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Abstract. In this paper we implement bottom-up tree series trans-
ducers (tst) over the semiring A with the help of bottom-up weighted
tree automata (wta) over an extension of A. Therefore we firstly intro-
duce bottom-up DM-monoid weighted tree automata (DM-wta), which
essentially are wta using an operation symbol of a DM-monoid instead
of a semiring element as transition weight. Secondly, we show that DM-
wta are indeed a generalization of tst (using pure substitution). Thirdly,
given a DM-wta over a DM-monoid we construct a semiring A along
with a wta such that the wta computes a formal representation of the
semantics of the DM-wta.
Finally, we demonstrate the applicability of our presentation result by
deriving a pumping lemma for deterministic tst as well as determinis-
tic DM-wta from a pumping lemma for deterministic wta.

1 Introduction

In formal language theory several different accepting and transducing devices
were intensively studied [13]. A classical folklore result shows how to implement
generalized sequential machines (cf., e.g., [1]) on weighted automata [14,5,11]
with the help of the particular semiring (P(Σ∗),∪, ◦) of languages over the
alphabet Σ. Naturally, this semiring is not commutative, notwithstanding the
representation allows us to transfer results obtained for weighted automata to
generalized sequential machines. In this sense, the study of arbitrary weighted au-
tomata subsumes the study of generalized sequential machines.

We translate the above representation result to tree languages (cf., e.g., [4]),
i.e., we show how to implement bottom-up tree transducers [12,15] on bottom-up
weighted tree automata (wta) [3,9]. More generally, we even unearth a relation-
ship between bottom-up tree series transducers (tst) [7,8] using pure substitution
and wta. Therefore we first introduce bottom-up DM-monoid weighted tree au-
tomata (DM-wta), which essentially are wta where the weight of a transition is
an operation symbol of a DM-monoid [9] instead of a semiring element. These de-
vices can easily simulate both wta and tst by a proper choice of the DM-monoid
(cf. Proposition 5).
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Fig. 1. Generalization hierarchy

Next we devise a monoid A which is capable of emulating the effect of the
operation symbols of a DM-monoid D (cf. Theorem 6). Then we extend A to
a semiring using the addition of a semiring B for which D is a semimodule (cf.
Theorem 8). In this way we obtain an abstract addition (of B), which allows us
to perform the concrete addition (of D) later. Thereby we obtain a representa-
tion result, in which a tst or a DM-wta is presented as wta, which computes a
formal representation of the semantics of the tst or DM-wta.

For a tst M over a completely idempotent semiring A, e.g., all tree transduc-
ers, we can refine the constructed semiring with the help of a congruence relation
such that the factor semiring uses (an extension of) the concrete addition of A
(cf. Theorem 10). Then one can construct a wta such that it computes the same
tree series as M . Finally, we note that the construction of the semiring preserves
many beneficial properties (concerning the addition) of the original DM-monoid.

Hence the study of wta subsumes the study of tst over completely idempotent
semirings. In fact, the subsumption also holds for deterministic devices, i.e., the
study of deterministic wta subsumes the study of deterministic tst or DM-wta.
To illustrate the applicability of the relationship we transfer a pumping lemma [2]
for deterministic finite wta to both tst and DM-wta. This is possible, because the
semiring addition is irrelevant for deterministic wta and the determinism prop-
erty is preserved by the constructions. This yields that for a given tst or DM-
wta M we can construct a wta M ′ such that ‖M ′‖ = ‖M‖. Hence the pump-
ing lemma for wta can readily be transfered to tst and DM-wta.
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2 Preliminaries

The set {0, 1, 2, . . .} of all non-negative integers is denoted by IN and we let
IN+ = IN \ {0}. In the following let k, n ∈ IN. The interval [k, n] abbreviates
{ i ∈ IN | k ≤ i ≤ n } and we use [n] to stand for [1, n]. The set of all subsets
of a set A is denoted by P(A) and the set of all (total) mappings f : A −→ B
is denoted by BA as customary. Finally, the set of all words over A is displayed
as A∗, the length of a word w ∈ A∗ is denoted by |w|, and · is used to denote
concatenation as well as to delimit subwords.

