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Abstract Linear extended top-down tree transducers (or synchronous tree-
substitution grammars) are popular formal models of tree transformations that
are extensively used in syntax-based statistical machine translation. The ex-
pressive power of compositions of such transducers with and without regular
look-ahead is investigated. In particular, the restrictions of ε-freeness, strict-
ness, and nondeletion are considered. The composition hierarchy turns out to
be finite for all ε-free (all rules consume input) variants of these transducers
except for the nondeleting ε-free transducers. The least number of transducers
needed for the full expressive power of arbitrary compositions is presented. In
all remaining cases (incl. the nondeleting ε-free transducers) the composition
hierarchy does not collapse.
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1 Introduction

Top-down tree transducers are simple formal models that encode tree trans-
formations (i.e., relations between trees). They were introduced in [23,24] and
intensively studied thereafter (see [15,16,14] for an overview). Roughly speak-
ing, a top-down tree transducer processes the input tree symbol-by-symbol,
and specifies in its rules how to translate an input symbol into an output
tree fragment together with instructions on how to process the subtrees of the
input symbol. This asymmetry between input and output (single symbol vs.
tree fragment) was removed in extended top-down tree transducers (xt), which
were introduced and studied in [1,2]. In such a transducer the input side of a
rule can now also contain a tree fragment, in which each variable can occur at
most once as a placeholder for a subtree. In particular, the tree fragment can
even be just a variable, which matches every input tree, and such rules are
called ε-rules because they do not process any part of the input tree. In this
contribution we only consider linear xt (l-xt), in which the output side of each
rule contains each variable at most once as well. Restricted variants of l-xt are
used in most approaches to syntax-based machine translation [18,19].

We also add regular look-ahead [7] (i.e., the ability to check a regular
property for the subtrees in an input tree fragment) to l-xt, so our most ex-
pressive model is the linear extended top-down tree transducer with regular
look-ahead (l-xtR). Contrary to most of the literature [7,17] we present our
models as synchronous grammars [4] because we sometimes use the auxiliary
link structure in our proofs. Instead of variables in the input side and a state-
variable combination in the output side of a rule, we immediately only use
states with the restriction that all states that occur in the output side must
also occur in the input side. Moreover, each state that occurs in both sides,
must occur exactly once in the input side and exactly once in the output side,
which corresponds to the classical linearity condition. In this way, for each rule
the states establish links (a state links its occurrence in the output side with
its occurrence in the input side), which form an injection from the state occur-
rences in the output side to the state occurrences in the input side. Regular
look-ahead is specified only for the state occurrences (in the input side) that do
not participate in the injection (i.e., those states that exclusively occur in the
input side). A derivation of the grammar simultaneously generates an input
tree and an output tree, which can contain states that are (possibly) linked
by explicit links. A rule application expands two linked state occurrences at
the same time, thus generating new input and output fragments with new
(linked) state occurrences. Moreover, every unlinked state (in the input tree)
is expanded into a tree from its regular look-ahead. Example 2 shows an l-xtR,
for which we illustrate a few derivation steps in Fig. 2. The tree transformation
computed by the example l-xtR is described in Example 8. In the following, we
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use l-XTR and l-XT to denote the class of all tree transformations computed
by l-xtR and l-xt, respectively.

The expressive power of the various subclasses of l-XTR is already well
understood [17,13]. However, in practice complex systems are often speci-
fied with the help of compositions of tree transformations [22] because it is
much easier to develop (or train) small components that manage a part of
the overall transformation. Consequently, [19] and others declare that closure
under composition is a very desirable property for classes of tree transforma-
tions (especially in the area of natural language processing). If a class C of
tree transformations is closed under composition, then any composition chain
τ1 ; · · · ; τn of tree transformations τ1, . . . , τn of C can be replaced by a single
tree transformation τ ∈ C. If C represents the class of all tree transformations
computable by a device, then closure under composition means that we can
replace any composition chain specified by several devices by just a single de-
vice, which enables an efficient modular development. Unfortunately, neither
l-XTR nor l-XT is closed under composition [2,3,17].

In general, for a class C of tree transformations (that contains the identity
transformations) we obtain a composition hierarchy C ⊆ C2 ⊆ C3 ⊆ · · · , where
Cn denotes the class of n-fold compositions of transformations from C. The
class C might be closed under composition at power n (i.e., Cn = Cn+1) or its
composition hierarchy might be infinite (i.e., Cn ( Cn+1 for all n). The former
case yields that Cn = Cm for all m ≥ n, which means that the composition
hierarchy of C collapses at power n. In particular, C is closed under composi-
tion if its composition hierarchy collapses at power 1. We note that in practice
(e.g., in statistical machine translation) the classes that are closed under com-
position at a small power are also important because for such classes we can
limit the length of composition chains [22]. In this contribution, we investi-
gate the composition hierarchy of the classes l-XTR and l-XT together with
their subclasses determined by any combination of the properties: ε-freeness,
strictness, and nondeletion, which are abbreviated by ‘ 6ε’, ‘s’, and ‘n’, respec-
tively. Roughly speaking, ε-freeness requires that there are no ε-rules, strict-
ness guarantees that the output side of each rule contains at least one output
symbol, and nondeletion requires that for each rule exactly the same states
occur in the input and output side. We use the property abbreviations in front
of l-XTR and l-XT to obtain the class of all tree transformations computable
by such restricted l-xtR and l-xt, respectively. For instance, 6εsl-XTR denotes
the class of all tree transformations computed by ε-free and strict l-xtR.

It is known that none of our considered classes is closed under composi-
tion [3, Section 3.4]. In addition, it is known [3, Theorem 6.2] that the class
6εsnl-XT = 6εsnl-XTR is closed at power 2. We complete the picture as follows.
For each of the remaining classes, we either provide the least power at which
the class is closed under composition or show that the composition hierarchy of
the class is infinite (denoted by ∞). Our results (together with the mentioned
existing result) are presented in Table 1.

Our contribution is organized as follows. Section 2 recalls the necessary
concepts and introduces our notation. We continue in Section 3 with the for-
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Class Least power of closedness Stated in

6εsnl-XT = 6εsnl-XTR 2 [3, Theorem 6.2]

6εsl-XTR, 6εsl-XT 2 Theorem 26
6εl-XTR 3 Theorem 34
6εl-XT 4 Theorem 34

otherwise ∞ Theorem 45

Table 1 Characterization of the composition hierarchies.

mal introduction of our main model (l-xtR) including its syntax and seman-
tics and the restrictions that we consider later. In addition, we recall some
known equalities between certain fundamental classes of tree transformations
in preparation for our first main results. In Section 4 we give a power at which
the classes 6εsl-XT, 6εsl-XTR, 6εl-XT, and 6εl-XTR of tree transformations are
closed under composition (see Table 1). This is completed in Section 5, where
we conclude that these powers are minimal. In Section 6 we prove that the
composition hierarchy of each of the remaining classes is infinite. Finally, we
present the Hasse diagram of all the ε-free classes in Section 7.

2 Preliminaries

We denote the set of all nonnegative integers by N. In the following, let S be
a set. The power set of S is the set P(S) = {S′ | S′ ⊆ S} of all subsets
of S. For an element s of S, we identify the singleton set {s} with s, whenever
convenient; this should not lead to confusion. The cardinality of S is denoted
by |S|. The set of all words (finite sequences) over S is S∗ =

⋃
n∈N S

n, where
S0 = {ε} contains only the empty word ε. The length of a word w ∈ S∗ is
the unique n ∈ N such that w ∈ Sn. We write |w| for the length of w. The
concatenation of two words v, w ∈ S∗ is denoted by v.w or simply vw.

For sets S and T , every subset of S × T is a relation from S to T .
Given relations R1 ⊆ S × T and R2 ⊆ T × U , the inverse of R1 is the re-
lation R−1

1 = {(t, s) | (s, t) ∈ R1}, the domain of R1 is

dom(R1) = {s ∈ S | ∃t ∈ T : (s, t) ∈ R1} ,

and the composition of R1 and R2 is the relation

R1 ;R2 =
{

(s, u) | ∃t ∈ T : (s, t) ∈ R1, (t, u) ∈ R2
}
⊆ S × U .

Given a relation R ⊆ S×S, the powers of R are defined by R0 = {(s, s) | s ∈ S}
and Rn+1 = Rn ; R for n ∈ N. The reflexive and transitive closure of R
is R∗ =

⋃
n∈NR

n. These notions and notations are lifted to classes C1 and C2
of relations in the usual manner. Namely, we let C−1

1 = {R−1
1 | R1 ∈ C1} and
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C1 ; C2 = {R1 ; R2 | R1 ∈ C1, R2 ∈ C2}. Moreover, the powers of a class C are
defined by C1 = C and Cn+1 = Cn ;C for n ≥ 1. Note that we do not consider the
0-th power for classes. The composition hierarchy [resp. composition closure]
of C is the family (Cn | n ≥ 1) [resp. the class

⋃
n≥1 Cn]. The classes C of

tree transformations that we will discuss always contain the identity relations.
For such a class, Cn ⊆ Cn+1 for all n ≥ 1. If Cn = Cn+1, then C is closed
under composition at power n. For n = 1 we shorten this to just C is closed
under composition. If C is closed under composition at power n, then Cn is the
composition closure of C.

An alphabet Σ is a nonempty and finite set, of which the elements are
called symbols. The alphabet Σ is ranked if there additionally is a map-
ping rk : Σ → N that assigns a rank to each symbol. We let

Σk = {σ ∈ Σ | rk(σ) = k}

for every k ∈ N. Often the mapping ‘rk’ is obvious from the context, so we
typically denote ranked alphabets by Σ alone. If it is not obvious, then we use
the notation σ(k) to indicate that the symbol σ has rank k. For the rest of
this paper, Σ, ∆, and Γ will denote arbitrary ranked alphabets if not specified
otherwise.

For every set T , let Σ(T ) = {σ(t1, . . . , tk) | k ∈ N, σ ∈ Σk, t1, . . . , tk ∈ T}.
Instead of σ() with σ ∈ Σ0 we will simply write σ. Let S be a set of “states”
with S ∩Σ = ∅, to be used as additional leaf labels. The set TΣ(S) of Σ-trees
with states in S is the smallest set U such that S ⊆ U and Σ(U) ⊆ U . We
write TΣ for TΣ(∅), and any subset of TΣ(S) is a tree language. Given a unary
symbol γ ∈ Σ1 and a tree t ∈ TΣ(S), we write γk(t) for the tree γ(· · · γ(t) · · · ),
in which γ occurs k times on top of t.

The set pos(t) ⊆ N∗ of positions of t ∈ TΣ(S) is inductively defined
by pos(s) = {ε} for every s ∈ S and

pos
(
σ(t1, . . . , tk)

)
=
{
ε
}
∪

k⋃
i=1

{
iw | w ∈ pos(ti)

}
for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(S). The positions of t are
partially ordered by the prefix order � on N∗; i.e., for words w1, w2 ∈ N∗, we
have w1 � w2 if and only if there exists w′1 ∈ N∗ such that w1w

′
1 = w2. As usual

we write w1 ≺ w2 if w1 is a proper prefix of w2; i.e., w1 � w2 and w1 6= w2.
For words w1, w2 ∈ N∗, we denote the longest common prefix of w1 and w2
by lcp(w1, w2). Note that lcp(w1, w2) ∈ pos(t) for all w1, w2 ∈ pos(t) because
pos(t) is prefix-closed. The size |t| of a tree t ∈ TΣ(S) is |pos(t)|; i.e., the
number of its positions. Its height ht(t) is max{|w| | w ∈ pos(t)}; i.e., the
maximal length of its positions. Let t, u ∈ TΣ(S) and w ∈ pos(t). The label
of t at w is t(w), the subtree of t rooted at w is t|w, and the tree that is obtained
from t by replacing the subtree t|w at w by u is denoted by t[w ← u]. Formally,
s(ε) = s|ε = s and s[ε ← u] = u for every s ∈ S, and for all k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ(S) we have
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(i) if w = ε, then (
σ(t1, . . . , tk)

)
(w) = σ(

σ(t1, . . . , tk)
)
|w = σ(t1, . . . , tk)(

σ(t1, . . . , tk)
)
[w ← u] = u

(ii) if w = iv with 1 ≤ i ≤ k and v ∈ pos(ti), then(
σ(t1, . . . , tk)

)
(w) = ti(v)(

σ(t1, . . . , tk)
)
|w = ti|v(

σ(t1, . . . , tk)
)
[w ← u] = σ(t1, . . . , ti−1, ti[v ← u], ti+1, . . . , tk) .

For 1 ≤ i ≤ rk(t(w)), the tree t|wi is the i-th direct subtree below w in t.
For every subset ∆ ⊆ Σ ∪ S, we let pos∆(t) = {w ∈ pos(t) | t(w) ∈ ∆}. A
tree t ∈ TΣ(S) is linear (resp. nondeleting) in a subset Q ⊆ S of states if
|posq(t)| ≤ 1 (resp. |posq(t)| ≥ 1) for every q ∈ Q. Moreover,

states(t) = {s ∈ S | poss(t) 6= ∅}

is the set of states that occur in t. For every selection W ⊆ posS(t) of leaves
and mapping θ : W → P(TΣ(S)) assigning a tree language to each selected
leaf, we define the tree language

t
[
w ← θ(w) | w ∈W

]
=
{
t[w1 ← u1] · · · [wn ← un] | u1 ∈ θ(w1), . . . , un ∈ θ(wn)

}
⊆ TΣ(S) ,

where W = {w1, . . . , wn}. Similarly, given a selection Q ⊆ S of states and a
mapping θ : Q → P(TΣ(S)) assigning a tree language to each selected state,
we define the tree language

t
[
q ← θ(q) | q ∈ Q

]
= t
[
w ← θ′(w) | w ∈ posQ(t)

]
,

where θ′ : posQ(t)→ P(TΣ(S)) is given by θ′(w) = θ(t(w)) for all w ∈ posQ(t).
The latter operation is also called OI-substitution [10] of θ in t. To simplify the
notation, we fix the set X = {x1, x2, x3, . . . } of variables, which we assume to
be disjoint with all ranked alphabets considered in the paper. For every k ∈ N,
we let Xk = {xi | 1 ≤ i ≤ k}. Given t ∈ TΣ(X) and θ : Xk → TΣ(X), we
simply write t[θ(x1), . . . , θ(xk)] for t[x← θ(x) | x ∈ Xk].

A tree homomorphism from Σ to ∆ is a mapping ϕ : Σ → T∆(X) such
that ϕ(σ) ∈ T∆(Xk) for every k ∈ N and σ ∈ Σk. It is
– linear (resp. nondeleting) if for every k ∈ N and σ ∈ Σk the tree ϕ(σ) is

linear (resp. nondeleting) in Xk, and
– strict (resp. delabeling) if ϕ(σ) /∈ X (resp. ϕ(σ) ∈ X ∪ ∆(X)) for every
σ ∈ Σ.
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We abbreviate the above restrictions by ‘l’, ‘n’, ‘s’, and ‘d’, respectively. The
tree homomorphism ϕ induces a mapping ϕ∗ : TΣ → T∆ defined inductively
by ϕ∗(σ(t1, . . . , tk)) = ϕ(σ)[ϕ∗(t1), . . . , ϕ∗(tk)] for all k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ . As usual, we will from now on denote the induced mapping ϕ∗
by ϕ, and we will also call it a tree homomorphism. We denote by H the class
of all tree homomorphisms, and for any combination w of ‘l’, ‘n’, ‘s’, and ‘d’
we denote by w-H the class of all tree homomorphisms of type w. For instance,
snl-H is the class of all strict, nondeleting and linear tree homomorphisms.

