
semiring. However, for the probability semiring the ts-ts transformation need not
be well-defined because infinite sums might occur. Of course, some incomplete
semirings (e. g., positive semirings) can be extended by a new element∞, which
is the result of all nontrivial infinite sums. However, such a definition is clearly
not practical and does not work for the probability semiring.

A standard application of the ts-ts transformation is the computation of the
image of a recognizable tree series [11,12,13,14]. This is, for example, used to
translate a language model (parses of an input sentence) to a language model
(resp., parses of output sentences) in another language. For some tree series
transducers the image is again a recognizable tree series [15,16]. In fact, the image
operation is implemented in Tiburon for the Boolean semiring. However, in
the probability semiring, the image operation is only meaningful if the ts-ts
transformation is well-defined.

? This work was supported by a fellowship within the Postdoc-Programme of the
German Academic Exchange Service (DAAD).

maletti@icsi.berkeley.edu

Tree-Series-to-Tree-Series Transformations 133

In this contribution we investigate for which tree series transducers the ts-
ts transformation is well-defined following the approach of [17,18] for weighted
finite-state transducers. To this end, we develop a general notion of convergence
that can serve as a baseline for all semirings. More refined notions for partic-
ular semirings can be derived in the same manner. Thereafter we present a
syntactical condition, which in general, guarantees that the ts-ts transformation
is well-defined (using the baseline notion of convergence mentioned). In fact,
the condition is such that we obtain a characterization for certain tree series
transducers over positive (i. e., zero-sum and zero-divisor free) semirings. This
yields that well-definedness of the ts-ts transformation is decidable for certain
tree series transducers over positive semirings. This also applies to tree series
transducers over the Boolean semiring (i. e., tree transducers).

2 Preliminaries

The nonnegative integers are denoted by N and N+ = N \ {0}. We use [k, n]
for {i | k 6 i 6 n} where the i are either integers or reals depending on the
context. In the former case, we abbreviate [1, n] to [n]. An alphabet is a finite
set of symbols. A ranked alphabet is an alphabet Σ together with a mapping
rk: Σ → N, which assigns to each symbol a rank. The set of symbols of rank k
is denoted by Σk. For convenience we assume fixed sets X = {xi | i ∈ N+}
and Z = {zi | i ∈ N+} of variables. For k ∈ N we use Xk = {xi | i ∈ [k]} and
Zk = {zi | i ∈ [k]}. Given V ⊆ X ∪ Z, the set TΣ(V) of Σ-trees indexed by V is
the smallest set T such that V ⊆ T and for every σ ∈ Σk and t1, . . . , tk ∈ T
also σ(t1, . . . , tk) ∈ T . We generally assume that X ∪ Z is disjoint with any con-
sidered ranked alphabet, so we usually write α instead of α() whenever α ∈ Σ0.
Moreover, we also use TΣ for TΣ(∅). Let t, t1, . . . , tk ∈ TΣ(Z). We denote by
t[t1, . . . , tk] the tree obtained from t by replacing for every i ∈ [k] every zi-leaf
in t by the tree ti. The tree t is nondeleting (resp., linear) in V ⊆ Z, if each
v ∈ V occurs at least (resp., at most) once in t. The set of variables occurring
in t is var(t) and the size of t (i. e., the number of nodes in t) is size(t). Finally,
the height of a tree is inductively defined by height(v) = 1 for every v ∈ V
and height(σ(t1, . . . , tk)) = 1 + max{height(ti) | i ∈ [k]} for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ(V).

An algebraic structure (A,+) is a monoid if + is an associative (binary) op-
eration on A that permits a neutral element. A (commutative) semiring (A,+, ·)
consists of two commutative monoids (A,+) and (A, ·) such that · distributes
over + and the neutral element 0 of (A,+) is absorbing with respect to · (i. e.,
a · 0 = 0 = 0 · a for every a ∈ A). The neutral element of an additive operation
is usually denoted by 0 and that of multiplicative operation by 1. We also use
the summation

∑
i∈I ai for an index set I and a family (ai | i ∈ I) of semiring

elements. Such a summation is well-defined if ai = 0 for almost all i ∈ I. The ac-
tual sum is then defined in the obvious way. A semiring A = (A,+, ·) is zero-sum
free, whenever a + b = 0 implies that a = 0 for every a, b ∈ A, and zero-divisor

134 A. Maletti

free, whenever a · b = 0 implies that 0 ∈ {a, b}. A zero-sum and zero-divisor free
semiring is positive.