2.1 Trees and Substitutions

A non-empty set Σ equipped with a mapping rkΣ : Σ −→ IN is called an oper-
ator alphabet. The set Σk = {σ ∈ Σ | rkΣ(σ) = k } denotes the set of operators
of arity k. Given a set V , the set TΣ(V ) of (finite, labeled, and ordered) Σ-trees
indexed by V is the smallest set T such that Σ0 ∪ V ⊆ T and for every k ∈ IN,
σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . The notation TΣ abbrevi-
ates TΣ(∅). The mapping pos : TΣ(V ) −→ P(IN∗) is defined for every v ∈ V ,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V ) by

pos(v) = {ε} pos(σ(t1, . . . , tk)) = {ε} ∪ { i·wi | i ∈ [k], wi ∈ pos(ti) } .

Moreover, height(t) = 1 + max{ |w| | w ∈ pos(t) } for every t ∈ TΣ(V ). The label
of t at w ∈ pos(t) is denoted by labt(w), i.e.,

labv(ε) = v labσ(t1,...,tk)(w) =

{
σ , if w = ε

labti(wi) , if w = i·wi with i ∈ [k]
.

For convenience, we assume a countably infinite set X = {xi | i ∈ IN+ } of for-
mal variables and its finite subsets Xn = {xi | i ∈ [n] }. A Σ-tree t ∈ TΣ(Xn)

is in the set T̂Σ(Xn), if and only if every x ∈ Xn occurs exactly once in t.
Given t ∈ TΣ(Xn) and t′1, . . . , t

′
n ∈ TΣ(V ), the expression t[t′1, . . . , t

′
n] de-

notes the (parallel) tree substitution of t′i for every occurrence of xi in t, i.e.,
xi[t
′
1, . . . , t

′
n] = t′i for every i ∈ [n] and

σ(t1, . . . , tk)[t′1, . . . , t
′
n] = σ(t1[t′1, . . . , t

′
n], . . . , tk[t′1, . . . , t

′
n])

for every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Xn). Let t ∈ T̂Σ(Xn) with n ≥ 1

and t′ ∈ T̂Σ(Xk). The non-identifying tree substitution of t′ into t, denoted

by t〈|t′|〉, yields a tree of T̂Σ(Xk+n−1) which is defined by

t〈|t′|〉 = t[t′, xk+1, . . . , xk+n−1] .

This way no variable of t′ is identified with a variable of t. To complete the def-
inition we let t〈|t′|〉 = t whenever t ∈ TΣ , i.e., n = 0. One can compare this with
the classical lambda-calculus, where (except for reordering of the arguments)

(λx1 . . . xn.t)(λx1 . . . xk.t
′)⇒ λx1 . . . xk+n−1.t〈|t′|〉 .
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2.2 Algebraic Structures

Given a carrier set A, an operator alphabet Ω, and a family I = ( Ik )k∈IN of

mappings Ik : Ωk −→ A(Ak) interpreting the symbols as operations on A, the
triple (A,Ω, I) is called an (abstract) Ω-algebra. The algebra (TΩ , Ω, I) where
Ik(ω) = ω for every k ∈ IN, ω ∈ Ωk, and ω(t1, . . . , tk) = ω(t1, . . . , tk) for
every t1, . . . , tk ∈ TΩ is called the initial (term) Ω-algebra. In the sequel we
often do not differentiate between the symbol and the actual operation. Usually
the context will provide sufficient information as to clarify which meaning is
intended. Further we occasionally omit the operator alphabet and instead list
the operators and identify nullary operators with elements of A.

Monoids are algebraic structures A = (A,⊗) with carrier set A, an asso-
ciative operation ⊗ : A2 −→ A, i.e., a1 ⊗ (a2 ⊗ a3) = (a1 ⊗ a2) ⊗ a3 for
every a1, a2, a3 ∈ A, and a neutral element 1 ∈ A, i.e., 1⊗ a = a = a⊗ 1 for ev-
ery a ∈ A. The neutral element is unique and denoted by 0A or 1A in the sequel.
The monoid is said to be commutative, if a1⊗ a2 = a2⊗ a1 for every a1, a2 ∈ A,
and it is said to be idempotent, if a = a ⊗ a for every a ∈ A. A commutative
monoid is called complete, if it is possible to define an (infinitary) operation

⊗
such that the following two additional axioms hold for all index sets I, J and all
families ( ai )i∈I of monoid elements.

