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Abstract. In this paper we show that membership in finitely generated sub-
monoids is undecidable for the free metabelian group of gaakd for the wreath
productZ (Z x 7). We also show that subsemimodule membership is undecid-
able for finite rank fregZ x Z)-modules. The proof involves an encoding of
Turing machines via tilings. We also show that rational subset membeisship
undecidable for two-dimensional lamplighter groups.

1 Introduction

Two of the classical group theoretic decision problems heevtord problem and the
generalized word problem. Suppasss a finitely generated group with finite generat-
ing sety and putst = YUX ! Letr: (X*)* — G be the canonical projection from
the free monoid orZ* onto G. The word problem asks to determine algorithmically
given an input worde € (X%)*, whetherr(w) = 1. An algorithm for the (uniform)
generalized word problem takes as input finitely many wards, . .., w, € (2%)*
and answers whethet(w) € (m(w),...,7(w,)). Two more general problems that
have received some attention in recent years are the sutidnoembership [14,15,17]
and the rational subset membership problems [12-15, 19, 21]

The (uniform) submonoid membership problem ¢otakes as input a finite list of
wordsw, wy, ..., w, € (X*)* and asks the questionigw) € {r(w1),...,m(wy,)}*
(where if X C @G, then X* denotes the submonoid generated@®y For example,

g € G has finite order if and only i~ € ¢* and so decidability of membership in
cyclic submonoids allows one to compute the order of an ehént@f course, decid-

ability of submonoid membership implies decidability oétheneralized word prob-
lem. In [14] the authors provided the first example of a grouth wecidable gener-

alized word problem and undecidable submonoid membersiuiplgm, namely the

right-angled Artin group (or graph group) whose associgtagh is a path of length

The rational subset membership problem ¢bis the following algorithmic prob-
lem: given as input a word: € (X*)* and a finite automaton/ over (X*)*, deter-
mine whetherr(w) € n(L(<)). Of course, this is the most general of the problems
we have been discussing, and is therefore the easiest te pnalecidable. A subset of
the groupG is calledrational if it is of the form 7(L (<)) for some finite automaton
<. Whether or not a subset 6f is rational is independent of the choice of generating

* The authors would like to acknowledge the support of DFG MercatorrprogThe second
author is also supported by an NSERC grant.



setX. The study of rational subsets of groups goes back a long bemynning with
free groups [5] and commutative groups [10]. Other earlgneices include [2,7]. The
largest known class of groups with decidable rational sulegnbership problem can
be found in [14], where one also finds a complete classifinati@graph groups with de-
cidable rational subset membership problem. The papersii&ys that the submonoid
membership and rational subset membership problems auesiealy equivalent for
groups with more than one end.

Itis easy to see that i, L, are rational subsets 6f, thenL; N Ly # 0 if and only
if1e LlL;1 and the latter product is a rational subsetbfThere are many monoids
embeddable in groups with undecidable rational subsetsittion emptiness prob-
lems; one such example was exploited in [14]. An easier elaisphe following. Let
M be a free monoid on two-generators. Then the undecidabiiitiye Post correspon-
dence problerhimplies that there is a fixed finitely generated submomidf M x M
so that it is undecidable given an eleméntv) € M x M whether(u, v)NNA # 0
whereA is the diagonal submonoid @ff x M. Therefore, ifG is a finitely generated
group containing/ x M, then(u,v)N N A # ( if and only if (u,v) € AN—! and so
rational subset membership is undecidable for a fixed ratisnbset of such a group.
For instance, Thompson’s group contains a direct product of two free monoids of
rank 2 and so has undecidable rational subset membership prolil@ras shown by
Roman’kov [21] that, for any nilpotency class> 2, there is a rank so that the free
nilpotent group of clasg and rank- has undecidable rational subset membership prob-
lem via an encoding of Hilbert’s tenth problem. On the othemdy from the subgroup
separability of polycyclic groups [16] it follows that thatter have a decidable gener-
alized word problem. A more practical algorithm can be foum8].

It is known that free solvable groups of rakand derived length at lea8thave
undecidable generalized word problem [26]. On the othedhal finitely generated
metabelian groups have a decidable generalized word pnol28, 24]. It is therefore
natural to consider metabelian groups for the submonoidratiohal subset member-
ship problems. In this paper we show that there is a fixed ngenerated submonoid
of the free metabelian group of rarkwith undecidable membership problem. The
same result is also established for the wreath pro#uctZ x Z). The proof is via
a reduction to the membership problem for finitely generatdsgsemimodules of free
(Z x Z)-modules of finite rank. This latter problem we prove undabld by interpret-
ing it as a particular tiling problem that we show to be undabie via a direct encoding
of a Turing machine.