In the following, we need the class of regular tree languages [15,16] and
some basic properties of that class. The set Reg(Σ) contains all regular tree
languages T ⊆ TΣ over the ranked alphabet Σ. A well-known folklore result
states that t[s ← θ(s) | s ∈ S] ∈ Reg(Σ) for every finite S, tree t ∈ TΣ(S),
and θ : S → Reg(Σ).

A bimorphism is a triple B = (ψ, T, ϕ) consisting of a regular tree lan-
guage T ∈ Reg(Γ ), an input tree homomorphism ψ : TΓ → TΣ , and an output
tree homomorphism ϕ : TΓ → T∆. The tree transformation τ(B) ⊆ TΣ × T∆
computed by the bimorphism B is the relation τ(B) = {(ψ(t), ϕ(t)) | t ∈ T},
which will also be called a bimorphism. Given two combinations v and w of
restrictions for tree homomorphisms, we let B(v, w) denote the class of all tree
transformations computed by bimorphisms B = (ψ, T, ϕ) such that ψ and ϕ
are tree homomorphisms of type v and w, respectively.

3 Linear extended top-down tree transducers

Our main model is the linear extended top-down tree transducer [1,2,19,18]
with regular look-ahead (l-xtR), which is based on the classical linear top-
down tree transducer without [23,24] and with regular look-ahead [7]. We will
present it as a synchronous grammar [4] because we will use an auxiliary struc-
ture, called the links, in later proofs. In synchronous grammars, occurrences
of equal states in the left- and right-hand side of a rule (representing the input
and output side, respectively) are (implicitly) linked and these links are made
explicit in a derivation. Each derivation step replaces such a pair of linked
state occurrences (at the same time) by the left- and right-hand side of a rule
for that state. In a rule of an l-xtR, the (implicit) links form an injection from
the state occurrences in the right-hand side to the state occurrences in the
left-hand side. Thus, some states might exclusively occur in the left-hand side.
Such states can be used to implement regular look-ahead, which restricts the
subtrees that are acceptable at these occurrences. It should be clear (see [17,
Theorem 4.4]) that there is no need to have regular look-ahead for the other
states in the left-hand side, as that can be incorporated into the (nondeter-
ministic) state behavior of the transducer.

Definition 1 [17, Section 2.2] A linear extended top-down tree transducer
with regular look-ahead (l-xtR) is a tuple M = (Q,Σ,∆,Q0, R, c), where
– Q is a finite set of states and Q0 ⊆ Q is a set of initial states,
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– Σ and ∆ are ranked alphabets of input and output symbols that are both
disjoint with Q,

– R ⊆ TΣ(Q) × Q × T∆(Q) is a finite set of rules such that for every
(`, q, r) ∈ R
– states(r) ⊆ states(`), i.e., all states that occur in r must occur in `, and
– ` and r are linear in states(r),

– c : Qla → Reg(Σ) is a mapping that assigns regular look-ahead to each
(potentially) deleted state, where Qla =

⋃
(`,q,r)∈R

(
states(`) \ states(r)

)
.

Formally, the set Qla depends on R (or M), but we prefer the simpler
notation and hope that it does not lead to confusion. ut

For a rule (`, q, r) ∈ R we say that ` and r are its left- and right-hand
side. In contrast to other definitions [17,13], we do not allow the same state to
occur several times in the right-hand side. However, with the help of a simple
renaming, each traditional linear extended top-down tree transducer can be
written in our slightly more restrictive format. Next, we recall some important
syntactic properties of our model. To this end, let M = (Q,Σ,∆,Q0, R, c) be
an l-xtR in the following. It is
– a linear extended top-down tree transducer (without look-ahead) [l-xt], if
c(q) = TΣ for every q ∈ Qla,

– a linear top-down tree transducer with regular look ahead [l-tR] if ` ∈ Σ(Q)
for every (`, q, r) ∈ R,

– a linear top-down tree transducer (without look ahead) [l-t] if it is both an
l-xt and an l-tR,

– ε-free (resp. strict) if ` /∈ Q (resp. r /∈ Q) for every (`, q, r) ∈ R,
– delabeling if ` ∈ Σ(Q) and r ∈ Q ∪∆(Q) for every (`, q, r) ∈ R,
– nondeleting if states(r) = states(`) for every (`, q, r) ∈ R (i.e., Qla = ∅),

and
– a finite-state relabeling [qr] if every rule of R is of the form(

σ(q1, . . . , qk), q, δ(q1, . . . , qk)
)

with k ∈ N, σ ∈ Σk, δ ∈ ∆k, and q, q1, . . . , qk ∈ Q.
Since the look-ahead component c is trivial for all l-xt, we simply omit it
from their representation. We note that every nondeleting l-xtR is an l-xt.
Moreover, all l-tR are automatically ε-free. Note also that every qr [finite-
state relabeling] is a strict nondeleting delabeling l-t. For clearness’ sake, we
sometimes write rules as ` q−→ r instead of (`, q, r) and, to simplify the notation
in examples and illustrations, we write ` q1,...,qk−−−−−→ r as a shorthand for the
k rules ` q1−→ r, . . . , `

qk−→ r. Note that for every (` q−→ r) ∈ R the trees
` and r are linear in states(r). Hence for every state p ∈ states(r) the sets
posp(`) and posp(r) are singletons that we identify with their unique element.

Example 2 Let us consider the l-xtR M1 = (Q,Σ,∆,Q0, R, c) given by
– Q = {?, p, q, qla, id, id′} and Q0 = {?},
– Σ = {σ(2), γ

(1)
1 , γ

(1)
2 } ∪∆ and ∆ = {σ(2)

1 , σ
(2)
2 , γ(1), α(0)},
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– R consists of the following rules

σ1(p, q) ?,p−→ σ1(p, q) σ2(id, id′) p,q−→ σ2(id, id′) γ1(p) p−→ p

σ(q, qla) q−→ q σ(qla, q) q−→ q γ2(q) q−→ q

γ(id) id,id′−→ γ(id) α
id,id′−→ α

– c : Qla → Reg(Σ) is given by c(qla) = T{γ2,α} because Qla = {qla}.
Obviously, c(qla) is a regular tree language. Additionally, we note that the
state id′ is essentially just a renaming of the state id (and both realize the
identity on T{γ,α}). The l-xtR M1 is an ε-free, delabeling, linear top-down tree
transducer with regular look-ahead. It is not strict and not nondeleting. ut

Next, we recall the semantics of the l-xtR M = (Q,Σ,∆,Q0, R, c), which is
(mostly) given by synchronous substitution. Formally, a link is just an element
(v, w) ∈ N∗ × N∗. While the links in a rule are implicit and established due
to occurrences of equal states, we need an explicit representation of the links
in the sentential forms computed by M . These links together with the trees
into which they point will form a dependency that is used in proofs later on.
Our derivation relation is thus defined over structures consisting of an input
tree, an output tree, and a set of links relating positions of those trees. Let us
formalize this notion, which we call form.

Definition 3 [12, Section 3] A form (over Q, Σ, and ∆) is a triple 〈ξ, L, ζ〉
consisting of an input tree ξ ∈ TΣ(Q), an output tree ζ ∈ T∆(Q), and a
set L ⊆ pos(ξ)× pos(ζ) of links relating positions in the two trees. ut

Next, we formalize the links in a rule ρ ∈ R. These links are added to
the links of a form whenever the rule ρ is applied in the derivation process.
Since these links are relative to the positions at which the rule is applied, two
parameters v, w ∈ N∗ indicate those two positions.

Definition 4 Let (` q−→ r) ∈ R and v, w ∈ N∗. The set of links of ` q−→ r for
the positions v and w is

linksv,w(` q−→ r) =
{(
v.posp(`), w. posp(r)

)
| p ∈ states(r)

}
. ut

Example 5 Let us compute two such sets of links. Whenever it is clear that
the relevant positions are in {1, . . . , 9}∗, we write positions without separating
dots; e.g., 211 stands for the position 2.1.1 of length 3.

links1,21
(
σ1(p, q) ?−→ σ1(p, q)

)
=
{

(11, 211), (12, 212)
}

links1,21
(
σ(qla, q) q−→ q

)
=
{

(12, 21)
}

We use grayed splines to indicate links in illustrations. The rules ρ1 and ρ2
above and their links, which are those of linksε,ε(ρ1) = {(1, 1), (2, 2)} and
linksε,ε(ρ2) = {(2, ε)}, are displayed in Fig. 1. ut
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σ1

p q

?−→
σ1

p q

σ

qla q

q−→ q

Fig. 1 Illustration of two rules with their implicit links.

The derivation process is started with a simple form 〈q0, {(ε, ε)}, q0〉 con-
sisting of an initial state q0 ∈ Q0 as input and output tree and the trivial link
relating both occurrences of q0 (i.e., the roots of the trees). The current form
can evolve in two ways. Either (i) we apply a rule (`, q, r) ∈ R to a pair (v, w)
of linked occurrences of the state q or (ii) we apply the look-ahead. In the
former case, such a rule application replaces the linked occurrences of q in the
input and output tree by the left- and right-hand side of the rule to obtain the
new input and output trees, respectively. The links of the derived form are ob-
tained by adding the links of the rule (`, q, r) for v and w to the current links.
Since we are interested in the links used during the derivation, we preserve
all links [in particular also the link (v, w) just used] and never remove a link.
In the latter case, in which we want to apply the look-ahead, we require an
occurrence of a state q at position v of the input tree that does not take part
in any link with an occurrence of q in the output tree. It turns out that such
a state q must be in Qla, and we can replace that occurrence of q by any tree
of the regular look-ahead tree language c(q). Note that such replacements are
independent, so different occurrences of q can be replaced by different look-
ahead trees of c(q). We can (potentially) continue these replacements until the
form is an element of TΣ × P(N∗ × N∗)× T∆.

Definition 6 [12, Section 3] Given two forms 〈ξ, L, ζ〉 and 〈ξ′, L′, ζ ′〉 overQ,
Σ, and ∆, we write 〈ξ, L, ζ〉 ⇒M 〈ξ′, L′, ζ ′〉 if one of the following two condi-
tions holds:
– there exist a rule (` q−→ r) ∈ R and a link (v, w) ∈ L∩

(
posq(ξ)× posq(ζ)

)
such that

ξ′ = ξ[v ← `] ζ ′ = ζ[w ← r] and L′ = L ∪ linksv,w(` q−→ r) ,

– there exist a state q ∈ Qla, a position v ∈ posq(ξ) with w /∈ posq(ζ) for all
links (v, w) ∈ L, and a tree t ∈ c(q) such that

ξ′ = ξ[v ← t] ζ ′ = ζ and L′ = L .

A form 〈ξ, L, ζ〉 is a sentential form (of M) if
〈
q0, {(ε, ε)}, q0

〉
⇒∗M 〈ξ, L, ζ〉

holds for some q0 ∈ Q0. The set of all sentential forms is denoted by SF(M).
ut

A few derivation steps using the l-xtR M1 of Example 2 are illustrated in
Fig. 2. Next, we define the tree transformation computed by an l-xtR.
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? ? ⇒M1

σ1

p q

σ1

p q
⇒M1

σ1

γ1

p

q
σ1

p q
⇒3

M1

σ1

γ1

σ2

α α

q
σ1

σ2

α α

q ⇒M1

σ1

γ1

σ2

α α

γ2

q

σ1

σ2

α α

q ⇒M1

σ1

γ1

σ2

α α

γ2

σ

qla q

σ1

σ2

α α

q

⇒M1

σ1

γ1

σ2

α α

γ2

σ

γ2

α

q

σ1

σ2

α α

q ⇒3
M1

σ1

γ1

σ2

α α

γ2

σ

γ2

α

σ2

α α

σ1

σ2

α α

σ2

α α

Fig. 2 Derivation using the l-xtR M1 of Example 2.

Definition 7 The l-xtR M computes the set D(M) of dependencies, which
are the sentential forms with state-free input and output trees. Hence

D(M) =
{
〈t, L, u〉 ∈ SF(M) | t ∈ TΣ , u ∈ T∆

}
.

Moreover, it computes the tree transformation τ(M), which is given by

τ(M) = {(t, u) | 〈t, L, u〉 ∈ D(M) for some L ⊆ N∗ × N∗} .

Two l-xtR M1 and M2 are equivalent if τ(M1) = τ(M2). ut

Example 8 Let M1 be the l-xtR of Example 2. Then〈
σ1
(
γ1(σ2(α, α)), γ2(σ(γ2(α), σ2(α, α)))

)
, L, σ1

(
σ2(α, α), σ2(α, α)

)〉
∈ D(M1)

where

L = {(ε, ε), (1, 1), (11, 1), (111, 11), (112, 12)} ∪
{(2, 2), (21, 2), (212, 2), (2121, 21), (2122, 22)} ,

which corresponds to the final sentential form of the derivation displayed in
Fig. 2. To describe the tree transformation computed by M1 in general, we
first need some terminology. A tree t ∈ TΣ is “special” if there exist a tree
c ∈ T{σ,γ2,α}(X1) and two trees t1, t2 ∈ T{γ,α} such that (i) t = c[σ2(t1, t2)],
(ii) c is linear and nondeleting in X1, and (iii) for all w ∈ pos(c) we have
c(w) = σ only if w ≺ posx1(c). For such a special tree, the subtree σ2(t1, t2)
is the “anchor” of t. Furthermore, the “left spine” of a tree t ∈ TΣ is the
set pos(t) ∩ {1}∗ of positions. For every i ∈ {1, 2} and position v on the left
spine, if t(v) = σi, then the subtree t|v2 is a “σi-rib” of t.
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The domain of τ(M1) consists of all trees t ∈ TΣ such that (i) the sequence
of labels of (the positions on) the left spine of t (from root to leaf) is in
σ1{σ1, γ1}∗σ2γ

∗α, (ii) each σ1-rib of t is special, and (iii) the unique σ2-rib
of t is in T{γ,α}. Such a tree t is only related to u in the transformation τ(M1),
where u is obtained from t by (i) removing all γ1-symbols on the left spine
and (ii) replacing each σ1-rib by its anchor. Consequently, τ(M1) is actually a
partial function. ut

Since every pair (t, u) ∈ τ(M) is ultimately created by (at least) one suc-
cessful derivation, leading to a dependency 〈t, L, u〉, we can inspect the links
in L, which associate subtrees of t with subtrees of u. Roughly speaking, the
links establish which parts of the output tree u were generated due to a particu-
lar part of the input tree t. Variants of this correspondence are called contribu-
tion in [9] and origin in [20]. Occasionally, we are not interested in the links. In
those cases we also write q ⇒∗M (t, u) provided that 〈q, {(ε, ε)}, q〉 ⇒∗M 〈t, L, u〉
for some L ⊆ N∗ × N∗. The next, basic lemma expresses the fact that the re-
placements in the derivations of an l-xtR are context-free.

Lemma 9 (context-freeness) For every state q ∈ Q, input tree t ∈ TΣ and
output tree u ∈ T∆, we have q ⇒∗M (t, u) if and only if there exists a rule
(`, q, r) ∈ R with pos(`) ⊆ pos(t) and pos(r) ⊆ pos(u) such that
– t(v) = `(v) for all v ∈ posΣ(`) and u(w) = r(w) for all w ∈ pos∆(r),
– `(v)⇒∗M (t|v, u|w) for every (v, w) ∈ linksε,ε(`

q−→ r), and
– t|v ∈ c(`(v)) for all v ∈ pos(`) with `(v) ∈ states(`) \ states(r). ut

This lemma can be used in proofs by induction on the length of a deriva-
tion because the derivations `(v) ⇒∗M (t|v, u|w) are shorter than the deriva-
tion q ⇒∗M (t, u).