(i)
⊗

i∈{j} ai = aj and
⊗

i∈{j1,j2} ai = aj1 ⊗ aj2 for j1 6= j2.

(ii)
⊗

j∈J
⊗

i∈Ij ai =
⊗

i∈I ai, if
⋃
j∈J Ij = I and Ij1 ∩ Ij2 = ∅ for j1 6= j2.

The relation v ⊆ A2 is defined by a1 v a2 if and only if there exists a ∈ A such
that a1 ⊗ a = a2. If v is a partial order, then A is said to be naturally ordered.
Finally, a naturally ordered and complete monoid is continuous, if for every
a ∈ A, index set I, and family ( ai )i∈I of elements ai ∈ A⊗

i∈E
ai v a for all finite E ⊆ I ⇐⇒

⊗
i∈I

ai v a .

Note that an idempotent monoid is continuous, if and only if it is completely
idempotent, i.e., it is complete and for every non-empty index set I and ele-
ment a ∈ A we have that

⊗
i∈I a = a.

Algebraic structures A = (A,⊕,�) made of two monoids (A,⊕) and (A,�)
with neutral elements 0A and 1A, respectively, of which the former monoid
is commutative and the latter monoid has 0A as an absorbing element, i.e.,
a � 0A = 0A = 0A � a for every a ∈ A, are called semirings (with one and
absorbing zero), if the monoids are connected via the distributivity laws, i.e.,
a1�(a2⊕a3) = (a1�a2)⊕(a1�a3) and (a1⊕a2)�a3 = (a1�a3)⊕(a2�a3) for
every a1, a2, a3 ∈ A. The semiring A is called (additively) idempotent, if (A,⊕) is
idempotent. Finally, a complete semiring consists of a complete monoid (A,⊕)
and satisfies the additional constraint that for every index set I, a ∈ A, and
family ( ai )i∈I of semiring elements⊕

i∈I
(a� ai) = a�

⊕
i∈I

ai and
⊕
i∈I

(ai � a) =
(⊕
i∈I

ai
)
� a .
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Let B = (B,+) be a commutative monoid, A = (A,⊕,�) be a semiring,
and · : A×B −→ B be a mapping. Then B is called a (left) A-semimodule
(via ·), if the conditions (i)-(iii) hold for all a, a1, a2 ∈ A and all b, b1, b2 ∈ B.

(i) a · 0B = 0B and 1A · b = b.
(ii) (a1 � a2) · b = a1 · (a2 · b).
(iii) a · (b1 + b2) = (a · b1) + (a · b2) and (a1 ⊕ a2) · b = (a1 · b) + (a2 · b).
Given that B and A are complete, B is called a complete A-semimodule, if for
every family ( bi )i∈I of monoid elements and family ( ai )i∈I of semiring elements
the additional axioms (iv) and (v) hold.

(iv) a ·
∑
i∈I bi =

∑
i∈I(a · bi)

(v)
(⊕

i∈I ai
)
· b =

∑
i∈I(ai · b)

Clearly each commutative monoid B = (B,+) is an IN-semimodule, where
the semiring of non-negative integers is given by (IN,+, ·), using the mixed op-
eration · : IN×B −→ B defined as n · b =

∑
i∈[n] b for every n ∈ IN and b ∈ B.

Note that
∑
i∈[0] b = 0B. Similarly, every commutative and continuous monoid

is a complete IN∞-semimodule (cf. [9]), where IN∞ = (IN ∪ {+∞},+, ·). Fur-
thermore, any idempotent and commutative monoid B is a B-semimodule where
B = ({0, 1},∨,∧) is the boolean semiring, and B is a complete B-semimodule, if
B additionally is completely idempotent (cf. [9]).

Let (D,Ω) be an Ω-algebra. The algebraic structure D = (D,+, Ω) is called
a distributive multi-operator monoid (DM-monoid) [9], if (D,+) is a commuta-
tive monoid with neutral element 0D and for every k ∈ IN, ω ∈ Ωk, i ∈ [k],
and d, d1, . . . , dk ∈ D
(i) ω(d1, . . . , di−1, 0D, di+1, . . . , dk) = 0D,
(ii) ω(d1, . . . , di−1, d+ di, di+1, . . . , dk) = ω(d1, . . . , d, . . . , dk) + ω(d1, . . . , dk).