LetA = (A,+, ·) be a semiring. Every mapping ϕ : T → A for some T ⊆ TΣ(V)
is a tree series. We denote the set of those by A〈〈T 〉〉. We usually write the
coefficient ϕ(t) of t in ϕ as (ϕ, t). Moreover, we write ϕ as the formal sum∑
t∈T (ϕ, t) t. We extend both operations of A componentwise to tree series,

i. e., (ϕ + ψ, t) = (ϕ, t) + (ψ, t) for every ϕ,ψ ∈ A〈〈T 〉〉 and t ∈ T . The support
of ϕ is supp(ϕ) = {t | (ϕ, t) 6= 0}. The set of tree series with finite support is
denoted by A〈T 〉. For every a ∈ A, the tree series ã is such that (ã, t) = a
for every t ∈ T . The tree series ϕ is nondeleting (resp., linear) in V , if every
t ∈ supp(ϕ) is nondeleting (resp., linear) in V . We use var(ϕ) as a shorthand for⋃
t∈supp(ϕ) var(t).

Let ϕ ∈ A〈T∆(Z)〉 and ψ1, . . . , ψk ∈ A〈T∆(Z)〉. The pure substitution [19,2]
of (ψ1, . . . , ψk) into ϕ is defined by

ϕ←(ψ1, . . . , ψk) =
∑

t,t1,...,tk∈T∆(Z)

(ϕ, t)(ψ1, t1) · · · (ψk, tk) t[t1, . . . , tk] .

Let A be a semiring, Σ and ∆ be ranked alphabets, and Q be a finite set.
A (polynomial) representation [2] is a family µ = (µk | k ∈ N) of mappings
µk : Σk → A〈T∆(Z)〉Q×(Q×Xk)∗ such that for every σ ∈ Σk and q ∈ Q
(i) µk(σ)q,w ∈ A〈T∆(Z|w|)〉 for every w ∈ (Q×Xk)∗ and

(ii) µk(σ)q,w = 0̃ for almost all w ∈ (Q×Xk)∗.

A (polynomial) tree series transducer [1,2] is a tuple (Q,Σ,∆,A, I, µ) such that
µ is a representation and I ⊆ Q. It is top-down (resp., bottom-up) [2] if µk(σ)q,w
is nondeleting and linear in Z|w| [resp., if there exist q1, . . . , qk ∈ Q such that
w = (q1, x1) · · · (qk, xk)] for every σ ∈ Σk, q ∈ Q, and w ∈ (Q × Xk)∗ such

that µk(σ)q,w 6= 0̃. Let hµ : TΣ → A〈〈T∆〉〉Q be defined for every σ ∈ Σk,
t1, . . . , tk ∈ TΣ , and q ∈ Q by

hµ
(
σ(t1, . . . , tk)

)
q

=
∑

w∈(Q×Xk)∗,
w=(q1,xi1)···(qn,xin)

µk(σ)q,w←
(
hµ(ti1)q1 , . . . , hµ(tin)qn

)
.

The transducer M computes the tree-to-tree-series transformation (t-ts trans-
formation) τM : TΣ → A〈〈T∆〉〉 defined by τM (t) =

∑
q∈I hµ(t)q for every t ∈ TΣ .

Both hµ and the t-ts transformation τM are well-defined. Finally, the tree-
series-to-tree-series transformation (ts-ts transformation) computed by M is
τM (ϕ) =

∑
t∈TΣ (ϕ, t) · τM (t) for every ϕ ∈ A〈〈TΣ〉〉, whenever this sum is well-

defined. We say that τM is well-defined whenever τM (ϕ) is well-defined for every
ϕ ∈ A〈〈TΣ〉〉.

3 Convergence

In this section, we will explore when the ts-ts transformation of a tree series
transducer M = (Q,Σ,∆,A, I, µ) is well-defined. Roughly speaking, it is well-
defined if every output tree u ∈ T∆ can be generated [i. e., u ∈ supp(τM (t))] by

Tree-Series-to-Tree-Series Transformations 135

only finitely many input trees t ∈ TΣ . Note that our definition of well-definedness
works in any semiring; for particular semirings like (R,+, ·, 0, 1) other notions of
well-definedness (or equivalently, convergence) might be more realistic. However,
those more refined notions typically include our notion of well-definedness (i. e.,
any sum that is well-defined according to our definition is also well-defined in
the refined setting and the sums coincide), so that our approach can be seen as
a general baseline. We first show that τM is well-defined if and only if τM (1̃) is
well-defined. Thus, subsequent investigations need not consider the actual input
tree series.