Notation 10 To allow concise statements, we introduce the following short-
hands, which mirror those already defined for tree homomorphisms:

6ε = ε-free s = strict n = nondeleting d = delabeling .

We use these abbreviations in conjunction with l-xtR to restrict to transduc-
ers with the indicated properties. For example, snl-xt stands for “strict and
nondeleting linear extended top-down tree transducer” (without look-ahead).
We use the same abbreviations with the stem (i.e., the material behind the
hyphen) in capital letters for the corresponding classes of computed tree trans-
formations. For instance, snl-XT stands for the class of all tree transformations
computable by snl-xt, and QR denotes the class of all tree transformations
computable by qr. We already remarked that every nondeleting l-xtR is an
l-xt, so we have nl-XTR = nl-XT and similarly for the non-extended case and
for all defined subclasses. To write such statements concisely, we also use sets
of restrictions containing ‘6ε ’, ‘s’, ‘n’, and ‘d’ in front of the (potentially al-
ready restricted) stems. For instance, for every y ⊆ {6ε , s,n,d}, we denote by
yl-XTR the class of all tree transformations computed by l-xtR that obey all
restrictions in y. In particular, ∅l-XTR = l-XTR. In this manner we can simply
state ynl-XTR = ynl-XT for all y ⊆ {6ε, s,d}. ut
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We observe that yl-H ⊆ yl-T for every y ⊆ {s,n,d}; i.e., every linear
tree homomorphism is a linear top-down tree transformation (with the same
properties: ‘s’, ‘n’, ‘d’). In fact, if ϕ : TΣ → T∆ is a linear tree homomor-
phism, then an equivalent l-t Mϕ has the set Q = Xm ∪ {?} of states, where
m is the maximal rank of an element of Σ, the initial state ?, and all rules(
σ(x1, . . . , xk), q, ϕ(σ)

)
with σ ∈ Σk, k ∈ N, and q ∈ Q. It should be clear that

τ(Mϕ) = ϕ.
Next, we recall some results that relate l-xtR to bimorphisms. In [2] the

class B(snl, snl) is denoted by BI, and in [21] the class B(snl,nl) is denoted
by B(LCE,LC).

Proposition 11 ([2] and [21, Theorems 17 and 4])

6εsnl-XT = B(snl, snl) 6εnl-XT = B(snl,nl) l-XTR = B(nl, l) ut

Thus, every tree transformation in l-XTR is the composition of an inverse
tree homomorphism, the identity on a regular tree language, and a tree ho-
momorphism. We will need a similar, but simpler result that tells us how to
emulate an l-xtR by the composition of an inverse homomorphism and an l-tR.

Proposition 12 [13, Lemma 4.1 and Corollary 4.1] For every y ⊆ {s,n}

y 6εl-XTR = snl-H−1 ; yl-TR and yl-XTR = nl-H−1 ; yl-TR .

Proof. We prove both inclusions starting with (⊇). Let ϕ be a nondeleting
and linear tree homomorphism from Γ to Σ, and let M = (Q,Γ,∆,Q0, R, c)
be an l-tR. We construct the l-xtR M ′ = (Q,Σ,∆,Q0, R

′, c′) such that for each
rule

(
γ(q1, . . . , qk), q, r

)
in R (with k ∈ N, γ ∈ Γk, and q1, . . . , qk ∈ Q) the rule(

ϕ(γ)[q1, . . . , qk], q, r
)
is in R′. No further rules are in R′. Note that since ϕ is

nondeleting, we have states
(
ϕ(γ)[q1, . . . , qk]

)
= {q1, . . . , qk} and thus Qla is

the same for M ′ and M . For every q ∈ Qla we set c′(q) = ϕ(c(q)), which is
regular because, as is well known, the class of regular tree languages is closed
under linear tree homomorphisms. Using Lemma 9, it is straightforward to
show that q ⇒∗M ′ (t, u) if and only if there exists s ∈ TΓ with t = ϕ(s) and
q ⇒∗M (s, u). Thus τ(M ′) = {(ϕ(s), u) | (s, u) ∈ τ(M)} = ϕ−1 ; τ(M).

For the remaining inclusion (⊆), let M = (Q,Σ,∆,Q0, R, c) be an l-xtR.
We turn R into a ranked alphabet such that rk(` q−→ r) = |posQ(`)| for ev-
ery (` q−→ r) ∈ R. Using this ranked alphabet R we now construct the l-tR

M ′ = (Q,R ∪ Σ,∆,Q0, R
′, c) and the nondeleting and linear tree homomor-

phism ϕ from R ∪ Σ to Σ as follows. For every k ∈ N and rule ρ = (`, q, r)
in Rk with posQ(`) = {v1, . . . , vk} the rule ρ

(
`(v1), . . . , `(vk)

) q−→ r is in R′
and ϕ(ρ) = `[vi ← xi | 1 ≤ i ≤ k]. No further rules are in R′. Additionally,
ϕ(σ) = σ(x1, . . . , xk) for every k ∈ N and σ ∈ Σk, which yields that ϕ(t) = t
for every t ∈ TΣ . This latter part is needed for the look-ahead c. Clearly, if we
apply the construction in the above proof of the first inclusion to ϕ and M ′,
then we reobtain M . Hence ϕ−1 ; τ(M ′) = τ(M). ut
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We use this proposition to establish our first composition result, which
extends the classical composition result of [7] for linear top-down tree trans-
ducers with regular look-ahead. The only difference is that our first transducer
has extended left-hand sides (i.e., it is an l-xtR instead of just an l-tR).

Lemma 13 (composition on the right) For every y ⊆ {6ε, s,n}

yl-XTR ; yl-TR ⊆ yl-XTR .

Proof. Immediate from Proposition 12 and the composition closure result
(l-TR)2 ⊆ l-TR for linear top-down tree transducers with regular look-ahead;
it is straightforward to check that the proof of this result in [7, Theorem 2.11]
preserves the properties ‘s’ and ‘n’. ut

We conclude this section by discussing two results on regular look-ahead.
First, we recall that when deletion is allowed, regular look-ahead adds expres-
sive power.

Proposition 14 [17, Lemma 4.3] 6εsl-XTR 6⊆ l-XT

Proof. The counter-example presented in the proof of [17, Lemma 4.3], which
shows l-TR 6⊆ l-XT, is in sl-TR. ut

Second, we recall from [7, Theorem 2.6] that an l-tR (with look-ahead) can
be decomposed into two l-t (without look-ahead), of which the first is a finite-
state relabeling. This result can easily be generalized to extended top-down
tree transducers and their compositions.

Lemma 15 (look-ahead decomposition)(
yl-XTR)n ⊆ QR ; yl-XTn ⊆ yl-XTn+1

for every n ≥ 1 and y ⊆ {6ε, s,n}.

Proof. The second inclusion is immediate because QR ⊆ snl-T ⊆ 6εsnl-XT.
We prove the first inclusion by induction on n. For n = 1 an obvious gener-
alization of the construction in the proof of [7, Theorem 2.6], which preserves
‘s’ and ‘n’, can be used. For n ≥ 1, we have(

yl-XTR)n ; yl-XTR ⊆
(
yl-XTR)n ; QR ; yl-XT

⊆
(
yl-XTR)n ; yl-XT

⊆ QR ; yl-XTn+1 ,

where the case n = 1 is used in the first step, Lemma 13 in the second step,
and the induction hypothesis in the last step. ut

Lemma 15 implies that(
yl-XTR)n ⊆ yl-XTn+1 ⊆

(
yl-XTR)n+1

for every n ≥ 1 and y ⊆ {6ε, s,n}, so the classes yl-XTR and yl-XT have
the same composition closure. However, this closure is potentially achieved at
different powers.
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4 Four classes that are closed at a finite power

In this section, we show that the four classes 6εsl-XTR, 6εsl-XT, 6εl-XTR, and
6εl-XT are closed under composition at a finite power. We first recall a central
result of [3], which shows that none of them is closed under composition.

Proposition 16 [3, Section 3.4] 6εsnl-XT2 6⊆ l-XTR ut

We note that [3] states the even stronger result that the class B(snl, snl)2

is not contained in the class of all bimorphisms, which implies the above result
by Proposition 11. In [3] the class B(snl, snl) is denoted by B(s, c). The proof of
Theorem 31 in Section 5 implies Proposition 16 for 6εl-XTR instead of l-XTR,
which is all we need; for the implication see non-inclusion (ii) in the proof of
Theorem 47.

Next we recall another central result of [3]: the (very restricted) class
6εsnl-XT is not closed under composition (by the previous proposition), but is
closed under composition at power 2.

Proposition 17 [3, Theorem 6.2] 6εsnl-XT ( 6εsnl-XT2 = 6εsnl-XTn for
every n ≥ 3. ut

As we will show now, the (strict) classes 6εsl-XTR and 6εsl-XT are also
closed under composition already at the second power. We start with a lemma
that decomposes an 6εsl-xt into two transducers of which one is an 6εsnl-xt,
for which we have the composition closure result of Proposition 17. For the
benefit of Section 6, we make ε-freeness optional in the next two lemmas.

Lemma 18 (decomposition on the right) ysl-XT ⊆ ysnl-XT ; sdl-H for
every y ⊆ {6ε}.

Proof. This is proved for strict tree homomorphisms in [5, Section I-2-1-3-5].
The proof can be generalized to ysl-xt, as follows. Let M = (Q,Σ,∆,Q0, R)
be an sl-xt. Clearly, we may assume a separation of the states into deleted and
non-deleted states. More precisely, we assume m ≥ max{rk(σ) | σ ∈ Σ} such
that Q = Q1 ∪ {1, . . . ,m} with Q1 ∩ N = ∅ and for every rule (`, q, r) ∈ R
the following three conditions hold: (i) q ∈ Q1 and states(r) ⊆ Q1, (ii) ` is
linear in Q, and (iii) states(`) \ states(r) ⊆ {1, . . . ,m}. Let ∆′ be the ranked
alphabet {δn | δ ∈ ∆, 0 ≤ n ≤ m} with rk(δn) = rk(δ) + n. In addition, let
Σ = {σ | σ ∈ Σ} be the ranked alphabet with rk(σ) = rk(σ). We suppose
that ∆, ∆′, and Σ are pairwise disjoint. As intermediate alphabet we take
Γ = ∆ ∪∆′ ∪Σ, and let α ∈ ∆0 be an arbitrary nullary output symbol. Now
we first construct the strict delabeling tree homomorphism ϕ from Γ to ∆
such that (i) ϕ(δn) = ϕ(δ) = δ(x1, . . . , xk) for every δ ∈ ∆k and 0 ≤ n ≤ m
and (ii) ϕ(σ) = α for every σ ∈ Σ. Thus, ϕ turns every δn into δ and deletes
its last n arguments.

For every rule (`, q, r) ∈ R there exist k ∈ N, δ ∈ ∆, and r1, . . . , rk ∈ T∆(Q)
such that r = δ(r1, . . . , rk) because M is strict. We construct the nondeleting
sl-xt M ′ = (Q,Σ, Γ,Q0, R

′) such that R′ contains the rule(
`, q, δn(r1, . . . , rk, i1, . . . , in)

)
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for every rule
(
`, q, δ(r1, . . . , rk)

)
∈ R, where states(`)\states(r) = {i1, . . . , in}

with i1 < · · · < in. This is a proper rule because ` is linear in Q. Moreover,
R′ contains the rules

(
σ(1, . . . , k), i, σ(1, . . . , k)

)
for all k ∈ N, σ ∈ Σk, and

i ∈ {1, . . . ,m}. The set R′ contains no further rules. Thus, M ′ simulates M
but attaches the subtrees that are deleted by M to the root of the right-hand
side of each rule. It is straightforward to show that τ(M ′) ;ϕ = τ(M). Clearly,
if M is ε-free, then so is M ′. ut

The next lemma is our second composition result, which is more restricted
than the first, which is Lemma 13, but sufficiently powerful in combination
with Lemma 18.

Lemma 19 (composition on the left) sdl-H ; ysl-XT ⊆ ysl-XT for every
y ⊆ {6ε}.

Proof. Let ϕ : TΣ → TΓ be a strict delabeling linear tree homomorphism,
and let M = (Q,Γ,∆,Q0, R) be a strict l-xt. Moreover, let Q′ = Q∪{?} for a
new state ? /∈ Q. We extend ϕ to a tree transformation ϕ′ : TΣ(Q′)→ TΓ (Q′)
such that ϕ′(q′) = q′ for every q′ ∈ Q′ and

ϕ′
(
σ(t1, . . . , tk)

)
= ϕ(σ)

[
ϕ′(t1), . . . , ϕ′(tk)

]
for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Q′). We construct the l-xt
M ′ = (Q′, Σ,∆,Q0, R

′) such that for each rule (`, q, r) ∈ R we have all rules
(`′, q, r) in R′ for which (i) `′ ∈ TΣ(Q′) is linear in Q, (ii) ϕ′(`′) = `, and
(iii) |posΣ(`′)| = |posΓ (`)|. No further rules are in R′.

Let us quickly consider a small example. Suppose that R contains the rule
γ
(
α, γ′(q)

) q−→ δ(q) and we have (i) ϕ(σ) = γ(x3, x2), (ii) ϕ(σ′) = γ′(x1),
and (iii) ϕ(α) = α with {α(0), (σ′)(2), σ(3)} ⊆ Σ. Then R′ contains the rule
σ
(
?, σ′(q, ?), α

) q−→ δ(q).
It should be clear that τ(M ′) = ϕ ; τ(M). Finally, we observe that M ′ is

strict because it has the same right-hand sides of rules as M , and it is ε-free
if M is ε-free because ϕ is strict. ut

The previous two lemmas are now used to prove that 6εsl-XTR and 6εsl-XT
are closed under composition at power 2.

Theorem 20
(
6εsl-XTR)n ⊆ 6εsnl-XT ; 6εsl-XT ⊆ 6εsl-XT2 for every n ≥ 1.

Proof. The second inclusion is trivial because 6εsnl-XT ⊆ 6εsl-XT. For the
first inclusion, we first prove that 6εsl-XTn ⊆ 6εsnl-XTn ; sdl-H. The idea of
this inclusion is that the first 6εsl-xt splits off a tree homomorphism of type
‘sdl’ on the right (using Lemma 18), which is then absorbed on the left by
the second 6εsl-xt (using Lemma 19). This auxiliary statement is proved by
induction. For n = 1, we have to prove 6εsl-XT ⊆ 6εsnl-XT ; sdl-H, which is the
statement of Lemma 18. For n ≥ 1 we obtain that

6εsl-XTn+1 = 6εsl-XT ; 6εsl-XTn ⊆ 6εsnl-XT ; sdl-H ; 6εsl-XTn
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⊆ 6εsnl-XT ; 6εsl-XTn ⊆ 6εsnl-XTn+1 ; sdl-H

where we used Lemma 18 in the second step, Lemma 19 in the third step,
and the induction hypothesis in the last step. From Lemma 15 and the above
inclusion we now conclude that(

6εsl-XTR)n ⊆ QR ; 6εsl-XTn ⊆ QR ; 6εsnl-XTn ; sdl-H .