For D to be complete we demand that (D,+) is complete and for every k ∈ IN,
ω ∈ Ωk, index sets I1, . . . , Ik, and family ( di )i∈Ij of monoid elements for every
j ∈ [k] the equality

ω(
∑
i1∈I1

di1 , . . . ,
∑
ik∈Ik

dik) =
∑
i1∈I1

· · ·
∑
ik∈Ik

ω(di1 , . . . , dik)

is satisfied. Finally, D is continuous, if D is complete and (D,+) is continuous.
The DM-monoid D is said to be an A-semimodule for some commutative

semiring A = (A,⊕,�), if (D,+) is an A-semimodule and for every k ∈ IN,
ω ∈ Ωk, a ∈ A, i ∈ [k], and d1, . . . , dk ∈ D the equality

ω(d1, . . . , di−1, a · di, di+1, . . . , dk) = a · ω(d1, . . . , dk)

holds. The DM-monoid D is a complete A-semimodule, if both A and D are
by itself complete and for every a ∈ A, d ∈ D, index set I, and family ( ai )i∈I
and ( di )i∈I of semiring and monoid elements, respectively, we have(⊕

i∈I
ai
)
· d =

∑
i∈I

(ai · d) and a ·
∑
i∈I

di =
∑
i∈I

(a · di) .

Clearly, every DM-monoid is an IN-semimodule.
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2.3 Formal Power Series and Tree Series Substitution

Any mapping ϕ : T −→ A from a set T into a commutative monoidA = (A,⊕) is
also called (formal) power series. The set of all power series is denoted by A〈〈T 〉〉.
We write (ϕ, t) instead of ϕ(t) for ϕ ∈ A〈〈T 〉〉 and t ∈ T . The sum ϕ1⊕ϕ2 of two
power series ϕ1, ϕ2 ∈ A〈〈T 〉〉 is defined pointwise by (ϕ1⊕ϕ2, t) = (ϕ1, t)⊕(ϕ2, t)
for every t ∈ T . The support supp(ϕ) of ϕ is defined by

supp(ϕ) = { t ∈ T | (ϕ, t) 6= 0A } .

If the support of ϕ is finite, then ϕ is said to be a polynomial. The power series
with empty support is denoted by 0̃A.

In case T = TΣ(V ) for some ranked alphabet Σ and set V , then ϕ is also
called (formal) tree series. Let A = (A,⊕,�) now be a complete semiring and
let n ∈ IN, ϕ ∈ A〈〈TΣ(Xn)〉〉, and ψ1, . . . , ψn ∈ A〈〈TΣ〉〉. We define the tree series
substitution of (ψ1, . . . , ψn) into ϕ, denoted by ϕ←− (ψ1, . . . , ψn), as

ϕ←− (ψ1, . . . , ψn) =
⊕

t∈TΣ(Xn),
t1,...,tn∈TΣ

(
(ϕ, t)�

⊙
i∈[n]

(ψi, ti)
)
t[t1, . . . , tn] .

Note that the order in the product is given by the order 1 < · · · < n of the
indices. Furthermore, note that irrespective of the number of occurrences of xi
the coefficient (ψi, ti) is taken into account exactly once, even if xi does not
appear at all in t. This notion of substitution is called pure IO-substitution [7].
Other notions of substitution, like o-IO-substitution [8] and OI-substitution [10],
have been defined, but in this paper we will exclusively deal with pure IO-
substitution.

2.4 Tree Automata and Tree Series Transducers

Let I and J be sets. An (I×J)-matrix over a set S is a mapping M : I × J −→ S.
The set of all (I×J)-matrices is denoted by SI×J and the (i, j)-entry with i ∈ I
and j ∈ J of a matrix M ∈ SI×J is usually denoted by Mi,j instead of M(i, j).
Let Σ be an operator alphabet, I be a non-empty set, and A = (A,⊕) be a com-

mutative monoid. Every family µ = (µk )k∈IN of mappings µk : Σk −→ AI×I
k

is
called tree representation over Σ, I, and A. A deterministic tree representation
additionally fulfills the restriction that for every σ ∈ Σk and i1, . . . , ik ∈ I there
exists at most one i ∈ I such that µk(σ)i,(i1,...,ik) 6= 0A.