Proposition 1. The ts-ts transformation τM is well-defined if and only if τM (1̃)
is well-defined.

Proof. Let ϕ ∈ A〈〈TΣ〉〉 and u ∈ T∆. One direction is trivial. In the other di-
rection, the sum τM (1̃) is well-defined by assumption. Hence, (τM (t), u) = 0 for
almost all t ∈ TΣ . Thus, τM (ϕ) is well-defined. ut

Let us take a closer look at τM (1̃). By definition, it is
∑
t∈TΣ τM (t). This

is well-defined if it is not possible to transform large (with respect to the size)
input trees to small output trees. Let us introduce the notion of convergence [18]
that we will use. For every ϕ ∈ A〈〈T∆(Z)〉〉 let ‖ϕ‖ = maxt∈supp(ϕ) size(t)−1. We
call ‖ϕ‖ the norm of ϕ. Intuitively, the norm of ϕ is the inverse of the size of a
smallest tree in the support of ϕ. Thus, the norm of 0̃ is 0.

Proposition 2. For every ϕ,ψ ∈ A〈〈T∆(Z)〉〉

(i) ‖ϕ‖ = 0 if and only if ϕ = 0̃.

(ii) ‖ϕ+ ψ‖ 6 ‖ϕ‖+ ‖ψ‖.

Actually, it can be shown that ‖·‖ is a monoid-homomorphism from the
monoid (A〈〈T∆(Z)〉〉,+) to ([0, 1],max) if A is zero-sum free. We derive the dis-
tance d‖·‖ on A〈〈T∆(Z)〉〉, which is given by d‖·‖(ϕ,ψ) = | ‖ϕ‖ − ‖ψ‖ | for every
ϕ,ψ ∈ A〈〈T∆(Z)〉〉.

Proposition 3. The distance d‖·‖ defines a pseudometric on A〈〈T∆(Z)〉〉.

With the help of this pseudometric, we can now introduce the usual notion
of Cauchy-convergence for sequences of tree series.

Definition 4. Let Ψ = (ψi | i ∈ N) be a family of ψi ∈ A〈〈T∆(Z)〉〉. It converges
(using the pseudometric d‖·‖) if

(∃ψ ∈ A〈〈T∆(Z)〉〉)(∀ε > 0)(∃jε ∈ N)(∀j > jε) : d‖·‖(ψj , ψ) < ε .

If Ψ converges, then ψ in the above display is a limit of Ψ and we say that Ψ
converges to ψ or symbolically Ψ → ψ.

136 A. Maletti

Convergence to 0̃ will play a central role. In fact, Ψ converges to 0̃ if

(∀n ∈ N)(∃jn ∈ N)(∀j > jn) : min
t∈supp(ψj)

size(t) > n .

Let T = (ti | i ∈ N) be a family of ti ∈ TΣ . It is an enumeration of TΣ if for
every t ∈ TΣ there exists exactly one i ∈ N such that ti = t, and it is size-
compliant if size(ti) 6 size(tj) for all i 6 j. We write τM (T) for the family

(τM (ti) | i ∈ N). Next we characterize when τM (1̃) is well-defined in terms of
size-compliant enumerations.

Theorem 5. The following are equivalent:

(i) τM is well-defined.
(ii) τM (T)→ 0̃ for every size-compliant enumeration T of TΣ.

(iii) τM (T)→ 0̃ for some size-compliant enumeration T of TΣ.

Proof. The existence of at least one size-compliant enumeration of TΣ is self-
evident, so (ii) clearly implies (iii). Let us assume that there exists a size-
compliant enumeration T = (ti | i ∈ N) such that τM (T) converges to 0̃. We
know that for every n ∈ N there exists a jn ∈ N such that for all j > jn we
have that minu∈supp(τM (tj)) size(u) > n, or equivalently, u /∈ supp(τM (tj)) for all
u ∈ T∆ with size(u) 6 n. In particular, for every u ∈ T∆ there exists nu ∈ N
such that u /∈ supp(τM (tn)) for all n > nu. Thus, τM (1̃) and by Proposition 1
also τM are well-defined.