Since QR ⊆ 6εsnl-XT, this implies that(
6εsl-XTR)n ⊆ 6εsnl-XTn+1 ; sdl-H ⊆ 6εsnl-XT2 ; sdl-H ,

where the second inclusion is due to Proposition 17. Since sdl-H ⊆ sl-T we can
apply Lemma 13 to obtain that

6εsnl-XT2 ; sdl-H ⊆ 6εsnl-XT2 ; sl-T ⊆ 6εsnl-XT ; 6εsl-XTR .

Applying Lemmas 15 and 13 once more, we obtain

6εsnl-XT ; 6εsl-XTR ⊆ 6εsnl-XT ; QR ; 6εsl-XT ⊆ 6εsnl-XTR ; 6εsl-XT .

Since 6εsnl-XTR = 6εsnl-XT we have proved the statement. ut

Up to now, we have shown that the (strict) classes 6εsl-XTR and 6εsl-XT
are closed under composition at the second power. In the rest of this section,
we will show that the classes 6εl-XTR and 6εl-XT are closed under composition
at the third and fourth power, respectively. We start with a normal form for
6εl-xtR, in which every rule that violates the strictness condition is simulated
by a chain of rules for a (non-extended) l-tR.

Lemma 21 (non-strict normal form) For every 6εl-xtR (Q,Σ,∆,Q0, R, c)
there exists an equivalent 6εl-xtR (Q′, Σ,∆,Q0, R

′, c′) such that ` ∈ Σ(Q′) for
every rule (`, q, r) ∈ R′ with r ∈ Q′.

Proof. Let M = (Q,Σ,∆,Q0, R, c) and M ′ = (Q′, Σ,∆,Q0, R
′, c′). Every

(non-strict) rule ρ = (`, q, r) in R with r ∈ Q can be simulated by a finite
set R′ρ of l-tR rules as follows. We consider new states of the form 〈ρ, v〉 where
v ∈ pos(`) \ {ε, posr(`)}. Moreover, we let 〈ρ, ε〉 = q and 〈ρ, posr(`)〉 = r. For
every position v ∈ pos(`) such that v ≺ posr(`), we have the following rule
in R′ρ:

`(v)
(
〈ρ, v1〉, . . . , 〈ρ, vk〉

) 〈ρ,v〉−→ 〈ρ, vi〉 ,
where k = rk(`(v)) and i ∈ N is the unique integer such that vi � posr(`).
The look-ahead for every new state 〈ρ, vj〉 with j 6= i is defined by

c′(〈ρ, vj〉) = (`|vj)
[
q′ ← c(q′) | q′ ∈ states(`|vj)

]
.

We note that states(`|vj) ⊆ Qla. The tree language c′(〈ρ, vj〉) is regular by
the folklore result stating that OI-substitution preserves regularity, which we
mentioned at the end of Section 2. Recall that in OI-substitution, different
occurrences of the same state q′ can be replaced by different trees of c(q′).
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The rules in R′ρ simulate the rule ρ by consuming the left-hand side ` position
by position, following the path from the root to the unique occurrence of r.
Thus, we define the set Q′ of states of M ′ to consist of Q together with all
the mentioned new states. The set R′ of rules consists of all strict rules in R
together with the rules in R′ρ for all non-strict rules ρ in R. The look-ahead c′
equals c on the states in Qla, and is defined as above for the new states. Then
τ(M ′) = τ(M) and M ′ satisfies the requirements. ut

Example 22 We illustrate the construction on the example rule

ρ = σ
(
σ(p, p), σ(α, r)

) q−→ r ,

for which p, q, r ∈ Q and the relevant look-ahead is c(p) = T . Corresponding
to this rule, M ′ has the following two rules in R′ρ:

σ
(
〈ρ, 1〉, 〈ρ, 2〉

) q−→ 〈ρ, 2〉 and σ
(
〈ρ, 21〉, r

) 〈ρ,2〉−→ r

because q = 〈ρ, ε〉 and r = 〈ρ, 22〉. Moreover, we have

c′(〈ρ, 1〉) = {σ(t1, t2) | t1, t2 ∈ T}

and c′(〈ρ, 21〉) = {α} for the look-ahead c′ of M ′. ut

The next lemma is similar to Lemma 18, in that it demonstrates how to
decompose an 6εl-xtR into a delabeling l-tR and an 6εsl-xtR, for which we now
have the composition closure result of Theorem 20. The proof is, however,
more complicated than the one of Lemma 18. Since the delabeling property is
not essential in the following, we actually state a weaker variant.

Lemma 23 (decomposition on the left) 6εl-XTR ⊆ l-TR ; 6εsl-XTR

Proof. Let M = (Q,Σ,∆,Q0, R, c) be an ε-free l-xtR such that ` ∈ Σ(Q)
for every rule (`, q, r) ∈ R with r ∈ Q. We can assume this normal form
without loss of generality by Lemma 21. Additionally, we may assume that
|Q| ≥ m, where m = max{rk(σ) | σ ∈ Σ}. We will construct an l-tR M1 and
a strict 6εl-xtR M2 such that τ(M1) ; τ(M2) = τ(M). Intuitively speaking, the
transducerM1 processes the input by nondeterministically executing a number
of non-strict rules ofM . Whenever it executes two consecutive non-strict rules,
M1 simulates the state behavior of M . Moreover, M1 marks the positions in
the (processed) input where it has applied a sequence of consecutive non-strict
rules by indicating the corresponding state transition ofM . The transducerM2
then uses these markings to execute the missing strict rules of M .

As intermediate ranked alphabet we use Γ = Σ ∪ (Σ×Q×Q), where each
triple 〈σ, q′, q〉 ∈ Σ×Q×Q has the same rank as σ. We fix m pairwise different
states p1, . . . , pm ∈ Q. We construct the l-tR M1 = (Q1, Σ, Γ, {p1}, R1, c1) with
states Q1 = Q ∪ (Q×Q) and the set R1 of rules consists of:
(i) the rule σ(p1, . . . , pk) p−→ σ(p1, . . . , pk) for every k ∈ N, σ ∈ Σk, and

p ∈ Q,
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(ii) the two rules

σ(q1, . . . , qi−1, 〈q, qi〉, qi+1, . . . , qk) p−−−→ 〈q, qi〉

σ(q1, . . . , qi−1, 〈q′, qi〉, qi+1, . . . , qk) 〈q
′,q〉−−−→ 〈q′, qi〉

for every non-strict rule σ(q1, . . . , qk) q−→ qi in R with 1 ≤ i ≤ k and
every p, q′ ∈ Q, and

(iii) the rule σ(p1, . . . , pk) 〈q
′,q〉−−−→ 〈σ, q′, q〉(p1, . . . , pk) for every k ∈ N, σ ∈ Σk,

and q′, q ∈ Q.
We note that Qla

1 ⊆ Qla. The look-ahead mapping c1 : Qla
1 → Reg(Σ) is given

by c1(q) = c(q) for every q ∈ Qla
1 . Actually, M1 is delabeling.

Next, we construct the 6εsl-xtR M2 = (Q2, Γ,∆,Q0, R
′ ∪ R2, c2) with the

set Q2 = Q of states, the set R′ = {(`, q, r) ∈ R | r /∈ Q} of strict rules of M ,
and the set

R2 =
{
〈σ, q′, q〉(`1, . . . , `k) q′−→ r | q′ ∈ Q,

(
σ(`1, . . . , `k) q−→ r

)
∈ R′

}
.

Again, Qla
2 ⊆ Qla, where Qla

2 contains the look-ahead states of M2, so we
just set the look-ahead mapping c2 : Qla

2 → Reg(Γ ) to c2(q) = c(q) for every
q ∈ Qla

2 .
Intuitively, it should be clear that τ(M1);τ(M2) = τ(M). WheneverM2 ar-

rives in state q′ at an input position with label 〈σ, q′, q〉, it knows that M1 has
applied a sequence of non-strict rules of M that led from state q′ to state q,
and thus M2 can continue acting as if it is already in state q. Formally, it
can be proved that, for every state q ∈ Q, input tree t ∈ TΣ , and output
tree u ∈ T∆, we have q ⇒∗M (t, u) if and only if there exists s ∈ TΓ such that
p1 ⇒∗M1

(t, s) and q ⇒∗M2
(s, u). The proof is by induction on the length of

the derivations using Lemma 9. It uses several elementary properties of the
derivations of M1 and M2 such as (for all p, q, q′, q′′ ∈ Q):
– if p1 ⇒∗M1

(t, s), then p⇒∗M1
(t, s),

– if p1 ⇒∗M1

(
t, σ(s1, . . . , sk)

)
, then 〈q′, q〉 ⇒∗M1

(
t, 〈σ, q′, q〉(s1, . . . , sk)

)
,

– p1 ⇒∗M1

(
t, 〈σ, q′, q〉(s1, . . . , sk)

)
if and only if

〈q′′, q′〉 ⇒∗M1

(
t, 〈σ, q′′, q〉(s1, . . . , sk)

)
, and

– q ⇒∗M2

(
σ(s1, . . . , sk), u

)
if and only if q′ ⇒∗M2

(
〈σ, q′, q〉(s1, . . . , sk), u

)
. ut

Lemmas 23 and 13 now enable us to prove that the class 6εl-XTR is closed
under composition at power 3. The proof is similar to, but easier than, the
one of Theorem 20.

Theorem 24
(
6εl-XTR)n ⊆ l-TR ; 6εsl-XT2 ⊆

(
6εl-XTR)3 for every n ≥ 1.

Proof. Again, the second inclusion is trivial because l-TR and 6εsl-XT are
subclasses of 6εl-XTR. Similar to the proof of Theorem 20, the idea of the
first inclusion is that the last 6εl-xtR splits off an l-tR on the left (using
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Class Closed at power Stated in

6εsl-XTR, 6εsl-XT 2 Theorem 20
6εl-XTR 3 Theorem 24
6εl-XT 4 Corollary 25

Table 2 Summary of the results of Section 4.

Lemma 23), which is then absorbed on the right by the penultimate 6εl-xtR

(using Lemma 13). Formally we prove by induction on n that

(6εl-XTR)n ⊆ l-TR ; ( 6εsl-XTR)n ,

which suffices by Theorem 20. For n = 1 we obtain 6εl-XTR ⊆ l-TR ; 6εsl-XTR,
which is stated in Lemma 23. In the induction step for n ≥ 1, we obtain(

6εl-XTR)n+1 =
(
6εl-XTR)n ; 6εl-XTR ⊆

(
6εl-XTR)n ; l-TR ; 6εsl-XTR

⊆
(
6εl-XTR)n ; 6εsl-XTR ⊆ l-TR ;

(
6εsl-XTR)n+1

,

where we use Lemma 23 in the second step, Lemma 13 in the third step, and
the induction hypothesis in the last step. ut

It is immediate from Theorem 24 and Lemma 15 that the class 6εl-XT
is closed under composition at power 4. Thus, in contrast to Theorem 20,
look-ahead influences the power of closedness in the non-strict case, as will be
proved in the next section.

Corollary 25 6εl-XTn ⊆ 6εl-XT4 for every n ≥ 1. ut

A summary of our results concerning the powers at which the considered
classes are closed under composition is provided in Table 2. In the next section,
we will demonstrate that these powers are indeed the least ones with this
property.

5 Least power of closedness

In this section, we will determine the least power at which the composition
closure is achieved for the classes 6εl-XTR, 6εsl-XTR, 6εsl-XT, and 6εl-XT, which
are all computed by certain ε-free l-xtR. For the strict classes the least power
is 2, as stated in the next theorem. In the remainder of this section we consider
the non-strict classes.

Theorem 26

6εsl-XT ( 6εsl-XTR ( (6εsl-XTR)2 = 6εsl-XT2 = 6εsl-XTn = (6εsl-XTR)n

for every n ≥ 3.



Composition Closure of Linear Extended Top-down Tree Transducers 21

Proof. The first inclusion is trivial and its strictness follows from Propo-
sition 14. The second inclusion is also trivial and its strictness follows from
Proposition 16, which shows that the class 6εsl-XTR is not closed under com-
position. The three equalities are proved in Theorem 20. ut

In the following, we will use the computed dependencies in D(M), for which
we recall some important properties from [11]. Let L ⊆ N∗ × N∗ be a set of
links [e.g., the set L of links in a dependency 〈t, L, u〉 ∈ D(M)]. The elements
of dom(L) are also called link origins of L. For the next definition, proposition
and lemma, let M = (Q,Σ,∆,Q0, R, c) be the considered ε-free l-xtR.

Definition 27 [11, Definitions 4 and 5] A set L ⊆ N∗ × N∗ of links is
– strictly input hierarchical if for all links (v1, w1), (v2, w2) ∈ L
• v1 ≺ v2 implies w1 � w2 and
• v1 = v2 implies w1 � w2 or w2 � w1,

– input link-distance bounded by b ∈ N if for all link origins v1, v2 ∈ dom(L)
with v1 ≺ v2 and |v2| − |v1| > b there exists a link origin v ∈ dom(L) such
that v1 ≺ v ≺ v2 and |v| − |v1| ≤ b.

The set D(M) of dependencies has those properties if for each dependency
〈t, L, u〉 ∈ D(M) the set L of links has them. We also say that D(M) is input
link-distance bounded if there exists an integer b ∈ N such that it is input
link-distance bounded by b. ut

We assume that the corresponding properties are defined for the output
side, using L−1 instead of L. For example, L is strictly output hierarchical
if L−1 is strictly input hierarchical. The set D(M) computed by the ε-free
l-xtR M always has these properties as shown in [11].

Proposition 28 [11, Corollary 1 and Theorem 2] The set D(M) of de-
pendencies is strictly input and output hierarchical, and it is input and output
link-distance bounded. ut

These properties should be intuitively clear. They are discussed in more
detail in [11]. Roughly speaking, the set L of links of a sentential form of M is
strictly input and output hierarchical because links cannot cross each other.
In addition, if b is the maximal height of the left-hand (resp. right-hand) side
of a rule of M , then L is obviously input (resp. output) link-distance bounded
by b. Next, we observe some simple consequences of Proposition 28, which we
will use later. Whenever we mention ‘(in)comparable’ in the following, we refer
to the partial prefix order �.

Lemma 29 Let 〈t, L, u〉 ∈ D(M) be a dependency, and let D(M) be input
link-distance bounded by b.
(i) For all links (v, w), (v′, w′) ∈ L, v and v′ are incomparable if and only if

w and w′ are incomparable.
(ii) For all positions v1, v2 ∈ pos(t) and link origins v0, v3 ∈ dom(L) with

v0 � v1 ≺ v2 � v3 and |v2|−|v1| > b, there exists a link origin v ∈ dom(L)
such that v1 ≺ v ≺ v2 and |v| − |v1| ≤ b.
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σ

t α

σ

u β

Fig. 3 Links with inverted arrows.

Proof. We start with the if-direction in the first item. Without loss of gen-
erality, suppose that v � v′. Then by the definition of strictly input hierarchi-
cal, we know that w and w′ are comparable. The other direction is similarly
true by the definition of strictly output hierarchical. We prove the second
item by induction on |v3| − |v0| as follows. Since v0 � v1 ≺ v2 � v3 and
|v3| − |v0| ≥ |v2| − |v1| > b, there exists a link origin v ∈ dom(L) such that
v0 ≺ v ≺ v3 and |v| − |v0| ≤ b. Consequently, v ≺ v2. Now we distinguish
two cases: (a) If v1 ≺ v, then v1 ≺ v ≺ v2 and |v| − |v1| ≤ |v| − |v0| ≤ b
proving the second item. (b) Otherwise, we have v0 ≺ v � v1 ≺ v2 � v3 with
v, v3 ∈ dom(L) and |v2| − |v1| > b. Since |v3| − |v| < |v3| − |v0|, we can apply
the induction hypothesis to v � v1 ≺ v2 � v3 to prove the statement. ut

In the proofs of Theorems 31 and 33 we will see applications of these
properties and the following linking theorem, which we also recall from [11].