The paper ends by showing that membership in rational ssilo$¢he metabelian
groupZ/nZ (Z x Z) is undecidable using essentially the same tiling problém. |
is left open whether this group has a decidable submonoidbaeship problem. At
the moment, there are no examples of groups for which the snbitt membership

! The classical proof of the undecidability of the Post correspondensiglgm shows that
there exists a fixed sequence of pafis,v1),..., (un,vn) € {a,b}* x {a,b}* such
that the following problem is undecidable: Given a péi,v) € {a,b}* x {a,b}", is
there a sequenca, ...,ir € {1,...,n} such thatuu;, - - -u;, = vv;, ---v;,? The pairs
(u1,v1),. .., (un,vn) encode the transitions of a universal Turing machine, whefeas)
comes from the input to the machine.



problem is decidable, but the rational subset membersbiggm is undecidable. Some
further algorithmic results concerning metabelian grozgs be found in [4,18,22].

2 The subsemimodule membership problem

Fix a groupG. Recall that a (left)z-moduleis an abelian groug/ equipped with a
left action of G by automorphisms. Equivalently@module is a module for the group
ring ZG. One can extend this definition to obtain the notion éf-semimodule. By a
G-semimodulgwe mean a commutative monald equipped with a left action aff by
automorphisms. Equivalently, we are speaking of seminesdidr the group semiring
NG. If X is a subset of &-module, therZG - X will denote the submodule generated
by X andNG - X will denote the subsemimodule generateddy

Let us now formulate the membership problem for semimodutdsrmally, the
problem is given a fixed finitely generaté#tmodule M, can one determine algorith-
mically membership in finitely generated subsemimodules/ofOf course, to make
this a well-defined algorithmic problem we need to describ& to represent elements
of the module.

Assume now that our grou@ is generated by a finite séf and denote byo*
the setX U X¥~!. Let ZX* be the ring of integral polynomials in non-commuting
variablesX* (that is the free ring or=*). There is as usual a canonical surjection
7: ZX* — 7.G induced by evaluating words if.

Let M be a finitely generate@-module with generating sd®. We can view it as
aZX*-module viar. Let M be the freeZX*-module onB. Then there is a canon-
ical projectionp: M — M sendingB to B. The idea then is that we can represent
elements ofM by elements of\l. The (uniform)subsemimodule membership prob-
lemthen takes as input a finite subgétof M and an element € M. The output
is whetherp(z) € NG - p(F). It should be noted that fa& = 1 the subsemimodule
membership problem corresponds to the submonoid mempepsbiblem for finitely
generated Abelian groups. This problem, when restrictdte®Abelian groups of ar-
bitrary finite rank, is exactly the integer programming pewb, which is a classical
NP-complete problerh.

Our interest in the subsemimodule membership problem dremmsan easy encod-
ing of it into the submonoid membership problem for semitigroducts.

Lemma 1. Let G be a group with generating set' and let M be aG-semimodule
generated by a subsé&t. Then the semidirect produsdt x G is generated as a monoid
by X+ U B via the map + (0, a) fora € X* andb + (b, 1) for b € B. In particular,

if G and M are finitely generated, then sodd x G.

Proof. As a monoid)M is generated by all elements of the fogtwith g € G, b € B.
But (0,9)(b,1)(0,¢g7%) = (gb,1). It follows that X+ U B is a monoid generating set
for M x G. O

2 Here, we view integer programming as a decision problem: Given a m&tdxZ"*™ and a
vectorb € 7™, is there a vectox € N™ such thatdz = b? See e.g. [11, Problem MP1] for
NP-completeness of this problem.



In light of Lemma 1, we immediately obtain the following rétsu

Proposition 2. Let G be a finitely generated group antf a finitely generated>-
module with an undecidable subsemimodule membershipguroor a fixed subsemi-
moduleN). ThenM x G has an undecidable submonoid membership problem (for the
fixed submonoidv x G).

Proof. The membership afm, 1) in N x G is evidently equivalent to the membership
of m € N. Let us just mention how one effectively transforms inpotfrthe subsemi-
module problem to the submonoid membgship problem. S#ppas a generating set
for G and B is a generating set fav/. Let M andp be as before Lemma 1. Then, for
w € (X%)*, b € Bandn € Z, the elementp(nwb), 1) is represented in the (group)
generating set’ U B for M x G by the word(wbw~1)™. In this way, we can encode
representatives of the module as words(ify U B)*)*. O

If G is a group, the semidirect prodU€& x G is the same thing as the (restricted)
wreath producZ ! G. Now if H is a subgroup of7 of indexm, then it is well known
thatZG is a freeZ H-module of rankn [9]. More precisely, ifl’ = {g1,...,gn} IS @
complete set of right coset representativeélah G, thenT is a basis fofZG as a free
left ZH module. Consequently, we have the following lemma.

Lemma 3. Suppose thall is a subgroup ofs of indexm and M is a freeZ H-module
of rank at mosin. ThenM x H embeds as a subgroup 8f G.

Proof. ClearlyZG x H < ZG x G = Z G. SinceZG is a freeZ H-module of rank
m, it follows M < ZG and so we are done. a

The main technical result of this paper is the following ttesn.