Conversely, suppose that τM and hence τM (1̃) are well-defined (see Propo-
sition 1). There exists a finite subset Su ⊆ TΣ for every tree u ∈ T∆ such
that u /∈ supp(τM (t)) for every t /∈ Su. Let n ∈ N and T = (ti | i ∈ N)
be a size-compliant enumeration of TΣ . Let Un = {u ∈ T∆ | size(u) 6 n}
and Sn =

⋃
u∈Un Su. Clearly, Un and thus also Sn are finite. Finally, we let

mn = maxt∈Sn size(t) + 1 and jn be an index such that size(tjn) > mn. It re-
mains to prove that minu∈supp(τM (tj)) size(u) > n for every j > jn. Suppose
that u ∈ supp(τM (tj)) and size(u) 6 n. Thus u ∈ Un. By this, we obtain that
tj ∈ Su and tj ∈ Sn. It follows that mn > size(tj) + 1. By the size-compliance
condition, size(tj) > size(tjn) > mn. With the previous inequality, we obtain
size(tj) > size(tj) + 1. Thus, there exists no u ∈ supp(τM (tj)) with size(u) 6 n,

which proves that τM (T)→ 0̃. ut

The previous theorem is clear if A is zero-sum free, but in other cases
one might be tempted to assume that the theorem only holds because of our
peculiar (or even deficient) definition of well-defined sums. Let us show on
an example that this is indeed not the case. Let Σ = ∆ = {γ(1), α(0)} and
A = Z. Moreover, let τM (t) = (−1)|t|γ α. Now one might argue that τM (1̃)
is well-defined and equal to 0̃ because τM (γn(α)) + τM (γn+1(α)) = 0̃ for ev-
ery even n. However, the last property also holds for each odd n, which yields
τM (1̃) = τM (α) +

∑
t∈TΣ\{α} τM (t) = τM (α). Thus, we argued for two different

results of the sum, which shows that it is not well-defined.

Tree-Series-to-Tree-Series Transformations 137

4 Towards a Syntactical Property

Next, we present a syntactic condition that guarantees that the ts-ts trans-
formation computed by a tree series transducer is well-defined. To this end, let
M = (Q,Σ,∆,A, I, µ) be a tree series transducer. Note that we could reduce the
problem to unweighted tree transducers, but we avoid this for two reasons: (i) It
is rather unintuitive that

∨
i∈N 1 is not well-defined in the Boolean semiring

({0, 1},∨,∧) and (ii) we lack the space to introduce them (using the standard
set notation). We generally follow the approach of [17,18] by the analysis is
slightly more complicated by the tree structure. First we introduce some impor-
tant notions like the dependency relations P,R ⊆ Q×Q. For every p, q ∈ Q, let
(p, q) ∈ P (resp., (p, q) ∈ R) if zi ∈ supp(µk(σ)p,w (resp., supp(µk(σ)p,w) 6= ∅)
for some σ ∈ Σk and w ∈ (Q×Xk)∗ such that wj = (q, xi) for some 1 6 j 6 |w|.
Let @ and v (resp., ≺ and �) be the transitive and reflexive, transitive closure
of P (resp., of R), respectively. Note that in general v and � are not partial
orders. Then the following definitions are natural (note that our reading is top-
down).

Definition 6. Let q ∈ Q.

– If q @ q (resp., q ≺ q), then q is circular (resp., self-replicating).
– If there exists p ∈ I such that p � q, then q is accessible.
– If there exist p ∈ Q and α ∈ Σ0 such that µ0(α)p,ε 6= 0̃ and q � p, then q is

co-accessible.

The tree series transducer M is reduced if every state is accessible and co-
accessible. Finally, M is non-circular if no state q ∈ Q is circular.

Note that τM is trivially well-defined if M has no self-replicating state (the
latter can easily be checked). In the sequel, we assume that M has at least one
self-replicating state. It is also obvious that we can construct a reduced tree
series transducer M ′ that is equivalent to M . We simply remove all states that
are not accessible or not co-accessible. It should be clear that this procedure
does not change the computed tree series.

Proposition 7. There exists a reduced tree series transducer M ′ with τM = τM ′ .