Proposition 30 [11, Theorem 4] Let Ω and Ψ be ranked alphabets with
Ψ0 6= ∅ and Ψ1 6= ∅. Let k, n ≥ 1, and let M1, . . . ,Mk be 6εl-xtR such that{(

c′[t1, . . . , tn] , c′′[t1, . . . , tn]
)
| t1, . . . , tn ∈ TΨ

}
⊆ τ(M1) ; · · · ; τ(Mk) ,

where c′, c′′ ∈ TΩ(Xn) are linear and nondeleting in Xn. There exist trees
t1, . . . , tn ∈ TΨ , dependencies

〈u0, L1, u1〉 ∈ D(M1) , 〈u1, L2, u2〉 ∈ D(M2) , . . . , 〈uk−1, Lk, uk〉 ∈ D(Mk)

with u0 = c′[t1, . . . , tn] and uk = c′′[t1, . . . , tn], and a family (vij , wij) ∈ Lj of
links for 1 ≤ i ≤ n and 1 ≤ j ≤ k, such that for all 1 ≤ i ≤ n:
(i) posxi

(c′′) � wik,
(ii) vi(j+1) � wij for all 1 ≤ j ≤ k − 1, and
(iii) posxi

(c′) � vi1. ut

Intuitively, the items mean that (i) position wik is in the subtree ti of
the output tree uk = c′′[t1, . . . , tn], (ii) position wij has prefix vi(j+1) in the
intermediate tree uj , and (iii) position vi1 is in the subtree ti of the input tree
u0 = c′[t1, . . . , tn].

To show that an integer k > 1 is the least power at which the closure under
composition is achieved for a class C, we present a tree transformation τ ∈ Ck
that is not in Ck−1. Roughly speaking, this is achieved by deducing certain
links given the tree transformation with the help of Proposition 30. These links
are necessary in the dependency for the determined input-output tree pairs.
Thus, we obtain a partial specification of several dependencies in the sense that
we know some of its links, but not necessarily all of them. Then we consider
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whether these partial specifications can be implemented by a composition
of 6εl-xtR. It can be seen from Proposition 30 that we will often not be able
to identify both positions of a link exactly, but rather determine that one of
its positions has a certain other prominent position as prefix. In such cases,
we graphically display the link using a spline with an inverted arrow head
that points to the subtree rooted at that prominent position (instead of to the
actual position). For example, the splines in Fig. 3 indicate that a position of t
on the left (resp. u on the right) is linked to position 2 on the right (resp. on
the left).

We now prove that 3 is the least power at which the class 6εl-XTR is closed
under composition.

Theorem 31
(
6εl-XTR)2 ( 6εl-XT3

Proof. The inclusion follows from Lemma 15. To prove the strictness, let
M ′1 = (Q′, Σ,∆, {?}, R′) be the 6εnl-xt that is obtained from the 6εl-xtR M1
of Example 2 by removing the state qla and all rules for the input symbol σ;
i.e., the rules σ(q, qla) q−→ q and σ(qla, q) q−→ q. Thus, τ(M ′1) is the restriction
of τ(M1) to input trees that do not contain any occurrence of σ. In addition,
we use the two bimorphisms B2, B3 ∈ B(snl, snl) of [5, Section II-2-2-3-1],
where strictness is denoted by ‘e’ and nondeletion by ‘c’. These bimorphisms
are similar to the two bimorphisms that are used in [3, Section 3.4] to prove
Proposition 16. By Proposition 11, B(snl, snl) = 6εsnl-XT, hence B2 and B3
can also be defined by 6εsnl-xt M2 and M3, respectively. For convenience, we
present M2 and M3 explicitly before we show that τ = τ(M ′1) ; τ(M2) ; τ(M3)
cannot be computed by a composition of two 6εl-xtR.

Let M2 = (Q2, ∆, Γ, {?}, R2) be the 6εsnl-xt with Q2 = {?, id, id′}, the
ranked alphabet Γ = {σ(2), γ(1), α(0)}, and the set R2 consisting of the rules

σ1(?, σ2(id, id′)) ?−→ σ(σ(?, id), id′) γ(id) id,id′−→ γ(id)

σ2(id, id′) ?−→ σ(id, id′) α
id,id′−→ α .

Moreover, let M3 = (Q3, Γ,∆, {?}, R3) be the 6εsnl-xt with Q3 = {?, p, id, id′}
and the set R3 consisting of the rules

σ(p, id) ?−→ σ1(p, id) γ(id) p,id,id′−−−−→ γ(id)

σ(σ(p, id), id′) p−→ σ1(p, σ2(id, id′)) α
p,id,id′−−−−→ α .

Note that both τ(M2) and τ(M3) are partial functions.
We present a proof by contradiction, so we assume that τ = τ(N1) ; τ(N2)

for some 6εl-xtR N1 and N2. By Proposition 28 there exist a1, a2, b1, b2 ≥ 1
such that D(N1) and D(N2) are strictly input and output hierarchical, input
link-distance bounded by a1 and a2, respectively, and output link-distance
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Fig. 4 Illustration of the relevant part of the specification used in the proof of Theorem 31.

bounded by b1 and b2, respectively. Let n = 2 · max(a1, a2, b1, b2) + 2. We
select the trees

c = γn2 (x1) ,

c′ = σ1
(
σ1
(
· · ·σ1(σ2(xn, xn−1), c[σ2(xn−2, xn−3)]) · · · , c[σ2(x4, x3)]

)
,

c[σ2(x2, x1)]
)
, and

c′′ = σ1
(
σ1
(
· · ·σ1(xn, σ2(xn−1, xn−2)) · · · , σ2(x3, x2)

)
, x1
)
,

of which c′ and c′′ are linear and nondeleting in Xn (see Fig. 4). To be com-
pletely formal, c′ and c′′ are defined inductively as follows: First, c′ = c′1
with c′n−1 = σ2(xn, xn−1) and c′i−1 = σ1(c′i+1, c[σ2(xi, xi−1)]) for every even
integer 2 ≤ i ≤ n − 2. Second, we let c′′ = σ1(c′′2 , x1) with c′′n = xn and
c′′i−2 = σ1(c′′i , σ2(xi−1, xi−2)) for every even 4 ≤ i ≤ n.

It is straightforward to check that(
c′[t1, . . . , tn], c′′[t1, . . . , tn]

)
∈ τ

for all t1, . . . , tn ∈ TΨ with Ψ = {γ(1), α(0)}. Note that, according to Example 8,
every σ1-rib c[σ2(ti, ti−1)] = γn2

(
σ2(ti, ti−1)

)
is transformed into σ2(ti, ti−1)

by τ(M ′1). Consequently, we can apply Proposition 30 to obtain that there
exist trees t1, . . . , tn ∈ TΨ , dependencies 〈c′[t1, . . . , tn], L1, u1〉 ∈ D(N1) and
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〈u1, L2, c
′′[t1, . . . , tn]〉 ∈ D(N2), and links (vi1, wi1) ∈ L1 and (vi2, wi2) ∈ L2

for 1 ≤ i ≤ n such that
– posxi

(c′′) � wi2,
– vi2 � wi1, and
– posxi

(c′) � vi1.
The splines with the inverted arrow heads indicate some of those links in Fig. 4.

Now, let us consider the obtained (partial) dependencies, which are de-
picted in Fig. 4. We clearly have (ε, ε), (vn2, wn2) ∈ L2 and

1 n
2 = posxn

(c′′) � wn2 .

Thus |wn2| ≥ n
2 > b2. Since D(N2) is output link-distance bounded by b2, there

exists a link (v′, w′) ∈ L2 with ε ≺ w′ ≺ wn2 and |w′| ≤ b2. Consequently, the
position w′ has label σ1 in u2 = c′′[t1, . . . , tn] as indicated in Fig. 4. Formally,
w′ = 1m for some 1 ≤ m ≤ b2 ≤ n

2 −1. Let i = 2m, which yields 2 ≤ i ≤ n−2.
Then w′ ≺ w(i+1)2 and w′ ≺ wi2 because w′ ≺ posxi+1(c′′) � w(i+1)2 and
w′ ≺ posxi

(c′′) � wi2. Since D(N2) is strictly output hierarchical, we can
conclude that v′ � v(i+1)2 � w(i+1)1 and v′ � vi2 � wi1. Additionally,
w′ and posxi−1(c′′) are incomparable and posxi−1(c′′) � w(i−1)2, so also the
positions w′ and w(i−1)2 are incomparable (see Lemma 32(i) for a proof of this
and similarly straightforward arguments). Consequently, Lemma 29(i) shows
that v′ and v(i−1)2 are also incomparable. Using v(i−1)2 � w(i−1)1, we obtain
that v′ and w(i−1)1 are incomparable, and in particular that v′ 6� w(i−1)1.

Next, we inspect the input tree u0 = c′[t1, . . . , tn] and the links (ε, ε),
(vi1, wi1), and (v(i−1)1, w(i−1)1) in L1. We already know that posxi

(c′) � vi1
and posxi−1(c′) � v(i−1)1. Let

V = {v ∈ 1∗2N∗ | v ≺ posxi
(c′), c′(v) 6= σ2}

be the set of positions of c′ (and hence of u0) that are in an occurrence of
the tree c and are prefixes of posxi

(c′). Since |V | = n > a1, it follows from
Lemma 29(ii) that there exists a link (v′′, w′′) ∈ L1 such that v′′ ∈ V , which
also yields v′′ ≺ vi1 and v′′ ≺ v(i−1)1. Since D(N1) is strictly input hierar-
chical, we obtain that w′′ � wi1 and w′′ � w(i−1)1. Since v′′ and v(i+1)1 are
incomparable, Lemma 29(i) implies that w′′ and w(i+1)1 are incomparable,
and in particular that w′′ 6� w(i+1)1.

Summing up, we have

v′ � w(i+1)1 v′ � wi1 v′ 6� w(i−1)1 (†)
w′′ 6� w(i+1)1 w′′ � wi1 w′′ � w(i−1)1 . (‡)

Since v′ � wi1 and w′′ � wi1, we must have v′ � w′′ or w′′ � v′. In the former
case, we obtain v′ � w′′ � w(i−1)1 contradicting the last statement of (†).
Similarly, in the second case, we obtain w′′ � v′ � w(i+1)1 contradicting the
first statement of (‡). Since both cases are contradictory, the assumption that
we can compute τ with two 6εl-xtR is wrong. ut
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Fortunately, we can reuse the ideas used in the proof of Theorem 31 to
conclude that 4 is the least power at which the class 6εl-XT is closed under
composition. The slightly more elaborate proof first establishes that a deleting
rule, which is a rule ` q−→ r such that states(r) ( states(`), must be used at a
certain position and then employs the classical cut-and-paste technique to es-
tablish that this deletion (without look-ahead) enables undesired translations.

We will use some well-known elementary properties of the prefix order,
which we state in the next lemma.

Lemma 32 Let v, v1, v2, v
′
1, v
′
2 ∈ N∗ be positions with v1 � v′1 and v2 � v′2.

(i) If v1 and v2 are incomparable, then so are v′1 and v′2.
(ii) If v1 and v2 are incomparable, v � v′1, and v � v′2, then v � v1 and v � v2.
(iii) If v1 and v′2 are incomparable and v′1 and v2 are incomparable, then

v1 and v2 are incomparable.

Proof. If v1 and v2 are incomparable, then lcp(v1, v2) is a proper prefix
of both v1 and v2. Hence lcp(v′1, v′2) = lcp(v1, v2), which implies the first
two items. For the third item we note that if v1 � v2 then v1 � v′2, and
symmetrically, if v2 � v1 then v2 � v′1. ut

Theorem 33 6εl-XT3 (
(
6εl-XTR)3

Proof. Since the inclusion is trivial, it remains to prove its strictness. Let
M1 be the 6εl-xtR of Example 2, and letM2 andM3 be the bimorphisms defined
as 6εl-xt in the proof of Theorem 31. We will show that the tree transformation
τ = τ(M1);τ(M2);τ(M3) cannot be computed by a composition of three 6εl-xt.

We again present a proof by contradiction, hence we assume that

τ = τ(N1) ; τ(N2) ; τ(N3)

for some 6εl-xt N1 = (P,Σ,∆1, P0, R1), N2, and N3. By Proposition 28 there
exist integers a1, a2, a3, b1, b2, b3 ≥ 1 such that D(N1), D(N2), and D(N3)
are strictly input and output hierarchical, input link-distance bounded by a1,
a2, and a3, respectively, and output link-distance bounded by b1, b2, and b3,
respectively. As before, let n = 2 ·max(a1, a2, a3, b1, b2, b3) + 2. Moreover, let
m ∈ N be such that m > ht(`) for all rules (`, p, r) ∈ R1. This time, we select
the trees

s = γm2 (α) ,

c = σ
(
s, σ(s, · · ·σ(s, x1) · · · )

)
with n2 occurrences of σ ,

c′ = σ1
(
σ1
(
· · ·σ1(σ2(xn, xn−1), c[σ2(xn−2, xn−3)]) · · · , c[σ2(x4, x3)]

)
,

c[σ2(x2, x1)]
)
, and

c′′ = σ1
(
σ1
(
· · ·σ1(xn, σ2(xn−1, xn−2)) · · · , σ2(x3, x2)

)
, x1
)
.

We note that c′ and c′′ are the same as in the proof of Theorem 31 (see
Fig. 4), except that we selected a more complicated tree c; thus, c′ and c′′ are
again linear and nondeleting in Xn, and can be defined formally as in that
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proof. Clearly (c′[t1, . . . , tn], c′′[t1, . . . , tn]) ∈ τ for all t1, . . . , tn ∈ TΨ with
Ψ = {γ(1), α(0)}. This time, every σ1-rib c[σ2(ti, ti−1)] is of the form

σ
(
γm2 (α), σ

(
γm2 (α), · · ·σ(γm2 (α), σ2(ti, ti−1)) · · ·

))
.

It is transformed into σ2(ti, ti−1) by τ(M1) as before (see Example 8). So we
can apply Proposition 30 once again to obtain that there exist t1, . . . , tn ∈ TΨ ,
dependencies

〈c′[t1, . . . , tn], L1, u1〉 ∈ D(N1) , 〈u1, L2, u2〉 ∈ D(N2) and
〈u2, L3, c

′′[t1, . . . , tn]〉 ∈ D(N3) ,

and links (vi1, wi1) ∈ L1, (vi2, wi2) ∈ L2, and (vi3, wi3) ∈ L3 for 1 ≤ i ≤ n
such that
– posxi

(c′′) � wi3,
– vi3 � wi2 and vi2 � wi1, and
– posxi

(c′) � vi1.
We first observe that for every j ∈ {1, 2, 3}, the positions v1j , . . . , vnj are
pairwise incomparable (as also shown in the proof of Proposition 30 in [11,
Theorem 4]). In fact, since posx1(c′′), . . . ,posxn

(c′′) are pairwise incomparable,
so are w13, . . . , wn3 by the first item above and Lemma 32(i). Hence the corre-
sponding link origins v13, . . . , vn3 are pairwise incomparable by Lemma 29(i).
This implies that w12, . . . , wn2 are pairwise incomparable by the second item
above, and hence so are the corresponding link origins v12, . . . , vn2 using again
Lemma 29(i). This argument can be repeated once more to show the observa-
tion.