A (bottom-up) weighted tree automaton (wta) is a system M = (I,Σ,A, F, µ)
comprising of a set I of states, a finite input ranked alphabet Σ, a semiring
A = (A,⊕,�), a vector F ∈ AI of final weights, and a tree representation µ over
Σ, I, and A. If I is infinite, thenAmust be complete, otherwise M is called finite.
Moreover, M is deterministic, if µ is deterministic. Let µ = (µk(σ) )k∈IN,σ∈Σk
where µk(σ) : (AI)k −→ AI is defined componentwise for every i ∈ I and
V1, . . . , Vk ∈ AI by

µk(σ)(V1, . . . , Vk)i =
⊕

i1,...,ik∈I
µk(σ)i,(i1,...,ik) � (V1)i1 � · · · � (Vk)ik .
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Let hµ : TΣ −→ AI be the unique homomorphism from (TΣ , Σ) to (AI ,µ). The
tree series ‖M‖ ∈ A〈〈TΣ〉〉 recognized by M is (‖M‖, t) =

⊕
i∈I Fi � hµ(t)i for

every t ∈ TΣ .
A (bottom-up) tree series transducer (tst) M is a system (I,Σ,∆,A, F, µ)

in which I is a set of states, Σ and ∆ are finite input and output ranked al-
phabets, respectively, A = (A,⊕,�) is a semiring, F ∈ A〈〈T∆(X1)〉〉I is a vector
of final outputs, and µ is a tree representation over Σ, I, and A〈〈T∆(X)〉〉 such

that µk(σ) ∈ A〈〈T∆(Xk)〉〉I×Ik for every k ∈ IN and σ ∈ Σk. If I is finite
and each tree series in the range of µk(σ) is a polynomial, then M is called fi-
nite, otherwise A must be complete. Finite tst over the Boolean semiring B
are also called tree transducer. The tst M is deterministic, if µ is deterministic.
Let µ = (µk(σ) )k∈IN,σ∈Σk where µk(σ) : (A〈〈T∆〉〉I)k −→ A〈〈T∆〉〉I is defined
componentwise for every i ∈ I and V1, . . . , Vk ∈ A〈〈T∆〉〉I by

µk(σ)(V1, . . . , Vk)i =
⊕

i1,...,ik∈I
µk(σ)i,(i1,...,ik)←− ((V1)i1 , . . . , (Vk)ik) .

Let hµ : TΣ −→ A〈〈T∆〉〉I be the unique homomorphism from the initial Σ-
algebra (TΣ , Σ) to (A〈〈T∆〉〉I ,µ). For every t ∈ TΣ the tree-to-tree-series trans-
formation (t-ts transformation) ‖M‖ : TΣ −→ A〈〈T∆〉〉 computed by M is
(‖M‖, t) =

⊕
i∈I Fi←− (hµ(t)i).

3 Establishing the Relationship

Inspired by the automaton definition of [9] we define DM-monoid weighted
tree automata (DM-wta). Roughly speaking, to each transition of a DM-wta
an operation symbol of a DM-monoid is associated.

Definition 1. A DM-monoid weighted tree automaton (DM-wta) is a system
M = (I,Σ,D, F, µ), where

– I is a non-empty set of states,
– Σ is a finite operator alphabet of input symbols,
– D = (D,+, Ω) is a DM-monoid,
– F ∈ (Ω1)I is the final weight vector, and
– µ = (µk )k∈IN is a tree representation over I, Σ, and Ω.

If I is infinite, then D must be complete. Otherwise, M is called finite. Finally,
M is deterministic, if µ is deterministic.

Unless stated otherwise let M = (I,Σ,D, F, µ) be a DM-wta over the DM-
monoid D = (D,+, Ω). In the following let k ∈ IN, σ ∈ Σk, i ∈ I, and
t = σ(t1, . . . , tk) ∈ TΣ . Moreover, all function arguments range over their respec-
tive domains. Next we define two semantics, namely initial algebra semantics [16]
and a semantics based on runs. In the latter the weight of a run is obtained by
combining the weights obtained for the direct subtrees with the help of the op-
eration symbol associated to the topmost transition. Nondeterminism is taken
care of by adding the weights of all runs on a given input tree.
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Definition 2. Let µ = (µk(σ) )k∈IN,σ∈Σk where µk(σ) : (DI)k −→ DI is de-
fined componentwise for every i ∈ I by

µk(σ)(V1, . . . , Vk)i =
∑

i1,...,ik∈I
µk(σ)i,(i1,...,ik)((V1)i1 , . . . , (Vk)ik) .