Theorem 4. There is a fregZ x Z)-module of finite rank with an undecidable sub-
semimodule membership problem for a fixed finitely genesatbdemimodule.

As a corollary, we obtain thédk ! (Z x Z) has an undecidable submonoid mem-
bership problem. This should be contrasted with the geiedaivord problem, which
is solvable in any finitely generated metabelian group [2B, Recall that a groujg:
is metabelianif it is solvable of derived lengtl2, or equivalently if commutators in
G commute. It should be noted that the submodule membersbiggm is decidable
for free (Z x Z)-modules [25], and this is what underlies the positive sofuto the
generalized word problem for metabelian groups in [23, 24].

Corollary 5. The submonoid membership problem is undecidabl&{¢#Z x Z) for a
fixed finitely generated submonoid.

Proof. By Theorem 4, there is a frg& x Z)-module M of some rankn with unde-
cidable subsemimodule membership problem for a fixed suibsedule. Proposition 2
then implies thatM x (Z x Z) has undecidable submonoid membership for a fixed
finitely generated submonoid. Nd# x Z contains a subgroup of index isomorphic
toit, e.g.,mZ x Z. Lemma 3 then implied/ x (Z x Z) embeds irZ (Z x Z), com-
pleting the proof. ad



Our next goal is to show that the free metabelian group of gamks an undecidable
submonoid membership problem for a fixed submonoid. Sirisditown that free non-
cyclic solvable groups of derived lengitor higher have undecidable generalized word
problem [26], this will show that the submonoid membershipbtem is undecidable
for free non-abelian solvable groups of any derived length.

We need to recall a description of the free metabelian grdujark 2, which is
a special case of a more general result of Almeida [1]; see[4B]. In what follows
we will work with the Cayley-graphl” of the groupZ x Z. More precisely, the set of
vertices ofl" is Z x Z and the set of (undirectedjigeds

&= {{(p7q),(7“,8)} |p7Qa7'as € Za "LL*I’| + ‘,Ufy| = 1}

Fore = {(p,q), (r,s)} € & and(a,b) € Z x Z, we define the translate+ (a,b) =
{(p+a,q+0b),(r+as+0b} € & LetX = {z,y} and label edges if" of the
form {(p,q), (p + 1,q)} (resp.{(p,q), (p, g + 1)}) with = (resp.y); the reverse edges
are labeled witl:—! (resp.y—!). Let M, be the free metabelian group generatedby
Then two wordsu, v in (X%)* represent the same element/dh, if and only if they
map to the same element of the free abelian group of aakd the paths traversed
by v andv in the Cayley grapt” of Z x Z use each edge the same number of times
(where backwards traversals are counted negatively) valguitly, a wordw represents
the identity inM, if and only if it labels a closed path ifi at the origin that maps to the
trivial element of the homology groufi; (I"). A word w represents an element of the
commutator subgroup\,, Ms] if and only if it reads a closed loop ifi at the origin.
Thus[M,, M) can be identified witt, (I") as a(Z x Z)-module by mapping a word
w reading a loop at the origin to the elementiéf(I") represented by that loop. As a
(Z x Z)-module, it is free of rank generated by the commutator, y] = xyz~ty =1,
which corresponds to

c= {(070)7 (17 0)} + {(170)7 (17 1)} - {(17 1), (07 1)} - {<07 1)7 (070)}

under our identification ofMz, M,] with Hy(I"). The easiest way to see thats a
free generator is to view' as thel-skeleton ofR? with the cell complex structure
whose2-cells are the squares of side lendtbounded byl". The fact thatt,(R?) =

0 = H,(R?) says exactly that the boundary map from the free abelianpgoouthe
cells to Hy(I') (which can be identified wittZ; (R?)) is an isomorphism. Moreover,
the boundary map is actually a homomorphisniZfx Z)-modules since the action of
7 x 7. onR? is by cellular maps. Sinc& x Z acts freely and transitively on the cells,
it follows that H, (I") is freely generated by.

Fix now m > 0 and considetd = (2™,y) < M,. First note that the image
of H in My/[Ms, M;] = 7Z x 7Z is the subgroupnZ x Z, which must therefore be
the abelianization off as it is free of rank and H is 2-generated. ThufH, H| =
[Ms, M) N H. Moreover,[H, H] is themZ x Z-submodule ofM>, M>] generated by

—

m—

d = Z(c—i— (1,0)).

=0

Indeed, the elements ¢f{, H] are the homology classes i (I") of closed loops
in the grid with vertex seinZ x Z. If we makeR? into a cell complex by using the



squares bounded by this grid, then the same argument as shows tha{H, H| is
freely generated as amZ x Z)-module by the boundary of the square with vertices

(0,0), (m,0),(0,1), (m,1).

But this is exactly’.
Now as an(mZ x Z)-module,[Ms, Ms] is free on{c + (i,0) | 0 < i < m — 1}.
But we can then change the basis to the set

{c+(3,0) |0<i<m—2}U{}.