We now start the analysis of the given dependencies in the same way as
in the proof of Theorem 31 by considering the output tree u3 = c′′[t1, . . . , tn].
Entirely similar to that proof, we obtain a position v′ ∈ pos(u2) such that
v′ � w(i+1)2, v′ � wi2, and v′ 6� w(i−1)2.

Next we move to the input tree u0 = c′[t1, . . . , tn], where the analysis
will be slightly different. As before, we consider the links (ε, ε), (vi1, wi1),
and (v(i−1)1, w(i−1)1) in L1, for which we already know that posxi

(c′) � vi1
and posxi−1(c′) � v(i−1)1. Let

V = {v ∈ 1∗2N∗ | v ≺ posxi
(c′), c′(v) 6= σ2} .

Clearly, |V | = n2 > n · a1. Thus, since D(N1) is input link-distance bounded
by a1, the set V ′ = {v ∈ V | ∃w ∈ N∗ : (v, w) ∈ L1} of link origins in V contains
at least n elements by Lemma 29(ii). Let W ′ = {w | ∃v ∈ V ′ : (v, w) ∈ L1}
be the set of corresponding link targets. Since the elements of V ′ are pairwise
comparable, the elements ofW ′ are also pairwise comparable by Lemma 29(i).
For every w ∈ W ′, we have w � wi1 and w � w(i−1)1 because v ≺ vi1 and
v ≺ v(i−1)1 for every v ∈ V ′ and D(N1) is strictly input hierarchical. Addition-
ally, for every w ∈W ′, the positions w and w(i+1)1 are incomparable because
v and v(i+1)1 are incomparable for every v ∈ V ′. Since vi2 and v(i−1)2 are
incomparable by the above observation, and vi2 � wi1 and v(i−1)2 � w(i−1)1,
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we obtain from Lemma 32(ii) that w � vi2 and w � v(i−1)2 for every w ∈W ′.
Moreover, for every w ∈ W ′, since v(i+1)2 � w(i+1)1, w � vi2, v(i+1)2 and vi2
are incomparable, and w and w(i+1)1 are incomparable, Lemma 32(iii) shows
that w and v(i+1)2 are incomparable.

Now we distinguish two cases. First, let us assume that |W ′| ≥ n. In this
case, we can continue to derive a contradiction in much the same way as in
the proof of Theorem 31. Since the positions in W ′ are pairwise compara-
ble, there are positions wmin, wmax ∈ W ′ of minimal and maximal length,
respectively, with wmin ≺ wmax. Clearly, |wmax| − |wmin| ≥ n − 1 > a2. Since
(ε, ε), (vi2, wi2) ∈ L2 and wmin � vi2, there must be a link (v′′, w′′) ∈ L2
such that wmin ≺ v′′ ≺ wmax by Lemma 29(ii). This implies that v′′ ≺ vi2,
v′′ ≺ v(i−1)2, and v′′ and v(i+1)2 are incomparable. SinceD(N2) is strictly input
hierarchical, we obtain that w′′ � wi2, w′′ � w(i−1)2, and from Lemma 29(i) we
obtain that w′′ and w(i+1)2 are incomparable, which takes us to the situation

v′ � w(i+1)2 v′ � wi2 v′ 6� w(i−1)2

w′′ 6� w(i+1)2 w′′ � wi2 w′′ � w(i−1)2 ,

which is the analogue of (†) and (‡) [in the proof of Theorem 31] and thus
contradictory for the same reasons.

In the remaining case, we have |W ′| < n. Together with |V ′| ≥ n, we ob-
tain by the pigeonhole principle that several input positions of V ′ are linked
in L1 to the same output position w of W ′. We choose (v, w) ∈ L1 such that
v ∈ V ′ and |v| is minimal. Consequently, a rule (`, p, r) ∈ R1 with a state r ∈ P
as right-hand side must have been applied at position v of u0 = c′[t1, . . . , tn].
Since v ∈ V , the subtree t|v is of the form σ

(
s, σ
(
s, · · ·σ(s, σ2(ti, ti−1)) · · ·

))
,

where s = γm2 (α). Hence, since N1 is ε-free, the root of the left-hand side ` has
label σ. Moreover, `|1 = γk2 (p′) for some 0 ≤ k < m and p′ ∈ P . By the choice
of v, the state r occurs in `|2 and so the state p′ is deleted [i.e., p′ /∈ states(r)]
in this rule. Therefore, the subtree u0|v.1k+1 = γm−k2 (α) has been created
using the second item of Definition 6. Since N1 is an 6εl-xt, its look-ahead
mapping is trivial, and thus any tree can be created instead of u0|v.1k+1 ;
e.g., the tree σ2(α, α). This shows that also 〈u′0, L1, u1〉 ∈ D(N1), where
u′0 = u0[v.1k+1 ← σ2(α, α)], and so (u′0, c′′[t1, . . . , tn]) ∈ τ(N1) ; τ(N2) ; τ(N3).
However, since u′0|v is of the form

σ
(
γk2 (σ2(α, α)), σ

(
s, · · ·σ(s, σ2(ti, ti−1)) · · ·

))
,

the σ1-rib u′0|1h2 of u′0 with 1h2 � v (i.e., h = i
2−1) has two occurrences of σ2.

Hence u′0 is not in the domain of τ(M1) [see Example 8]. This implies that u′0
is not in the domain of τ = τ(M1) ; τ(M2) ; τ(M3), but

(u′0, c′′[t1, . . . , tn]) ∈ τ(N1) ; τ(N2) ; τ(N3) = τ ,

which is a contradiction.
Since both cases are contradictory, τ cannot be computed by a composition

of three 6εl-xt. ut



Composition Closure of Linear Extended Top-down Tree Transducers 29

Class Least power of closedness Stated in

B(l, l) 4 [5, Section II-2-2-3-3]
6εsnl-XT = 6εsnl-XTR 2 [3, Theorem 6.2]

6εsl-XTR, 6εsl-XT 2 Theorem 26
6εl-XTR 3 Theorems 31 and 34
6εl-XT 4 Theorems 33 and 34

Table 3 Summary of the results of Section 5.

Thus, we have shown that the least power, at which the composition closure
is achieved for the classes 6εl-XTR and 6εl-XT, is 3 and 4, respectively. This is
stated in the next theorem.

Theorem 34 For every n ≥ 4,

6εl-XT ( 6εl-XTR ( 6εl-XT2 (
(
6εl-XTR)2 ( 6εl-XT3

(
(
6εl-XTR)3 = 6εl-XT4 =

(
6εl-XTR)n = 6εl-XTn+1.

Proof. We have
(
6εl-XTR)n ⊆ 6εl-XTn+1 for all n ≥ 1 by Lemma 15. The

equalities follow from Theorem 24. The fourth and fifth inclusions are strict
by Theorems 31 and 33, respectively. The strictness of the second and third
inclusion follows from that of the fourth and fifth, respectively. The strictness
of the first inclusion is a consequence of Proposition 14; it also follows from
that of the third. ut

In Table 3 we summarize the main results of this and the previous section,
which allow us to present the least power at which the closure of the considered
composition hierarchies is achieved. For the sake of completeness, we also
present the corresponding results for the classes 6εsnl-XT and B(l, l) that were
obtained in [3,5]. Recall that B(l, l) is the class of all tree transformations
computable by bimorphisms, in which both tree homomorphisms are linear.

6 Infinite composition hierarchies

To complete the picture, we will need one further result showing the infinite-
ness of the composition hierarchy for a large number of classes. In order to
obtain a result that is as general as possible, we use bimorphisms [3] instead
of l-xtR in this section; cf. Proposition 11. We conclude several results for
various tree transducer classes from the result for bimorphisms.

To handle bimorphisms properly, we need to define links for tree ho-
momorphisms. As observed after Notation 10, every linear tree homomor-
phism ϕ : TΣ → T∆ can be viewed as a linear top-down tree transducer Mϕ.
In particular, for every t ∈ TΣ there is a (unique) set Lϕ(t) ⊆ pos(t)×pos(ϕ(t))
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of links such that 〈t, Lϕ(t), ϕ(t)〉 ∈ D(Mϕ). We now generalize this notion to
arbitrary tree homomorphisms.

Definition 35 Let ϕ : TΣ → T∆ be a tree homomorphism and t ∈ TΣ . The
set of t-links of ϕ, denoted by Lϕ(t), is the smallest subset of pos(t)×pos(ϕ(t))
such that
– (ε, ε) ∈ Lϕ(t) and
– (vi, ww′) ∈ Lϕ(t) for all links (v, w) ∈ Lϕ(t), integers 1 ≤ i ≤ rk

(
t(v)

)
,

and positions w′ ∈ posxi

(
ϕ(t(v))

)
. ut

Intuitively, (v, w) ∈ Lϕ(t) means that ϕ translates the subtree of t rooted
at v into the subtree of ϕ(t) rooted at w. Note that for a given position v
there can be several such positions w (which are, of course, pairwise incompa-
rable), since ϕ is not necessarily linear, or there may be no such w, since ϕ is
not necessarily nondeleting. We will need the following elementary properties
of Lϕ(t).

Lemma 36 Let ϕ : TΣ → T∆ be a tree homomorphism, and let t ∈ TΣ ,
u = ϕ(t), and L = Lϕ(t).
(i) If (v, w) ∈ L, then ϕ(t|v) = u|w.
(ii) If (v, w) ∈ L, then Lϕ(t|v) = {(v′, w′) | (vv′, ww′) ∈ L}.
(iii) If ϕ is nondeleting, then for all (v1, w1) ∈ L and all v1 � v ∈ pos(t) there

exists a position w1 � w such that (v, w) ∈ L.
(iv) For all links (v1, w1), (v2, w2) ∈ L with v1 � v2 and w1 � w2, and all

v1 � v � v2 there exists a unique position w1 � w � w2 such that
(v, w) ∈ L.

(v) For all (v1, w1) ∈ L and all w1 � w ∈ pos(u) there exist unique positions
v, w′, w′′ ∈ N∗ such that v1 � v, w1 � w′, w = w′w′′, (v, w′) ∈ L, and
w′′ ∈ pos∆

(
ϕ(t(v))

)
.

Proof. The proofs of statements (i) and (ii) are straightforward, and hence
left to the reader. It is also straightforward to prove the following three state-
ments, which are the special case of statements (iii)–(v), in which we have
(v1, w1) = (ε, ε). We also leave their proofs to the reader.
(iii)′ If ϕ is nondeleting, then dom(L) = pos(t).
(iv)′ For all (v2, w2) ∈ L and all v � v2 there exists a unique position w � w2

such that (v, w) ∈ L.
(v)′ For every w ∈ pos(u) there exist unique positions v, w′, w′′ ∈ N∗ such

that w = w′w′′, (v, w′) ∈ L, and w′′ ∈ pos∆
(
ϕ(t(v))

)
.

Each non-primed statement can now easily be obtained from the corresponding
primed statement with the help of (i) and (ii). We start with statement (iii).
Let (v1, w1) ∈ L and v1 � v ∈ pos(t). Since v1 � v, let v̂ be such that v1v̂ = v.
Obviously v̂ ∈ pos(t|v1), and consequently, by statement (iii)′, there exists ŵ
such that (v̂, ŵ) ∈ Lϕ(t|v1). Together with (v1, w1) ∈ L and statement (ii) we
conclude that (v1v̂, w1ŵ) ∈ L. Thus, (v, w) ∈ L where w1 � w = w1ŵ.

For statement (iv), let (v1, w1), (v2, w2) ∈ L with v1 � v2 and w1 � w2, and
let v1 � v � v2. Since w1 � w2, let ŵ2 be such that w1ŵ2 = w2. Similarly, since
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v1 � v � v2, let v̂ � v̂2 such that v1v̂ = v and v1v̂2 = v2. Since (v1, w1) ∈ L,
statement (ii) implies that (v̂2, ŵ2) ∈ Lϕ(t|v1). Thus, since also v̂ � v̂2, state-
ment (iv)′ implies that there exists ŵ � ŵ2 such that (v̂, ŵ) ∈ Lϕ(t|v1). Using
statement (ii) again, we have (v1v̂, w1ŵ) ∈ L. Hence the requirements are ful-
filled by w = w1ŵ; note that w1 � w1ŵ � w1ŵ2 = w2. The uniqueness of w
follows immediately from the uniqueness condition in statement (iv)′.

Finally, for statement (v), let (v1, w1) ∈ L and w1 � w ∈ pos(u). By state-
ment (i) we have ϕ(t|v1) = u|w1 . Since w1 � w, let ŵ be such that w1ŵ = w.
Obviously, ŵ ∈ pos(u|w1). By statement (v)′ applied to ŵ, there exist v̂, ŵ′, ŵ′′
such that ŵ = ŵ′ŵ′′, (v̂, ŵ′) ∈ Lϕ(t|v1), and ŵ′′ ∈ pos∆

(
ϕ(t|v1(v̂))

)
. Since

(v1, w1) ∈ L we can use statement (ii) applied to (v̂, ŵ′) ∈ Lϕ(t|v1) to con-
clude that (v1v̂, w1ŵ

′) ∈ L. Hence the requirements are fulfilled by v = v1v̂,
w′ = w1ŵ

′, and w′′ = ŵ′′. The uniqueness of v, w′, and w′′ follows immedi-
ately from the uniqueness condition in statement (v)′. ut

The unique position v ∈ pos(t) corresponding to the position w ∈ pos(u) in
Lemma 36(v) is informally called the position in t that creates the symbol u(w)
at w. Since item (v) holds in particular for (v1, w1) = (ε, ε), that position
does not depend on the link (v1, w1) ∈ L. Similarly, the unique position w in
item (iv) does not depend on the link (v1, w1).

We now turn to the proof of the infiniteness of the composition hierarchies.
The main auxiliary notion used in that proof is the assignment of levels to
positions in a tree. Let t ∈ TΣ . Since the branching positions of t (i.e., those
that are labeled by symbols of rank at least 2) will play an essential role, we
define the set of branching positions of t, the set of branching positions of t
together with two different successor indices, and the set of branching positions
along a given path, as follows:

brt = {v ∈ pos(t) | t(v) /∈ Σ0 ∪Σ1}
brit =

{
〈v, i, j〉 | v ∈ brt, 1 ≤ i, j ≤ rk(t(v)), i 6= j

}
and for every v1, v2 ∈ pos(t) with v1 � v2 we let

brt(v1, v2) = {v ∈ brt | v1 � v � v2} .

Let ` ≥ 2 be arbitrary (called distance in the sequel). We inductively define the
sets PI`n(t) ⊆ pos(t)×N×N of special positions of level n and distance ` with
successor indices and the sets P`n(t) ⊆ pos(t) for the same special positions
without successor indices for every n ∈ N as follows:

PI`0(t) = brit

P`0(t) = brt =
{
v | ∃i, j : 〈v, i, j〉 ∈ PI`0(t)

}
PI`n+1(t) =

{
〈v, i, j〉 ∈ brit |∃v1 ∈ P`n(t) : vi � v1, |brt(vi, v1) ∩ P`n(t)| ≥ `n+1,

∃v2 ∈ P`n(t) : vj � v2, |brt(vj, v2) ∩ P`n(t)| ≥ `n+1}
P`n+1(t) =

{
v | ∃i, j : 〈v, i, j〉 ∈ PI`n+1(t)

}
.
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Fig. 5 Tree used in Example 37.

Intuitively, each branching position is a special position of level 0 (for any
distance `) and a branching position v is a special position of level n + 1 if
there are two paths in different direct subtrees below v that both have at least
`n+1 special positions of level n along the path. Clearly, PI`n+1(t) ⊆ PI`n(t)
and P`n+1(t) ⊆ P`n(t) for all n ∈ N. Note that in the definition of PI`n+1(t), the
condition that v1, v2 ∈ P`n(t) is superfluous, but technically convenient.