Let hµ : TΣ −→ DI be the unique homomorphism from (TΣ , Σ) to (DI ,µ). The
tree series recognized by M is defined as (‖M‖, t) =

∑
i∈I Fi(hµ(t)i).

Definition 3. A run on t ∈ TΣ is a mapping r : pos(t) −→ I. The set of
all runs on t is denoted by R(t). The weight of r is defined by the mapping
wtr : pos(t) −→ D which is defined for w ∈ pos(t) with labt(w) ∈ Σk by

wtr(w) = µk(labt(w))r(w),(r(w·1),...,r(w·k))(wtr(w·1), . . . ,wtr(w·k)) .

The run-based semantics of M is (|M |, t) =
∑
r∈R(t) Fr(ε)(wtr(ε)).

The next proposition states that the initial algebra semantics coincides with
the run-based semantics, which is mainly due to the distributivity of the DM-
monoid. Intuitively speaking, this reflects the property that nondeterminism
can equivalently either be handled locally (initial algebra semantics) or globally
(run-based semantics).

Proposition 4. For every DM-wta M we have ‖M‖ = |M |.

The next proposition demonstrates how powerful DM-wta are. In fact, every
wta and every tst can be simulated by a DM-wta.

Proposition 5. Let M1 be a wta and M2 be a tst.

(i) There exists a DM-wta M such that ‖M‖ = ‖M1‖.
(ii) There exists a DM-wta M such that ‖M‖ = ‖M2‖.

Proof. Since it is clear (cf. [7]), how to simulate a wta with the help of a tst, we
only show Statement (ii). Let M2 = (I2, Σ,∆,A, F2, µ2) be a tst,

Ω = {ϕ
k
| k ∈ IN, ϕ ∈ A〈〈T∆(Xk)〉〉 } ,

and let ϕ
k

: A〈〈T∆〉〉k −→ A〈〈T∆〉〉 be defined as

ϕ
k
(ψ1, . . . , ψk) = ϕ←− (ψ1, . . . , ψk) .

Then, by [9,7], D = (A〈〈T∆〉〉,⊕, Ω) is a DM-monoid, which is complete when-
ever A is. Hence we let M = (I2, Σ,D, F, µ) with Fi = F2(i)

1
and for every

i, i1, . . . , ik ∈ I2 we set µk(σ)i,(i1,...,ik) = (µ2)k(σ)i,(i1,...,ik)k
.

Note that in both statements of Proposition 5, M can be constructed to be
deterministic, whenever the input device, i.e., M1 or M2, is deterministic. Let
D = (D,Ω) be an Ω-algebra. In the following ω ranges over Ωk. We denote
by ΩX the set of all terms {ω(x1, . . . , xk) | ω ∈ Ωk }. We can define a monoid
which simulates the algebra D as follows. Recall that we use overlining, if we
want to refer to the term obtained by top-concatenation of the overlined symbol
with its arguments.
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Theorem 6. For every Ω-algebra (D,Ω) there exists a monoid (B,←) such
that D ∪ΩX ⊆ B and for all d1, . . . , dk ∈ D

ω(d1, . . . , dk) = ω(x1, . . . , xk)← d1 ← · · · ← dk .

Proof. Assume that Ω∩D = ∅ and let Ω′ = Ω∪D, where the elements of D are
treated as nullary symbols. Firstly, we define a mapping h : TΩ′(X) −→ TΩ′(X)
for every v ∈ D ∪X as follows.

h(v) = v

h(ω(t1, . . . , tk)) =

{
ω(h(t1), . . . , h(tk)) , if h(t1), . . . , h(tk) ∈ D
ω(h(t1), . . . , h(tk)) , otherwise

Note that h(t) ∈ T̂Ω′(Xn) whenever t ∈ T̂Ω′(Xn). Secondly, let

B = D∗ ∪
⋃

n∈IN+

D∗ · T̂Ω′(Xn) .