Thus as arimZ x Z)-module[ M, M>] = F®[H, H] whereF is free of rankn—1. We
can exploit this to reduce the subsemimodule membershiplgmoto the submonoid
membership problem fa¥/,.

Theorem 6. There is a fixed finitely generated submonoid of the free reéiatbgroup
of rank2 with undecidable membership problem.

Proof. By Theorem 4 we can find a frg& x Z)-module M of rank r containing a
fixed finitely generated subsemimodulewith an undecidable membership problem.
Choosen = r + 1 and setd = (z™,y). We saw above that as @mZ x Z)-module

we can write[Ms, My] = F @ [H, H] whereF is a free(mZ x Z)-module of rank

r. SincemZ x 7. = 7 x Z, we can of course find a fixed subsemimodule, which
we abusively denotéV, inside of ' with an undecidable subsemimodule membership
problem. Consider the submonafiof M, generated byV and H. If B is a finite
generating set fal, thensS is generated b3 U{z™, =™, y, y~ '} since each translate
of an element ofB by an element ofnZ x Z can be obtained via a conjugation by an
element ofH. We claim that

SN [May, My) = N @ [H, HJ.

SinceN C FandF N [H,H] = 0, it follows N + [H,H] = N & [H, H]. The
inclusion from right to left is trivial. For the other inclios, consider a produgi =
hong - - - hgng with theh, € H and then; € N belonging toMs, M,]. Then

g = (honohy ') (hohiny (hoh1) ™) -+ (ho - - - hgng(ho - - - hi) " ho - - - hy,
=nhg - hy

with n € N. It follows thathg - - - hy, € [M2, M3] N H = [H, H| and so we obtain
g € N @ [H, H], as required.

So suppose: € F' and we want to decide whetherc N. Then since we have
SN[Mz, M) = N®[H,H] < F&[H, H], itfollows thatx € N ifand only ifx € S.
This completes the proof. ad

3 Tiling problems

There is a classical connection between Turing machinegilimgl problems [6, 20].
Here we consider a variant that is most easily translatedtie subsemimodule mem-
bership problem.
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Fig. 1. The tilet = (cw, g, cs, cw)

LetC be afinite set ofolorswith adistinguished colotry € C. A tiling systenover
C is a setT' C C4; its elements are called tiles. We view a tlle= (cy, cg, cs, cw)
as an edge colored square, as shown in Figure 1. We will @agsowith the tilet =
(cn, cr, cs, cw ) the following mappindt] : & x C — Z (where& continues to denote
the edge set of the Cayley graphZtc Z):

[t1({(0,0), (1,0)},¢5) = =1+ (1 = deg,co)
[[tﬂ({(l,()), (17 1)}>CE) =1 (1 - 6013,00)
[t1({(1,1),(0,1)},en) = 1+ (1 = ey o)
[t1({(0,1),(0,0)},cw) = =1+ (1 = deyy o)
[t](e, c) = 0in all other cases

where as usual, , = 1 whenz = y andd,, = 0if = # y. Thus, we color, for
instance, the north edg0, 1), (1,1)} of the cell{(z,y) | 0 < z,y < 1} with the
color cy, in casecy # ¢o. The sign of the valugt] (e, ¢) indicates that the north and
east (south and west) edge receive a positive (negative)tation. This will be used
below, where we add translates of the mfif)sEdges that are colored hy receive the
valueO.

Let f: & x C' — Z.We say thaff hasfinite supporif the setf~1(Z\ {0}) is finite.
For(a,b) € Z x Z we define the translate, ; f : & x C — Z as the mapping with

Tanf(e,c) = f(e —(a,b),c) foralle € & andc € C.

For two mappingsi, fo: & x C — Z we define the sunf; + f2: & x I' — Z by
(fi + f2)(e;¢) = fi(e,c) + fa(e,c) forall e € & ande € C. We denote by the
constant mapping taking the valOeeverywhere on§” x I'. The set of all mappings
from & x C to Z forms an abelian group under addition. The set of all maygpwigh
finite support is a subgroup of this group.

A tiling sumoverT is a sum of the form

= menltid, (1)
i=1

wherez;,y; € Z andt; € T for all 1 < i < n. The evaluation of such a sum yields
a mappingf: & x C — Z. Note that one may haver;,y;) = (x;,y;) fori # j.
Intuitively, one can think of a tiling sum as putting tiles oertain positions of the grid
(one may put several tiles on the same position or even pugaine tile several times
on the same position). When evaluating the tiling sum, we elamatching colors on



edges, which happens if, e.g., the color on the north sidetid¢ anatches the color
on the south side of the tile immediately above it. The dggtished colore, is not
involved in this cancellation process. Let us agree to say tthe tilet; is placedin
position(z;, y;) in the tiling sum (1). Of course, the same tile may be placeduitiple
positions or even multiple times in the same position.