Next, we introduce an essential notion: deletion points. A deletion point is
a pair (p, q) of states such that one of the transitions into p deletes a subtree
potentially processed in q.

Definition 8. We say that (p, q) ∈ Q2 is a deletion point if there exist σ ∈ Σk,
w ∈ (Q×Xk)∗, u ∈ supp(µk(σ)p,w), and i ∈ [k] such that

– there does not exist 1 6 j 6 |w| and r ∈ Q such that wj = (r, xi), or
– zj /∈ var(u) for some 1 6 j 6 |w| such that wj = (q, xi).

The conditions could be called input- and output-deleting, respectively.

138 A. Maletti

Note that top-down and bottom-up tree series transducers have a deletion
point if and only if they are deleting [2]. Note that if a top-down tree transducer
has the deletion point (p, q), then it also has the deletion point (p, r) for every
r ∈ Q. Let us illustrate the notion on a small example.

Example 9. Let M = ({?,⊥}, Σ,Σ,N, {?}, µ) be the tree series transducer with
Σ = {σ(2), α(0)} and

µ0(α)p,ε = 1 α µ2(σ)⊥,(⊥,x1)(⊥,x2) = 1 σ(z1, z2)

µ2(σ)?,(?,x1)(⊥,x2) = 1 σ(z1, α) µ2(σ)?,(⊥,x1)(?,x2) = 1 σ(α, z2)

for every p, q ∈ {?,⊥}. Then only (?,⊥) is a deletion point.

Definition 10 (see, e. g., [18]). The tree series transducer M is regulated if
it is non-circular and there exists no deletion point (p, q) such that q � r for
some self-replicating r ∈ Q.

Note that it is clearly decidable whether a tree series transducer is regulated.
A regulated top-down tree series transducer is nondeleting [2]. This is due to the
fact that a deleting top-down tree series transducer has a deletion point (p, q)
and thus also the deletion point (p, r) where r is a self-replicating state.

Theorem 11. Let M be a regulated tree series transducer. Then τM is well-
defined.

Proof. Let M = (Q,Σ,∆,A, I, µ). By Theorem 5, it is sufficient to show that
for an arbitrary size-compliant enumeration T = (ti | i ∈ N) the family τM (T)
converges to 0̃. Let mx = max{k | Σk 6= ∅} and n = card(Q). We will prove
that bheight(t)/nc − n 6 height(u) for every t ∈ TΣ and u ∈ supp(τM (t)). Con-
sider a maximal path in t (which defines the height). Since M is non-circular,
it may erase at most n − 1 input symbols along this path before it produces
output. It might also decide to delete the translation incurred along a suffix of
the path. However, the length of such a suffix is limited by n because other-
wise M has a deletion point that leads to a self-replicating state. Note that if
M is a top-down tree series transducer, then it may not delete (because reg-
ulated implies nondeletion). Thus, in this case the bound could be improved
to bheight(t)/nc 6 height(u). The formal proof of both bounds is straightforward
and hence omitted. With the given lower bound, it is clear that τM (T) converges
to 0̃ because height(u) 6 size(u) for every u ∈ T∆ and size(t) 6 mxheight(t) for
every t ∈ TΣ . Thus, τM is well-defined. ut

We will show the converse only for positive semirings. The main benefit
of this approach is that the problem can essentially be reduced to unweighted
transducers. We need an additional notion. The tree series transducer M is input-
linear if for every q ∈ Q, σ ∈ Σk, and w ∈ (Q × Xk)∗ such that µk(σ)q,w 6= 0̃
there exists at most one 1 6 j 6 |w| such that wj = (p, x) for every x ∈ Xk. Note
that bottom-up implies input-linear. The following lemma shows that every tree
series transducer can be turned into an input-nondeleting one (see Definition 8).
In fact, we will only need it for input-linear tree series transducers.

Tree-Series-to-Tree-Series Transformations 139

Lemma 12 (see [20, Lemma 1(1)]). If M is input-linear, then there exists
a bottom-up tree series transducer M ′ such that τM ′ = τM .