Next we define the operation ← : B2 −→ B for every w ∈ D∗, b ∈ B,
t ∈ T̂Ω′(Xn), and t′ ∈ D ∪ T̂Ω′(Xn) by

w ← b = w·b
w·t← ε = w·t

w·t← t′·b = w·(h(t〈|t′|〉))← b .

Roughly speaking, one can understand← as function composition where the
arguments are lambda-terms and the evaluation (which is done via h) is call-by-
value. Next we would like to extend this monoid to a semiring by introducing
the addition of the DM-monoid. However, the addition should also be able to
sum up terms, hence we first use an abstract addition coming from a semiring
for which the DM-monoid is a complete semimodule.

Let A = (A,⊕,�) be a semiring. We lift the operation ← : B2 −→ B to an
operation ← : A〈〈B〉〉2 −→ A〈〈B〉〉 by

ψ1 ← ψ2 =
⊕

b1,b2∈B

(
(ψ1, b1)� (ψ2, b2)

)
(b1 ← b2) .

Let the monoid D = (D,+) be a complete A-semimodule. Then we define the
sum of a series ϕ ∈ A〈〈D〉〉 (summed in D) by the mapping

∑
: A〈〈D〉〉 −→ D

with
∑
ϕ =

∑
d∈D(ϕ, d) · d. For a vector V ∈ A〈〈D〉〉I we let (

∑
V )i =

∑
Vi. By

convenience we identify the series 1A d with d.

Proposition 7. Let the DM-monoid D = (D,+, Ω) be a complete (A,⊕,�)-
semimodule and ϕ1, . . . , ϕk ∈ A〈〈D〉〉. Then

(i)
∑

(
⊕

i∈I ϕi) =
∑
i∈I
∑
ϕi for every family (ϕi )i∈I of series and

(ii) ω(
∑
ϕ1, . . . ,

∑
ϕk) =

∑(
ω(x1, . . . , xk)← ϕ1 ← · · · ← ϕk

)
.
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Thus we can construct a semiring with the following properties.

Theorem 8. For every continuous DM-monoid D = (D,+, Ω) there exists a
semiring (C,⊕,←) such that D ∪ΩX ⊆ C and for all d1, . . . , dk ∈ D

(i) ω(d1, . . . , dk) = ω(x1, . . . , xk)← d1 ← · · · ← dk,
(ii)

∑
(
⊕

i∈I di) =
∑
i∈I di.

Proof. Let A = (A,⊕,�) be a semiring such that D is a complete A-semimodule.
For example, A can always be chosen to be IN∞. By Theorem 6 there exists a
monoid (B,←) such that Statement (i) holds. Consequently, let C = A〈〈B〉〉 and
← : C2 −→ C be the extension of ← on B. Clearly, (C,⊕,←) is a semiring and
by Theorem 6 and Proposition 7 the Statements (i) and (ii) hold.

The semiring (A〈〈B〉〉,⊕,←) constructed in Theorem 8 will be denoted by
GA(D) in the sequel. We note that GA(D) is complete, because A is complete
(cf. [9]). Hence we are ready to state the first main representation theorem.

Theorem 9. Let M1 = (I1, Σ,D, F1, µ1) be a DM-wta and M2 be a tst.

– There exists a wta M = (I1, Σ,GA(D), F, µ) such that ‖M1‖ =
∑
‖M‖.

– There exists a wta M such that ‖M2‖ =
∑
‖M‖.

Proof. The second statement follows from the first and Proposition 5, so it re-
mains to prove the first statement. Let Fi = (F1)i(x1) and

µk(σ)i,(i1,...,ik) = (µ1)k(σ)i,(i1,...,ik)(x1, . . . , xk) .

Note that again M can be chosen to be deterministic, whenever the input
device is deterministic. The main reason for the remaining summation is the fact
that we do not know how to define sums like ω(x1, . . . , xk) + ω′(x1, . . . , xk) for
ω, ω′ ∈ Ωk. Hence, we finally consider tst, because there we know more about
the operations of Ω.

Theorem 10. Let A be a completely idempotent semiring and let M1 be a tst
over A. There exists a wta M such that ‖M‖ = ‖M1‖.

The last theorem admits a trivial corollary.