The zero tiling sum problenfor a given tiling systeni” over C is the following
computational problem:

INPUT: A mappingfy: & x I — Z with finite support.
QUESTION: Is there a tiling sunfi with fo + f = 0?

Theorem 7. The zero tiling sum problem is undecidable.

Proof. We start with a fixed deterministic Turing machindé = (Q, I, X, 9, qo, q5)

with an undecidable acceptance problem. Hé}ds the set of stated] is the tape
alphabetX’ C I' is the input alphabety € Q@ is the initial stateg; € @ is the unique
accepting state, antt Q@ x I' — @ x I' x {L, R} is the transition mapping((resp.
R) means that the head moves left (resp. right)). The blanksym 0 € '\ X. We
can make the following assumptions on the machifie

— The tape of\/ is bounded to the left; that is, the machine never moves ttethef
the first cell.

— M terminates if and only if it reaches the accepting sgatdn particular, an input
w is accepted if and only i/ terminates onw.

— If M reaches statg; then the whole tape is blank and the head of the machine is
scanning the left most cell.

We take the following fixed set of colors:
C=QUIuU(@xI)U{=,1,<,1,¢,4,>,¢}

Here, ¢ is the distinguished color. In the following pictures thdaza:y, will be indi-
cated in a tile by a dotted side. Also the p@ira) € @ x I" will be written ga.

The set of tilesI” consists of the following tiles, which are inspired by tHediof
the tiling system from [8, Appendix A]:

— Alphabet tiles (for alkh € I'):

a a

a a

— Merging tiles (for alla € I" and allp € Q):

pa pa




— Action tiles for moves of the maching:

if 6(¢,a) = (p,b,L): if 6(q,a) = (p,b, R):
b b
p > < p
qa qa

— Boundary tiles (the labels are just names that we give to these tiles):

O T : T
- bo - - bl > b2 <~ b3
T T
o by <] |v by © by <
| art Ll

Now, letw = wiws---w, be an input for the maching/ with the w; € 3. We
associate withw the following mappingf,,: & x C — Z:

fw({(0,1),(1,1)},1) =
Su{(1,1),(2,1)}, gow:) = 1
fu{(,1), G+ 1, D) }w;) =1for2<i<n
fu{(n+1,1),(n+1,0)},—-) = 1.
All other values off,, are0, hencef,, has finite support. As a diagram, the mappjfig
looks as follows:

\ - - o
(0,1) L gQowyr T wa w3 Wn,

We will show thatM accepts the input if and only if there is a tiling sury with

fw + f =0.
First assume that there is such a tiling sfimand let

Z )

Claim 1.Forall1l < i < N, we have both;,y; > 0 and eithery; > 1,0orz; >n+1

in (2), i.e., all tiles are placed into the shaded area in feigu

Let < be the componentwise order @nx Z, i.e.,(z’,y') < (z,y) ifand only if 2’ < x
andy’ < y. In order to deduce a contradiction, assume that theresexidle of f placed
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0.1) T GQowi w2 w3 . Wn l(”"‘lyl)

Fig. 2.

outside the shaded area and supposeitlsathosen so thdtr;, y;) is <-minimal with
T(as,:) [L:] OUtside of the shaded area. Note that for every til@jrthe south or the
west edge is colored differently fromy. Hence, the south or the west color of tilds
different fromcgy. In order to match this up, there must exist a tile placed ¢osibuth
or to the west ot;, that is, there must bé < j < N such that either; = z; and
y; =y — 1, 0rz; = x; — 1 andy; = y,. This contradicts the choice of Claim 1 is
now established.
Recall thathy andb; are two of the boundary tiles.

Claim 2.There existsn > n + 1 such that the tiling sunf in (2) can be written as

m—1

f= Z 7i,0[bo] + Tm0[b1] + 91, 3)
i=n+1
whereg, is a tiling sum, which does not contain a summand of the fogm[¢] for
somez € Z and some tile.

Since f,({(n + 1,1),(n + 1,0)},—) = 1, f must contain a summand of the form
Tz 0[t] with z > n + 1. Letm be the maximak with this property. The tilé¢ must be
b1, because every other tile has a color different fignon its east side or on its south
side. Then,f would contain a summand of the form,1 o[¢'] (which contradicts the
choice ofm) or 7,,,,_1[¢'] (which contradicts Claim 1). Hencg¢ contains the summand
Tm,0[b1]. Now, by induction oni we can easily show thgtmust contain all summands
Tiolbo] for n +1 < i < m — 1. For this, note thak, is the only tile with color- on
its east side. Hence, we can writ@as f = Z?;ﬂrl Ti.0lbo] + Tm.0[b1] + g1 for some
tiling sumg;. The diagram of the evaluation of the sum

m—1

fi=fou+ Z Ti0lbo] + Tm,0[b1]

1=n+1

is shown in Figure 3. Note that we have

fw+f:f1+91:0~

10
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m—1

Fig. 3. The evaluation of the surfy = f., + Z 75,0[bo] + Tm.o0[b1]

i=n+1

Now, assume thaf; contains a summand of the form ([t] for somex and some tile
t. Choosex minimal with this property. Since the west or the south sitiéle ¢ has
a color different fromey, the sumg; must contain a summand of the form_q o[¢']
(which contradicts the choice oj or of the formr, _1[¢'] (which contradicts Claim 1).
This proves Claim 2.