Example 37 Let t be the tree depicted in Fig. 5. Then

P2
0(t) = {ε, 1, 11, 112, 1121, 11211, 12, 121, 2, 21, 211, 2111} = brt

P2
1(t) = {ε, 1}

P2
2(t) = ∅ . ut

Lemma 38 Let t ∈ TΣ and `, n ∈ N with ` ≥ 2. Moreover, let v, v′ ∈ N∗ and
i, j ∈ N.
(i) 〈v′, i, j〉 ∈ PI`n(t|v) if and only if 〈vv′, i, j〉 ∈ PI`n(t), and

v′ ∈ P`n(t|v) if and only if vv′ ∈ P`n(t).
(ii) If v, viv′ ∈ P`n(t), then there exists m ∈ N such that 〈v, i,m〉 ∈ PI`n(t).

Proof. We prove the items individually. We start with (i), which is obvious
because whether or not 〈v, i, j〉 is in PI`n(t) only depends on the positions of
which v is a prefix. Statement (ii) is also trivial for n = 0, hence we only
prove it for n + 1. Let v, viv′ ∈ P`n+1(t). Since v ∈ P`n+1(t) there exist inte-
gers i1, i2 such that 〈v, i1, i2〉 ∈ PI`n+1(t). If i ∈ {i1, i2}, then the statement
is obviously true. In the remaining case, let i /∈ {i1, i2}. There exists a posi-
tion v2 ∈ P`n(t) such that vi2 � v2 and |brt(vi2, v2) ∩ P`n(t)| ≥ `n+1. Since
viv′ ∈ P`n(t), there exist i′ ∈ N and v1 ∈ P`n(t) such that viv′i′ � v1 and
|brt(viv′i′, v1)∩P`n(t)| ≥ `n+1. Hence vi � v1 and |brt(vi, v1)∩P`n(t)| ≥ `n+1,
which shows that 〈v, i, i2〉 ∈ PI`n+1(t). ut

We now prove that a nondeleting tree homomorphism preserves the maxi-
mal level of the special positions of a tree.
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Fig. 6 Illustration of the trees and positions discussed in the proof of Lemma 39 (left) and
Lemma 40 (right).

Lemma 39 Let ϕ : TΓ → T∆ be a nondeleting tree homomorphism, and let
t = γ(t1, . . . , tk) for some k ∈ N, γ ∈ Γk, and t1, . . . , tk ∈ TΓ . Moreover,
let `, n, i, j ∈ N be such that ` ≥ 2 and 〈ε, i, j〉 ∈ PI`n(t). Then for every
z1 ∈ posxi

(ϕ(γ)) and z2 ∈ posxj
(ϕ(γ)) there exists 〈w, i′, j′〉 ∈ PI`n(ϕ(t)) such

that w ∈ pos(ϕ(γ)) and wi′ � z1 and wj′ � z2.

Proof. Let u = ϕ(t) = ϕ(γ)[ϕ(t1), . . . , ϕ(tk)] and L = Lϕ(t). We prove
the statement by induction on n. In the induction base, we have n = 0 and
〈ε, i, j〉 ∈ PI`0(t) = brit. Consider z1 ∈ posxi

(ϕ(γ)) and z2 ∈ posxj
(ϕ(γ)),

which are occurrences of the variables xi 6= xj in ϕ(γ). Let w = lcp(z1, z2) be
their longest common prefix. Since xi 6= xj , we have w ≺ z1 and w ≺ z2, so let
i′, j′ ∈ N be the unique (and necessarily distinct) integers such that wi′ � z1
and wj′ � z2. Clearly, w ∈ pos(ϕ(γ)) and 〈w, i′, j′〉 ∈ briu = PI`0(u). This
completes the induction base.

In the induction step, let 〈ε, i, j〉 ∈ PI`n+1(t), and suppose that v1 ∈ P`n(t)
and v2 ∈ P`n(t) are the required special positions of level n such that i � v1
and j � v2 and

|brt(i, v1) ∩ P`n(t)| ≥ `n+1 and |brt(j, v2) ∩ P`n(t)| ≥ `n+1 .

Now, we follow a similar approach as in the induction base. Figure 6 illustrates
the used positions and their relations. Consider positions z1 ∈ posxi

(ϕ(γ)) and
z2 ∈ posxj

(ϕ(γ)). As before, we let

w = lcp(z1, z2) ∈ pos(ϕ(γ))

be their longest common prefix, and let wi′ � z1 and wj′ � z2. Clearly, i′ 6= j′

and so 〈w, i′, j′〉 ∈ briu. It remains to show that 〈w, i′, j′〉 ∈ PI`n+1(u).
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By Definition 35, we have (ε, ε) ∈ L and (i, z1) ∈ L. Since ϕ is nondelet-
ing and (i, z1) ∈ L and i � v1, it follows from Lemma 36(iii) that there
exists w′1 such that z1 � w′1 and (v1, w

′
1) ∈ L. Thus, Lemma 36(i) shows that

u|w′1 = ϕ(t|v1). By assumption we have v1 ∈ P`n(t), which yields ε ∈ P`n(t|v1) by
Lemma 38(i); i.e., 〈ε, i′′, j′′〉 ∈ PI`n(t|v1) for some i′′, j′′. Since ϕ is nondeleting,
the sets posxi′′

(
ϕ(t(v1))

)
and posxj′′

(
ϕ(t(v1))

)
are nonempty. Consequently,

the induction hypothesis implies the existence of w′′1 ∈ P`n(ϕ(t|v1)) = P`n(u|w′1).
Hence w′1w′′1 ∈ P`n(u) by Lemma 38(i). Let w1 = w′1w

′′
1 , and let w2 be deter-

mined in an analogous way. We claim that w1 and w2 are the special positions
of level n that are required to show that 〈w, i′, j′〉 ∈ PI`n+1(u). We will only
verify the condition

|bru(wi′, w1) ∩ P`n(u)| ≥ `n+1 (†)

because the proof for w2 works analogously. Due to wi′ � z1, we obtain that
w1 ∈ bru(wi′, w1) ∩ P`n(u) .

Let v̄1 ∈ brt(i, v1) ∩ P`n(t) be any position of level n along the path from i
to v1 such that v̄1 ≺ v1. Hence there exists a unique integer i1 ∈ N such
that v̄1i1 � v1. Since (i, z1), (v1, w

′
1) ∈ L together with i � v̄1i1 � v1 we

can use Lemma 36(iv) to conclude that there exists z1 � ŵ′1 � w′1 such
that (v̄1i1, ŵ

′
1) ∈ L. Applied once more to i � v̄1 � v̄1i1 and the links

(i, z1), (v̄1i1, ŵ
′
1) ∈ L, there exists z1 � w̄′1 � ŵ′1 with (v̄1, w̄

′
1) ∈ L. Let

z ∈ N∗ be such that w̄′1z = ŵ′1. By Definition 35 we have z ∈ posxi1

(
ϕ(t(v̄1))

)
.

Since v̄1, v1 ∈ P`n(t), we conclude from Lemma 38(ii) that there exists j1 ∈ N
such that 〈v̄1, i1, j1〉 ∈ PI`n(t). Hence 〈ε, i1, j1〉 ∈ PI`n(t|v̄1) by Lemma 38(i)
and u|w̄′1 = ϕ(t|v̄1) by Lemma 36(i). Now we can apply the induction hypoth-
esis to obtain that there exists 〈w̄′′1 , i′1, j′1〉 ∈ PI`n(ϕ(t|v̄1)) such that w̄′′1 i′1 � z.
Hence 〈w̄′′1 , i′1, j′1〉 ∈ PI`n(u|w̄′1) and so 〈w̄′1w̄′′1 , i′1, j′1〉 ∈ PI`n(u) by Lemma 38(i).
Consequently, w̄1 ∈ P`n(u), where w̄1 = w̄′1w̄

′′
1 . In addition, wi′ � w̄1 ≺ w1

because

wi′ � z1 � w̄′1 � w̄1 and w̄1 ≺ w̄′1w̄′′1 i′1 � w̄′1z = ŵ′1 � w′1 � w1 .

In other words, we have shown that w̄1 ∈ bru(wi′, w1) ∩ P`n(u). Moreover,
since w̄′′1 i′1 � z, we have that w̄′′1 ∈ pos∆

(
ϕ(t(v̄1))

)
. Since also (v̄1, w̄

′
1) ∈ L, we

can say that v̄1 is the position in t that creates the symbol u(w̄1) = u(w̄′1w̄′′1 )
at w̄1. Hence, the uniqueness condition in Lemma 36(v) guarantees that for
each selection of v̄1 we obtain a different position w̄1 ∈ bru(wi′, w1) ∩ P`n(u).
This verifies (†) because w1 ∈ bru(wi′, w1) ∩ P`n(u) and there are at least
`n+1 − 1 possible selections of v̄1 (and each position w̄1 differs from w1 be-
cause w̄1 ≺ w1 as shown above). ut

The next lemma shows that an inverse linear tree homomorphism reduces
the maximal level of the special positions of a tree by at most 1 (for a suffi-
ciently large distance `).
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Lemma 40 Let ψ : TΓ → TΣ be a linear tree homomorphism. Moreover, let
t ∈ TΓ and `, n ∈ N be such that ` > ht(ψ(γ′)) for all symbols γ′ ∈ Γ . If there
exists w ∈ P`n+1(ψ(t)) with w ∈ posΣ

(
ψ(t(ε))

)
, then ε ∈ P`n(t).

Proof. The proof is similar to the one of Lemma 39. Let t = γ(t1, . . . , tk) with
k ∈ N, γ ∈ Γk, and t1, . . . , tk ∈ TΓ , and let u = ψ(t) = ϕ(γ)[ϕ(t1), . . . , ϕ(tk)].
Moreover, let 〈w, i′, j′〉 ∈ PI`n+1(u) with w ∈ posΣ(ψ(γ)). By the definition
of PI`n+1(u), there exist positions w1 ∈ P`n(u) and w2 ∈ P`n(u) such that
wi′ � w1 and wj′ � w2 and

|bru(wi′, w1) ∩ P`n(u)| ≥ `n+1 and |bru(wj′, w2) ∩ P`n(u)| ≥ `n+1 .

The paths in u from w to w1 and from w to w2 contain strictly more than
`n+1 positions, so they are longer than any path in ψ(γ). Together with
w ∈ posΣ(ψ(γ)) we conclude that there must exist 1 ≤ i, j ≤ k and po-
sitions z1 ∈ posxi

(ψ(γ)) and z2 ∈ posxj
(ψ(γ)) such that wi′ � z1 � w1

and wj′ � z2 � w2. Since ψ is linear and i′ 6= j′, we have i 6= j, which
yields 〈ε, i, j〉 ∈ brit. It remains to prove that 〈ε, i, j〉 ∈ PI`n(t), which we
prove by induction on n. In the induction base we have n = 0 and thus
〈ε, i, j〉 ∈ brit = PI`0(t).

We proceed with the induction step. Again, Figure 6 illustrates the used
positions and their relations. Clearly, we have (i, z1) ∈ L. Let v1 be the position
of ti that creates the symbol u(w1) at w1. More precisely, by Lemma 36(v),
there exist unique positions v1, w

′
1, w

′′
1 such that i � v1, z1 � w′1, w1 = w′1w

′′
1 ,

(v1, w
′
1) ∈ L, and w′′1 ∈ posΣ

(
ψ(t(v1))

)
. Similarly, let v2 ∈ pos(t) be the

position that creates the symbol u(w2) at w2. We claim that the property
required to prove that 〈ε, i, j〉 ∈ PI`n(t), and hence ε ∈ P`n(t), holds for
brt(i, v1) and brt(j, v2), i.e.,

|brt(i, v1) ∩ P`n−1(t)| ≥ `n and |brt(j, v2) ∩ P`n−1(t)| ≥ `n .

We only prove this property for v1 because the proof for v2 is analogous.
Since w1 = w′1w

′′
1 ∈ P`n(u), it follows from Lemma 38(i) that w′′1 ∈ P`n(u|w′1).

Moreover, (v1, w
′
1) ∈ L and Lemma 36(i) yield that u|w′1 = ψ(t|v1) and thus

P`n(u|w′1) = P`n(ψ(t|v1)). Together with w′′1 ∈ posΣ
(
ψ(t(v1))

)
, we can conclude

that ε ∈ P`n−1(t|v1) from the induction hypothesis, and hence v1 ∈ P`n−1(t) by
Lemma 38(i).

Next, we consider any position w̄1 ∈ bru(z1, w1) ∩ P`n(u). We follow the
same approach as in the beginning of the induction step. Let v̄1 be the po-
sition of ti that creates the symbol u(w̄1) at w̄1. More precisely, we apply
Lemma 36(v) to w̄1 to obtain that there exist positions v̄1, w̄

′
1, w̄

′′
1 such that

i � v̄1, z1 � w̄′1, w̄1 = w̄′1w̄
′′
1 , (v̄1, w̄

′
1) ∈ L, and w̄′′1 ∈ posΣ

(
ψ(t(v̄1))

)
. By the

same reasoning as in the previous paragraph, we obtain that v̄1 ∈ P`n−1(t).
Also, since w̄1 � w1, we clearly have that w̄′1 � w′1 because w′1 (resp. w̄′1) is
the first position on the path from w1 (resp. w̄1) to ε that occurs in a link
of L. Now note that L is strictly output hierarchical by Proposition 28 be-
cause 〈t, L, u〉 ∈ D(Mψ), where Mψ is the l-t defined after Notation 10. Hence
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v̄1 � v1 because either w̄′1 ≺ w′1, which directly yields v̄1 � v1, or w̄′1 = w′1,
which yields v̄1 = v1 because of the uniqueness of v̄1. Thus we have shown
that

v̄1 ∈ brt(i, v1) ∩ P`n−1(t) .

If two different selections of w̄1 correspond to the same position v̄1, then
(since (v̄1, w̄

′
1), (v1, w

′
1) ∈ L with v̄1 � v1 and w̄′1 � w′1) they also correspond

to the same w̄′1 by the uniqueness condition in Lemma 36(iv), and hence,
since w̄′′1 ∈ posΣ

(
ψ(t(v̄1))

)
, their distance is at most ht

(
ψ(t(v̄1))

)
≤ ` − 1. In

summary, a single position v̄1 can create the symbols of at most ` positions
of bru(z1, w1). Since there are at most ` − 2 positions between w and z1 we
have

|bru(z1, w1) ∩ P`n(u)| ≥ |bru(wi′, w1) ∩ P`n(u)| − `+ 2 ≥ `n+1 − `+ 2 .

Consequently, |brt(i, v1) ∩ P`n−1(t)| ≥ `n as required since

|brt(i, v1) ∩ P`n−1(t)| ≤ `n − 1

would imply |bru(z1, w1) ∩ P`n(u)| ≤ `(`n − 1) < `n+1 − `+ 2. This completes
the induction step and the proof. ut

Next, we combine the previous two lemmas into the main result of this
section that will be used to prove the infinity of several composition hierarchies.
We show that a bimorphism in B(l,n) can reduce the maximal level of the
special positions by at most 1 (for a sufficiently large distance `).

Theorem 41 Let B = (ψ, T, ϕ) be a bimorphism such that ψ : TΓ → TΣ
is linear and ϕ : TΓ → T∆ is nondeleting. Moreover, let (s, u) ∈ τ(B), and
let ` ∈ N be such that ` > ht(ψ(γ)) for every γ ∈ Γ . For every n ∈ N, if
P`n+1(s) 6= ∅, then P`n(u) 6= ∅.