Proof. It follows directly by reconsidering the proof of [20, Lemma 1(1)]. The
top-down tree series transducer constructed in this proof will be the identity if
M is input-linear (as already noted before [20, Theorem 4]). Finally, note that
the completeness-assumption is not necessary in our case because our tree series
transducers are always polynomial [20]. ut

Consequently, we will only deal with bottom-up tree series transducers. For
those there exists a decomposition result [2, Lemma 5.6], which states that every
bottom-up tree series transducer can be decomposed into a relabeling tree series
transducer and a {0, 1}-weighted homomorphism tree series transducer (see [2]
for the definitions of those notions). Roughly speaking, the relabeling tree series
transducer annotates each node of the input tree by an applicable entry of µ. Such
relabeled input trees are called runs. The homomorphism then simply evaluates
the run thereby creating the output tree. We use this decomposition in the
following informal argument.

Lemma 13. Let M be a reduced bottom-up tree series transducer over a positive
semiring. If τM is well-defined, then M is regulated.

Proof. Suppose that M = (Q,Σ,∆,A, I, µ) is not regulated. Since A is posi-
tive, we restrict ourselves to the unweighted (i. e., Boolean-semiring weighted)
bottom-up tree transducer M ′ obtained by replacing every nonzero semiring co-
efficient in µ by 1. By a minor extension of [21, Corollary 3] we have supp(τM ′(t))
= supp(τM (t)) for every t ∈ TΣ . We will identify M and M ′ in the following
discussion. If M has a deletion point (p, q), then there exists a subtree u of a run,
which is deleted by the evaluation homomorphism, because p is accessible and
co-accessible. Note that we can replace u by any run that arrives in the state p
at the root. If there exists a self-replicating state r such that p � r, then it is
immediately clear that there exist infinitely many such runs, and consequently,
infinitely many suitable input trees. Since the subrun is deleted all those input
trees can be transformed to the same output tree. On the other hand, if M is
circular, then we can transform infinitely many input trees into the same output
tree by using the circle any number of times. The formal proof is again straight-
forward and omitted. ut

Theorem 14. Let M be a reduced input-linear tree series transducer over a
positive semiring. Then τM is well-defined if and only if M is regulated.

Proof. It follows from Theorem 11 and Lemmata 12 and 13. ut

References

1. Kuich, W.: Tree transducers and formal tree series. Acta Cybernet. 14(1) (1999)
135–149

140 A. Maletti

2. Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transfor-
mations. J. Autom. Lang. Combin. 7(1) (2002) 11–70

3. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3)
(1970) 257–287

4. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci.
4(4) (1970) 339–367

5. Thatcher, J.W.: Tree automata—an informal survey. In: Currents in the Theory
of Computing. Prentice Hall (1973) 143–172

6. Engelfriet, J.: Bottom-up and top-down tree transformations—a comparison.
Math. Systems Theory 9(3) (1975) 198–231

7. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems
Theory 10(1) (1977) 289–303

8. May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Proc. 11th
Int. Conf. Implementation and Application of Automata. Volume 4094 of LNCS.,
Springer (2006) 102–113

9. Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Com-
puter Science. World Scientific (1998)

10. Golan, J.S.: Semirings and their Applications. Kluwer Academic, Dordrecht (1999)
11. Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series.

Theoret. Comput. Sci. 27(1–2) (1983) 211–215
12. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems

32(1) (1999) 1–33
13. Kuich, W.: Formal power series over trees. In: Proc. 3rd Int. Conf. Developments

in Language Theory, Aristotle University of Thessaloniki (1998) 61–101
14. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.

J. Autom. Lang. Combin. 8(3) (2003) 417–463
15. Kuich, W.: Full abstract families of tree series I. In: Jewels Are Forever. Springer

(1999) 145–156
16. Maletti, A.: Pure and o-substitution. Int. J. Found. Comput. Sci. 18(4) (2007)

829–845
17. Salomaa, A., Soittala, M.: Theoretic Aspects of Formal Power Series. Springer

(1978)
18. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Volume 5 of Mono-

graphs in Theoretical Computer Science. An EATCS Series. Springer (1986)
19. Bozapalidis, S.: Context-free series on trees. Inform. and Comput. 169(2) (2001)

186–229
20. Maletti, A.: The power of tree series transducers of type I and II. In: Proc. 9th Int.

Conf. Developments in Language Theory. Volume 3572 of LNCS., Springer (2005)
338–349

21. Maletti, A.: Hierarchies of tree series transformations revisited. In: Proc. 10th Int.
Conf. Developments in Language Theory. Volume 4036 of LNCS., Springer (2006)
215–225

	Tree-Series-to-Tree-Series Transformations