By Claims 1 and 2, we know that all summandsgqrare of the fornr,, ,, [¢t] with z > 0
andy > 1. Moreover,g; added tof; in Figure 3 gived).

Claim 3.The tiling sumg; does not contain a summand of the form, [¢] (z > 0,y >
1) with ¢t € {bo, bl}

Assume thay, contains the summand, ,[t] (z > 0,y > 1) with t € {by,b:} and
assume that is minimal with this property. Since the west edge & labeled with-,
g1 has to contain the summangl_, ,[bo], which is again a contradiction.

Claim 4.The tiling sumg, does not contain a summand of the form, [¢] with >
m+ 1.

Assume that; contains the summand, ,[t] with z > m + 1 and assume thaf
is minimal with this property. Since ¢ {by,b;} by Claim 3, the south side afis
labeled with a color different from,. In order to match this ugy; has to contain also
a summand of the from, ,,_1[t], which contradicts the minimality af.

Claim 5.For every position(z, y) with 0 < = < m,y > 1, the tiling sumf does not
contain a summand of the form , [t] + 7, ,, [t'] (possibly witht = ¢'), i.e., no position
(z,y) with0 < z < m,y > 1 receives two tiles.

Assume thaty = 7, ,[t] + 7wy [t'] + 91 (0 <z < m, y > 1), i.e., position(z, y)
receives at least two tiles. We can assume ghiat minimal with this property. Since
{t,t'} N {bo, b1} = O by Claim 3, the south side af(¢’, resp.) is labeled with a color
¢ # ¢ (¢ # co, resp.). Hence, the eddéz, y), (x + 1,y)} receives the colors and
¢ (we may have: = ¢/, i.e.,{(z,y), (z + 1,y)} receives the colot twice). If y > 2,
then we have to match this up by putting at least two tiles aitjom (z, y — 1). Since
this contradicts the choice gf we may assume thgt = 1. Recall thatd < = < m.
Let up andu; be two tiles that are put onto positidm, 1) (we may havei, = uq).
Since the south edges of andu, are labeled with colors different from and since
the edge{(z, 1), (x + 1,1)} in Figure 3 is labeled with a single color exactly onge,
has to contain a summand of the forg), f,, for some tileu. This contradicts Claim 2
and proves Claim 5.

Now that we have established Claims 1-5, we are essentatlydf with a classical
tiling problem. We have to find a tiling (in the classical sgnahere each grid point
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(0, 8)—7 w1 W1 QU Ui T+ 1,9)

Fig. 4. The evaluation of the surfi + h;

gets at most one tile), such that the south side of the finadjtit labeled with the line
in Figure 3 and all other boundary edges are labeled with istenduished colok.
Note that the line in Figure 3 is labeled with the warg = Lgow; ws - - - w, O™ "~ 11,
which represents the initial configuration for the input= w;ws - - - w,. Recall that
we want to show thafl/ finally accepts the inputy, which is equivalent to the fact
that M finally terminates on input. In order to deduce a contradiction, assume that
M does not terminate on input. Let C; (i > 1) be the unique configuration that is
reached fronC; afteri — 1 steps. We can view every; as a word over the alphabet
ru(Q = Iryu{r, 1} starting (ending) with (). Herel (1) marks the beginning (end)
of the tape. The fact that the machine is in stateth the tape head over the symhol
is indicated by an occurrence @f, a) (which we abbreviate tga) in C;. By padding
words with blanks, we can assume for evety 1: either|C;| = m + 1 (this is the case
for Cy) or |C;| > m + 1 andC; does not end wittm 1 (which means thaf’; cannot be
represented by a shorter configuration word).

We prove by induction on that, for everyi > 1, we have|C;| = m + 1 and the
tiling sum ¢, in (3) can be written ag; = h; + ¢g; where all summands ih; (g;,
resp.) are of the formy, , [t with0 <z <mandl <y <i—1(0 <z <mand
y > 1, resp.) and the diagram of the evaluatiorypf- h; is as shown in Figure 4, where
C; =lujug - - Uj—1qQUiUj41 - Um—1 T with thew; € I'. This will contradict the fact
thatg; is a finite tiling sum. It will therefore follow that is accepted by the machine.

Fori = 1 we takeh; = 0. Assume that the above statement is already shown for
i > 1. We haved = f1 + g1 = (f1 + hi) + gi, where the evaluation of the sufp + h;
represents the configuratiari as shown in Figure 4. All summands in are of the
form 7, , [t] with 0 < z < m andy > i.