Corollary 11. For every bottom-up tree transducer M1 there exists a wta M
such that ‖M‖ = ‖M1‖.

4 Pumping Lemmata

In this section we would like to demonstrate how to make use of the repre-
sentation theorem derived in the previous section (Theorem 9). Unfortunately,
very few results exist for weighted tree automata over arbitrary semirings (in
particular: non-commutative semirings). However, in [2] a pumping lemma for
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deterministic finite wta is presented and we would like to translate this result to
deterministic finite tst and deterministic finite DM-wta.

In this section, let A = (A,⊕,�) be a semiring and D = (D,+, Ω) be a DM-
monoid. Let LdΣ(A) be the class of deterministically recognizable tree series, i.e.,
for every L ∈ LdΣ(A) there exists a deterministic finite wta M = (I,Σ,A, F, µ)
such that L = ‖M‖. Similarly, let T dΣ,∆(A) be the class of deterministically com-

putable t-ts transformations, i.e., for every τ ∈ T dΣ,∆(A) there exists a determin-

istic finite tst M = (I,Σ,∆,A, F, µ) such that τ = ‖M‖. Finally, let LdΣ(D) be
the class of deterministically recognizable DM-monoid tree series, i.e., for every
L ∈ LdΣ(D) there exists a deterministic finite DM-wta M = (I,Σ,D, F, µ) such
that L = ‖M‖.

Firstly, we state the original corollary of [2].

Corollary 12 (Corollary 5.8 of [2]). Let L ∈ LdΣ(A). There exists m ∈ IN
such that for every tree t ∈ supp(L) with height(t) ≥ m + 1 there exist trees

C,C ′ ∈ T̂Σ(X1) and t′ ∈ TΣ, and semiring elements a, a′, b, b′, d ∈ A such that

– t = C[C ′[t′]],
– height(C[t′]) ≤ m+ 1 and C 6= x1, and
– (L,C ′[Cn[t′]]) = a′ � an � d� bn � b for every n ∈ IN.

We have already noted that the determinism and finiteness properties are
preserved by all our constructions, so given a deterministic finite DM-wta M1,
we can construct a deterministic finite wta M such that

∑
‖M‖ = ‖M1‖ (cf.

Theorem 9). Since the addition of the semiring is irrelevant for deterministic de-
vices, we actually obtain ‖M‖ = ‖M1‖. Now we can apply the pumping lemma
(Corollary 12) to this wta and thereby obtain a pumping lemma for tree series
of LdΣ(D).

Theorem 13. Let L ∈ LdΣ(D) and Ω′ = Ω ∪ D. There exists m ∈ IN such

that for every t ∈ supp(L) with height(t) ≥ m + 1 there exist C,C ′ ∈ T̂Σ(X1),

t′ ∈ TΣ, and a, a′ ∈ T̂Ω′(X1), and d ∈ D such that

– t = C[C ′[t′]],
– height(C[t′]) ≤ m+ 1 and C 6= x1, and
– (L,C ′[Cn[t′]]) = a′ ← an ← d for every n ∈ IN.

Proof. The statement follows from Corollary 5.8 of [2] and Theorem 9.

With the help of Proposition 5 we can also obtain a pumping lemma for
deterministic finite tst in the very same manner.

Theorem 14. Let τ ∈ T dΣ,∆(A) be a t-ts transformation. There exists m ∈ IN
such that for every tree t ∈ supp(T ) with height(t) ≥ m + 1 there exist trees

C,C ′ ∈ T̂Σ(X1), t′ ∈ TΣ, and a, a′ ∈ A〈〈T∆(X1)〉〉, and c ∈ A〈〈T∆〉〉 such that

– t = C[C ′[t′]],
– height(C[t′]) ≤ m+ 1 and C 6= x1, and
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– (τ, C ′[Cn[t′]]) = a′ ← an ← c for every n ∈ IN.

Proof. The statement is an immediate consequence of Proposition 5 and Theo-
rem 13.

Finally, if we instantiate the previous theorem to the Boolean semiring, then
we obtain the classical pumping lemma for deterministic bottom-up tree trans-
ducers (cf. [6]).
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7. Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transfor-
mations. Journal of Automata, Languages and Combinatorics 7(1) (2002) 11–70
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