Proof. Since (s, u) ∈ τ(B), there exists t ∈ T such that ψ(t) = s and
ϕ(t) = u. By assumption, we have that P`n+1(ψ(t)) 6= ∅, so let w ∈ P`n+1(ψ(t)).
By Lemma 36(v) there exist v, w′, w′′ such that w = w′w′′, (v, w′) ∈ Lψ(t),
and w′′ ∈ posΣ

(
ψ(t(v))

)
. Moreover, ψ(t)|w′ = ψ(t|v) by Lemma 36(i). Since

w′w′′ ∈ P`n+1(ψ(t)), Lemma 38(i) implies that

w′′ ∈ P`n+1(ψ(t)|w′) = P`n+1(ψ(t|v)) .

Hence, by Lemma 40, ε ∈ P`n(t|v). Since ϕ is nondeleting, posxi

(
ϕ(t(v))

)
is

nonempty for every 1 ≤ i ≤ rk(t(v)). Consequently, Lemma 39 implies that
P`n(ϕ(t|v)) 6= ∅. By Lemma 36(iii) there exists w̄ such that (v, w̄) ∈ Lϕ(t), and
moreover, ϕ(t|v) = u|w̄ by Lemma 36(i). Hence P`n(u|w̄) = P`n(ϕ(t|v)) 6= ∅,
which proves that P`n(u) 6= ∅ by Lemma 38(i), as desired. ut

Now we can simply chain Theorem 41 to show that an n-fold composition
of tree transformations in B(l,n) can decrease the maximal level by at most n
(for a suitable distance `).
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Corollary 42 (of Theorem 41) Let n ≥ 1, and for every 1 ≤ i ≤ n let
Bi = (ψi, Ti, ϕi) be a bimorphism such that ψi is linear and ϕi is nondeleting.
Moreover, let ϕi : TΓi

→ T∆i
and ψi+1 : TΓi+1 → T∆i

for every 1 ≤ i < n.
Finally, let ` ∈ N be such that ` > ht(ψi(γ)) for every 1 ≤ i ≤ n and γ ∈ Γi,
and let (t, u) ∈ τ(B1) ; · · · ; τ(Bn). If P`n+1(t) 6= ∅, then P`1(u) 6= ∅.

It remains to demonstrate a tree transformation that can be computed by
n+1 6εnl-xt and that reduces the maximal level of special positions from n+1
to 0. Clearly, this tree transformation cannot be computed by an n-fold com-
position of tree transformations from B(l,n) because the output tree should
contain a special position of level 1 by Corollary 42. We make sure that the
assumptions of Corollary 42 are satisfied.

Example 43 Let M = (Q,Σ,Σ, {?}, R) be the 6εnl-xt with
– Q = {?, q} and Σ = {σ(2), α(0)}, and
– the set R consisting of the following rules

σ(?, α) ?,q−→ ? σ(?, q) ?,q−→ σ(?, q) α
?−→ α .

It is easy to see that τ(M) is a total function. Intuitively, for an input tree t, it
removes all positions v and v2 of t such that t(v) = σ and t(v2) = α. Figure 7
shows the repeated application of τ(M), where one application is indicated
by 7→. Assuming that each dashed line contains at least three more positions,
it is easy to check that, for distance ` = 2, the root of the first tree has level 2
(because positions 1, 11, 111, 1111, 2, 21, 211, and 2111 all have level 1).
The penultimate tree, which is obtained from the first tree by the application
of τ(M)2, only has special positions of level 0. ut

We use the 6εnl-xt M of Example 43, and show that n transformations
from B(l,n) cannot compute the tree transformation τ(M)n+1.

Lemma 44 6εnl-XTn+1 6⊆ B(l,n)n for every n ≥ 1.

Proof. Let Σ = {σ(2), α(0)}. The powers of a tree c ∈ TΣ({x1}) are defined
by c1 = c and ck+1 = c[ck] for every k ≥ 1. Let T−1 = {α}. For every n ∈ N,
we define the tree languages Cn ⊆ TΣ({x1}) and Tn ⊆ TΣ inductively by
Cn = {σ(x1, t)k | t ∈ Tn−1, k ≥ 1} and Tn = {c[α] | c ∈ Cn}.

Let M be the 6εnl-xt of Example 43. We have already remarked that
τ(M) : TΣ → TΣ is a total function. It is easy to see that τ(M)(tn) ∈ Tn−1
for every n ∈ N and tn ∈ Tn. Consequently, τ(M)n+1(tn+1) ∈ T0 for every
tn+1 ∈ Tn+1 (see Fig. 7 that shows trees in T2, T1, T0, and T−1). Obviously,
P`1(u) = ∅ for every u ∈ T0 and ` ≥ 2. Thus, with the help of Corollary 42, we
can complete the proof by showing that for every ` ≥ 2 there exists t ∈ Tn+1
such that P`n+1(t) 6= ∅.

Let ` ≥ 2 be fixed. We now prove that for every n ∈ N there exists t ∈ Tn
such that P`n(t) 6= ∅ by induction on n. In fact, we prove the stronger statement
that there exists t ∈ Tn and v ∈ P`n(t) such that |brt(ε, v) ∩ P`n(t)| ≥ `n+1.
For n = 0, we select the tree t = c`[α] ∈ T0, where c = σ(x1, α), and the
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Fig. 7 Illustration of the repeated application of the tree transformation τ(M) of Exam-
ple 43.

position v = 1`−1. Since P`0(t) = brt(ε, v), this selection of t and v fulfills the
requirements. In the induction step, there exist a tree t ∈ Tn and v ∈ P`n(t)
such that |brt(ε, v) ∩ P`n(t)| ≥ `n+1. We consider the tree t′ = c(`

n+2+1)[α]
with c = σ(x1, t) and the position v′ = 1`n+2−1. Obviously, t′ ∈ Tn+1 and
v′′ ∈ P`n+1(t′) for every v′′ � v′ because 〈v′′, 1, 2〉 ∈ PI`n+1(t′) via the positions
v1 = v′′12v and v2 = v′′2v using Lemma 38(i). This completes our induction
and proof. ut

Now we are able to prove that the composition hierarchy of 6εnl-XT and
several other classes is infinite.

Theorem 45 For every n ≥ 1 and y ⊆ {s,n}

B(l,n)n ( B(l,n)n+1 yl-XTn ( yl-XTn+1

6εnl-XTn ( 6εnl-XTn+1 (yl-XTR)n ( (yl-XTR)n+1 .

Proof. Since all inclusions are trivial, we only need to prove their strictness.
By Proposition 11 we have 6εnl-XT = B(snl,nl), hence 6εnl-XTn ⊆ B(l,n)n
and 6εnl-XTn+1 ⊆ B(l,n)n+1. Together with Lemma 44 these two statements
imply the strictness of the two inclusions on the left. To prove the strict-
ness of the other two inclusions, we prove that snl-XTn+1 6⊆ (l-XTR)n. Using
simple symmetry, we observe that snl-XT = 6εnl-XT−1, which together with
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the symmetric version of Lemma 44 yields snl-XTn+1 6⊆ B(n, l)n. Further-
more, l-XTR = B(nl, l) by Proposition 11, which yields

(
l-XTR)n ⊆ B(n, l)n.

Together with snl-XTn+1 6⊆ B(n, l)n we obtain snl-XTn+1 6⊆ (l-XTR)n as de-
sired. ut

For the classes yl-XT and yl-XTR with y ⊆ {s} we can make more precise
statements, which are similar to those in Theorems 26 and 34.

Theorem 46 For every n ≥ 2,

sl-XT ( sl-XTR ( sl-XTn =
(
sl-XTR)n ( sl-XTn+1

l-XT ( l-XTR ( l-XTn ⊆
(
l-XTR)n ( l-XTn+1

Proof. The inclusions from left to right are trivial or follow from Lemma 15.
The first strict inclusion on each line follows from Proposition 14. The other
strict inclusions follow from snl-XTm+1 6⊆ (l-XTR)m, which was shown in the
proof of Theorem 45 for every m ≥ 1.

It remains to prove that (sl-XTR)n ⊆ sl-XTn. Clearly, it suffices to prove
this for n = 2. We first observe that QR ; snl-XT ⊆ snl-XT. In fact, since
snl-XT−1 = 6εnl-XT (as mentioned in the proof of Theorem 45) and, obviously,
QR−1 = QR, we obtain that

QR ; snl-XT = (6εnl-XT ; QR)−1 ⊆ ( 6εnl-XT)−1 = snl-XT ,

where the inclusion follows from Lemma 13. Thus,

(sl-XTR)2 ⊆ QR ; sl-XT2 ⊆ QR ; snl-XT ; sdl-H ; sl-XT
⊆ QR ; snl-XT ; sl-XT ⊆ snl-XT ; sl-XT ,

where the first step is by Lemma 15, the second step by Lemma 18, the third
step by Lemma 19 and the last step by the above observation. ut

The authors do not know whether, but guess that l-XTn ( (l-XTR)n for
all n ≥ 2. Table 4 summarizes the main results of this section. For the sake of
completeness, we mention some additional results from the literature, where
T stands for the class of all tree transformations computable by top-down
tree transducers [6], and 6ε-XT stands for the class of tree transformations
computable by ε-free extended top-down tree transducers [17]. The result
6ε-XT ⊆ T2 mentioned in Table 4 can be concluded from [17, Theorem 4.8].

7 Hasse diagram for the ε-free classes

Finally, let us compare the six classes of Theorem 34 with the three classes of
Theorem 26 and the two classes of Proposition 17. Additionally, we consider
the composition hierarchy for the class 6εnl-XT, for which we established the
infiniteness in Theorem 45. Thus, we compare all ε-free classes considered in
this paper.
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Class with infinite composition hierarchy Stated in

B(l, n), 6εnl-XT, yl-XT, yl-XTR Theorem 45

T [8, Theorem 3.14]
6ε-XT T ⊆ 6ε-XT ⊆ T2 and

(Tn | n ≥ 1) is infinite
B(n,n) [1] and [5, Section II-2-2-3-4]

Table 4 Summary of the results of Section 6, where y ⊆ {s,n}.

Theorem 47 Figure 8 is the Hasse diagram of the displayed classes of tree
transformations for all n ≥ 4.

Proof. The equalities are proved in Theorems 20 and 34, and all the inclu-
sions are trivial or hold by either Lemma 15 or Corollary 25. The strictness
of the vertical inclusions is proven in Proposition 17 and Theorems 26, 34,
and 45. For the remaining strictness and incomparability results (with respect
to ⊆) we have to prove the following six results.
(i) 6εsl-XTR 6⊆ 6εl-XT: This is a consequence of Proposition 14.
(ii) 6εsnl-XT2 6⊆ 6εl-XTR: This follows from Proposition 16. It is also a con-

sequence of the proof of Theorem 31 as follows. Consider the 6εnl-xt M ′1
and the 6εsnl-xt M2 and M3 in that proof. If τ(M2) ; τ(M3) ∈ 6εl-XTR,
then τ(M ′1) ; τ(M2) ; τ(M3) ∈

(
6εl-XTR)2, contradicting the proof of The-

orem 31.
(iii) 6εnl-XT 6⊆ 6εsl-XT2: Let M ′1, M2, and M3 be as in the proof of Theo-

rem 31. Note that τ(M ′1) ∈ 6εnl-XT and τ(M2), τ(M3) ∈ 6εsl-XT. Now
suppose that τ(M ′1) ∈ 6εsl-XT2. Then τ(M ′1) ; τ(M2) ; τ(M3) is in

6εsl-XT4 = 6εsl-XT2 ⊆
(
6εl-XTR)2 ,

where the first equality is due to Theorem 20. However, this contradicts
the proof of Theorem 31.

(iv) 6εsl-XT 6⊆
⋃
k≥1 6εnl-XTk: The translation τ = {(t, α) | t ∈ TΣ} with

Σ = {σ(2), α(0)} can obviously be computed by an 6εsl-xt with the rules
σ(q, q′) q0−→ α and α q0−→ α, but τ /∈ 6εnl-XTk for all k ≥ 1 by Corollary 42
because there exists a tree t ∈ TΣ such that P`k+1(t) 6= ∅ as demonstrated
in the proof of Lemma 44.

(v) 6εnl-XT3 6⊆
(
6εl-XTR)2: This follows from the proof of Theorem 31 be-

cause the 6εl-xt M ′1, M2, and M3 in that proof are nondeleting.
(vi) 6εnl-XT4 6⊆ 6εl-XT3: This result follows from the proof of Theorem 33,

so let M1, M2, and M3 be the 6εl-xtR of that proof. We note that
τ(M2), τ(M3) ∈ 6εnl-XT. It is easy to show that τ(M1) ∈ 6εnl-XT2,
which can be achieved by the decomposition τ(M1) = τ(N1) ; τ(N2),
where N1 is obtained from M1 by replacing the two rules involving qla

by σ(q, qla) q−→ σ(q, qla) and σ(qla, q) q−→ σ(qla, q) and adding the
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6εl-XTR

)3
⋃

k≥1 6εnl-XT
k

6εnl-XTn+1 6εl-XT3

6εnl-XTn (
6εl-XTR

)2
6εnl-XT3 6εl-XT2

6εl-XTR

6εnl-XT2 6εl-XT 6εsl-XT2

6εsl-XTR

6εnl-XT 6εsnl-XT2 6εsl-XT

6εsnl-XT

= 6εl-XT4

=
(
6εsl-XTR

)2

Fig. 8 Hasse diagram of the discussed classes of tree transformations for all n ≥ 4.

two rules γ2(qla) qla

−→ qla and α
qla

−→ α. Then N1 is nondeleting. Simi-
larly, we obtain N2 from M1 by replacing the two rules involving qla by
σ(q, α) q−→ q and σ(α, q) q−→ q (and removing the two rules γ1(p) p−→ p

and γ2(q) q−→ q because the symbols γ1 and γ2 have already been re-
moved by N1). Note that also N2 is nondeleting. The decomposition
yields that τ(M1) ; τ(M2) ; τ(M3) is in 6εnl-XT4. However, as demon-
strated in the proof of Theorem 33, we have that τ(M1) ; τ(M2) ; τ(M3)
is not in 6εl-XT3. ut

The authors did not attempt to present a Hasse diagram that contains
all the classes (including the non-ε-free classes) discussed in this paper, but
consider this a worthwhile effort.
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Conclusion

Linear extended top-down tree transducers (with or without regular look-
ahead) are formal models of syntax-based statistical machine translation. They
have several good properties [19]. In particular, most of them can be presented
as bimorphisms in the sense of [3], which yields that a result of [3] implies that
ε-free, strict, and nondeleting l-xt are not closed under composition and that
their composition hierarchy collapses at power 2. We extended their investi-
gation to the composition hierarchy of the classes obtained by dropping some
of the restrictions ε-freeness, strictness, and nondeletion. We showed in Theo-
rem 34 that the composition hierarchy of ε-free l-xtR collapses at power 3 and
that of ε-free l-xt collapses at power 4. In fact, the powers 3 and 4 are the least
powers with that property. To complete the picture, we showed in Theorem 45
that the composition hierarchies of l-xt, l-xtR, and ε-free and nondeleting l-xt
are infinite. Finally, we presented the Hasse-diagram of the powers of the
considered ε-free classes in Theorem 47. In the future, the authors would like
to investigate the composition hierarchy of weighted linear extended top-down
tree transducers.
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