Note that it is not possible thgt= 1 andd(q,u;) € Q x I' x {L} (the machine
M is programmed in such way that it does not cross the left etiteatape). Moreover,
g is not the final statg; since we are assuming thatis not accepted. We distinguish
two cases. Suppose first= m — 1 andd(q, u;) € Q x I' x {R}. Then the diagram of
the evaluation off; + h; in fact has the following shape:

(0, 9)e—7 U1 e e
The only possible tiles that can be placed in position-1, i) are action tiles with south
side coloredju,,,—;. Since the machine is deterministic afd, u,,—1) € Q@ xI"x{R},
the unique such action tile has the shape




and so this tile must be placed in position — 1, ¢). But since there is no tile with west
sidep € @ and south side, we obtain a contradiction thanks to Claim 5.

Next suppose that eithgr< m — 1, 0rj = m — 1 andd(q,u;) € @ x I' x {L}.
Then certainlyC; 1| = m + 1. Now, we can match up the edges in Figure 4 in exactly
one way: In positior{j, i) we have to put the unique action tile with south sjag (this
tile is unique, sincé/ is deterministic). Depending on wheth¥g, u;) € Q x I'x {L}
ord(qg,u;) € Q x I x {R}, we have to put one of the two merging tiles either to the
left or to the right of the action tile. The rest of the row idefil up with alphabet tiles
and the boundary tilg; (b2, resp.) at positioni0, ¢) ((m, i), resp.) (using that only these
types of tiles haves on their east side ar on their west side). The claims ensure no
further tiles may be placed. In caégy, u;) = (p, b, L), the tiling looks as in Figure 5.
We defineh; ;1 as the sum of,; and all summands, ;[t(x,4)], where0 < x < m

L U1 R S b Ujt1 | | Um—1 T
: al« q q plp >[> > > >[> :
P Uy R qu; Uit | | um_1 T
0% ¥ w T qu Ui Tt o1 (m+1,4)

Fig. 5. Simulating a move of the Turing machine

andt(z, ) is the unique tile that we put on positidm, 7). The tiling sumg;1 is g;
without these summands ;[¢(x, ¢)]. We now have shown that is accepted by/ if
there exists a tiling sunfi with f,, + f = 0.

For the other direction, we assume thatis accepted by\/. We have to show
that there exists a tiling sunfi with f,, + f = 0. This is much easier than what we
have already done. Sineeis accepted by, there exist a numbern — 1 (the space
consumption ofM on inputw) and sequence of configurations (encoded as before)
C1,Cs,...,Cy (all of lengthm + 1) such thatC; =. gowO™ "~ ! 1 is the initial
configuration for the input, Cyy is of the formy ¢;0™~! 1, and M moves fromC;
to C;11 inone step] < i < N — 1). From this computation we can build up a tiling
in the standard way (every position receives at most ongttilebtain the tiling sum
f, essentially by reversing the previous argument. Namedyfingt add tof,, the sum
Z;’;ﬂrl Ti0[bo] + Tm,0[b1] to obtain Figure 3. Then one continues as per Figure 5 to
build up rows2 throughNV. In this way one obtains a suify, + g, with g a tiling sum,
whose evaluation looks like:

- (
(0,N) T T = = = T (m+1,N)

Finally, we complete the tiling as follows.
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0 0

(O,N)+  qs0 U U = = T(m+1,N)

Formally, f = g+ T(0,N) ﬂb(;]] +7(1,N) [[bg,]] + Z:n:;l T(i,N) [[b4]] + T(m,N) [[bgﬂ is a tiling
sum with f,, + f = 0. This completes the proof of Theorem 7. O

We now proceed to the proof of Theorem 4, thereby estabtisBiorollary 5 and Theo-
rem 6. We recall that if7 is a group, then the fre@-module on a seX can be realized
as the abelian group of all finitely supported functighsG x X — Z with pointwise
addition and module action given lgy f (g, 2) = f(g5 *g, ).

Proof (Theorem 4)The abelian group/ of all finitely supported functions frorf x C

to Z is a freeZ x Z module of rank2|C| via the translation action. Indeed, let us set
r ={(0,0),(1,0)} andu = {(0,0),(0,1)}. Then& x C = (Z x Z) x {r,u} x C since
each horizontal edge is uniquely of the fofm b) +r and each vertical edge is uniquely
of the form(a, b) + u. A tiling sum is precisely an element of the subsemimodule
of M generated by the séf¢] | ¢ € T'}. Then the zero tiling sum problem is asking
exactly whether there exisfse N so thatfy + f = 0, which is equivalent to asking
whether—f, € N. Theorem 7 provides a fixed tiling system with undecidabl® ze
tiling sum problem. Therefore this is a fixed finitely genethsubsemimodule of a
fixed free(Z x Z)-module with undecidable subsemimodule membership probldis
completes the proof. a0

4 Rational subsets of two-dimensional lamplighter groups

By atwo-dimensional lamplighter grougve mean a wreath product of the fofiyinZ
(ZxZ) for n > 2. In this section, we show that the rational subset membesioblem
is undecidable for such groups. By affective ring we mean a unital rind? whose
arithmetic can be represented effectively (llker Z/nZ). Let G be a finitely generated
group with generating sef’. The subset sum probleror a finitely generated?G-
module) is the following algorithmic problem. Givem € M and a finite subsef C
M of non-zero elements, determine whether there exist distlementsy;,..., g, €
G and elementd, ..., f, € F (not necessarily distinct) so that = >_"" , g; fi. In
the case the answer is “yes”, we say thais asubset surof F. If F'is fixed, then we
call this the subset sum problem bt

Theorem 8. Let R # 0 be an effective ring. Then there is a fré€Z x Z)-module
of finite rank and a fixed finite subset of non-zero elements so that the subset sum
problem forF' is undecidable.

Proof. Let T' be the fixed tiling system with undecidable zero tiling surokpem con-
structed earlier. We now consider mappirfgsé¢ x C' — R instead of mappings 8,
but otherwise retain the definitions and notation from tte®pof Theorem 7. The proof
of that theorem shows that is accepted by the Turing machine if and only-if,, is a
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subset sum of’ = {[¢] | t € T'}. Indeed, the proof shows thatuf is accepted by the
Turing machine, then there is a tiling syhin which no two tiles are placed in the same
position and so that,, + f = 0. Conversely, if-f,, is a subset sum df', then we can
write f,, + f = 0 with f a tiling sum never placing two tiles in the same position. The
argument of Theorem 7 now shows thamust be accepted by the Turing machine, the
only difference being that Claim 5 is now an assumption rath&n a result that must
be proved. ad

We now aim to show that two-dimensional lamplighter groupsehundecidable
rational subset membership problem.

Proposition 9. Let R = Z/nZ (n > 2) and suppose that/ is a finite rank freeR[Z x
Z]-module with fixed finite subsgtof non-zero elements having an undecidable subset
sum problem. Then there is a fixed rational subsetfok (Z x Z) with undecidable
membership problem.

Proof. Let B be a basis fol/ and take as a generating set for= M x (Z x Z) the
setB U {z,y} wherex = (1,0) andy = (0,1). We claim thatn € M is a subset sum
of F'if and only if (m, (0,0)) belongs to the rational subset

I = {l‘il, yil}*[(x U Fa:)*y(a:_l)*]*{xil,yil}*.

Let us give a high level description of how this works. Thetfiesm {z*!, y*!1* in

L lets us move to any position i x Z. Then(z U Fz)* lets us move to the right
or add an element of’ translated to the current position and then move right. The
termy(z~1)* allows us to move up one row and then move as far left as nedied.

we keep repeating until we are done translating elements iof positions. Then we
use{z*!,y*'}* to return to the origin. Notice that when following this pealure, a
position can have at most one elemenfutfranslated to it.

For instance, suppose = 'y f;, i + -+ + aydt f; ;. is a subset sum af
where(i1, j1) < (i2,j2) < -+ < (ix, ji) in right lexicographical order (i.e(a,b) <
(c,d) if b < d,orb = danda < c). Then we begin with the produat'y/* from
{x*! y*1}* to get to the starting point of our sum. Then usjfig Fz)*y(x~1)*]* we
build up row by row, always going upward, an element of thenfém, (a,b)). Finally
we multiply by 2%y~ € {2z*! y*1}* to obtain(m,0). Conversely, any element
of the form (m, 0) belonging toL must havem a subset sum of" since the regular
expression. never permits you to translate by the same elemefit »fZ twice. O

Now we can argue as before to obtain undecidability for thedimensional lamp-
lighter groups.

Theorem 10. Rational subset membership is undecidable for a fixed ratisabset of
Z/nZ (Z x Z) foranyn > 2.

Proof. Again write R = Z/nZ. ThenZ/nZ 1 (Z x Z) = R[Z x Z] x (Z x Z). By
Theorem 8, there is a freR[Z x Z]-moduleM of rankm with an undecidable subset
sum problem for a fixed finite subsEt SinceR|Z x Z] is a freeR[mZ x Z]-module of
rankm, we can embed/ x (Z x Z) in Z/nZ (Z x Z). The result now follows from
Proposition 9. ad

15



As a corollary, it follows thatZ: (Z x Z) has an undecidable rational subset mem-
bership problem for any non-trivial groug.

Corollary 11. Let G be a non-trivial group. Therz ¢ (Z x Z) has an undecidable
rational subset membership problem for a fixed rational stibs

Proof. EitherG ! (Z x Z) contains a copy 0% (Z x Z) or of Z/nZ (Z x Z). O

The argument of Theorem 10 can be adapted to show that memppésunde-
cidable for a fixed rational subset of the free group of rank the variety?((n) - 2,
where((n) (resp2l) is the variety of abelian groups of exponenfresp. of all abelian
groups). The adaptations are entirely analogous to thagkingoing from submonoid
membership fofZ (Z x Z) to submonoid membership for the free metabelian group
of rank?2.
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