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Abstract. Formal ontology relies on representation languages for expressing on-
tologies. This involves the formal semantics of these languages which is typically
based on a limited set of abstract mathematical notions. In this paper, we discuss
the interplay between formal semantics and the intended role of ontologies as se-
mantic foundation. In this connection a circularity is identified if ontologies are to
determine the conceptual equivalence of expressions. This is particularly relevant
for ontologies which are to be provided in multiple formalisms. In order to over-
come this situation, ontological semantics is generally defined as a novel kind of
semantics which is purely and directly based on ontological entities. We sketch a
specific application of this semantics to the syntax of first order logic. In order to
beneficially rely on theoretical results and reasoning systems, an approximation of
the proposed semantics in terms of the conventional approach is established. This
results in a formalization method for first order logic and a translation-based variant
of ontological semantics. Both variants involve an ontology for their application.
In the context of developing a top-level ontology, we outline an ontology which
serves as a meta-ontology in applying ontological semantics to the formalization of
ontologies. Finally, resolved and remaining issues as well as related approaches are
briefly discussed.
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1. Introduction

The development and application of ontologies frequently involves their provision in
several distinct formalisms, adopting an understanding of “ontology” as a “conceptual-
ization” rather than its “specification” in a particular language, cf. Gruber’s definition
[1, p. 199]. Especially top-level ontologies must be available in multiple formalisms in
order to facilitate their application in distinct areas like conceptual modeling, informa-
tion integration, and the Semantic Web. The issues in this paper arise in the context of a
long-term research project of developing a top-level ontology, the General Formal On-
tology (GFO)2 [2,3]. The most relevant formalisms in our project are primarily logical
languages like first order logic (FOL) and description logics (DL), but also languages
employed in conceptual modeling, especially the Unified Modeling Language (UML)
[4]. Providing formalizations of GFO in several formalisms leads to the problem of how
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to justify that these formalizations capture the same contents, and can thus be used con-
sistently. In a broader context, the same question is formulated in [5] for two arbitrary
languages L1 and L2: “What exactly do we mean when we say that a set S2 of L2 sen-
tences is a translation of a set S1 of L1 sentences?” This question is closely connected to
the relationship between languages and their semantics, and we argue that this is still an
open problem whose solution is intimately tied to ontologies.

In this paper, section 2 discusses interrelations of classical formal semantics and
ontologies. We identify a specific circularity and argue that ontologies should play an
important role for the foundation of formal semantics, in the context of ontology repre-
sentation and meaning-preserving translations. Accordingly, section 3 introduces the no-
tion of a formal, ontological semantics3. There we further outline an application of this
semantics to the syntax of first order logic, and provide an approximation via classical
FOL semantics in order to build on established work. The approximation results in a for-
malization method for FOL which itself requires an ontology to found syntactic compo-
sitions. Section 4 thus complements the approach by outlining an ontology which is pro-
posed for applying ontological semantics to the formalization of ontologies. The moti-
vating problems and the role of the approach in their regard are considered, accompanied
by related work, in section 5, before we conclude and mention future directions.

2. Analysis of the Roles of Ontologies and Formal Semantics

Let us start with an ontology Ω and two representations of it, R1(Ω) ⊆ L1 and
R2(Ω) ⊆ L2, in the languages L1 and L2 with distinct formal semantics. Since every
communication about Ω must rely on representations, an important question arises: How
to justify thatR1(Ω) andR2(Ω) are representations of one and the same ontology? More
generally, what does it mean to state that two expressions in distinct languages have the
same meaning? Our first central claim in this respect is that the established types of for-
mal semantics of languages are insufficient for answering these questions. Of course, this
does not trivialize their value and adequacy for other tasks, e.g. theoretical analyses of
mutual (formal) expressiveness, consistency, decidability, or complexity issues.

The claim of the inadequacy of formal semantics for meaning-preserving transla-
tions is based on a previously established meta-architecture for analyzing ontology con-
stituents [7], which distinguishes the notions of abstract core ontology (ACO) and ab-
stract top ontology (ATO). To avoid wrong intuitions about these and despite the termi-
nological proximity, note that ACO and ATO do not immediately relate to the common
ontology classification into top-level, core / generic domain, and domain ontologies [8,
Sect. 1.4]. An ACO functions as an ontology for ontology constituents, i.e., it refers to the
question of what ontological kind ontology constituents are (e.g., categories, relations,
or attributes). This forms an (ontological) meta-level for languages, i.e., ontology con-
stituents link to the ACO level via instantiation. ACOs relate closely to the abstract syn-
tax categories of a language and correspond to an ontological understanding of knowl-
edge representation ontologies in [8, Sect. 1.4]. For instance, for OWL’s abstract syntax
categories classID and individualvaluedPropertyID [9] one may postulate categories and
(binary) relations, respectively, as appropriate ontological kinds in a suitable ACO. In

3Our work is not specifically related to and clearly differs from the equally termed approach in [6], which
addresses natural language processing and semantics.



contrast, an abstract top ontology refers to the mathematical notions underlying the clas-
sical formal semantics assigned to a language, i.e., it captures the ontology of the formal
semantics. In the case of OWL, this would be standard set theory based on the notion of
sets and the membership relation. Accordingly, ontological constituents are encoded by
means of instances of an ATO. For example, a unary FOL predicate Lion (viewed syn-
tactically) is interpreted by a set in the classical formal semantics (the abstract top view).
This set encodes a category C within an animal ontology, i.e., C instantiates “category”
with respect to an ACO.

Problems in ontology representation originate from (a) the lack of explicating the
ACO view during formalization and (b) different choices for encodings in the formal se-
mantics for the same syntax. As an example for (b), a FOL theory may encode categoryC
by a functional constant lion or a unary predicate Lion. Distinct encodings create formal
differences originating from the same ontological entity by capturing different aspects of
it. This in turn accumulates problems for language translations, even if a provably sound
translation between the formal semantics of those languages is available. For instance,
such translation exists for standard DLs and FOL [10, Sect. 4.2]. But translating a DL
theory which encodes polyadic relations as DL concepts [11, use case 3] to FOL is hard
if one expects for FOL that polyadic relations are expressed by polyadic predicates. That
means, different encodings with respect to the ATO level may require “non-standard”
translations between languages.

The justification for such “non-standard” translations lies outside of formal seman-
tics alone. We believe that there is a kind of conceptual or intensional semantics which
refers to the intensions of users of formal languages and is prior to formalization acts,
cf. also [12]. Ontologies were “invented” in the context of knowledge-based systems re-
search in order to tackle this problem, among others, cf. [13,14]. The basic idea is that
different systems or languages commit to a common ontology Ω in order to share concep-
tual meaning, which should allow for a notion of meaning-preserving translations based
on Ω. As an exemplary case of how this is frequently understood we formulate Def. 1,
already taking into account that Ω can only be involved through a representation R(Ω)
of it.
Definition 1 LetR(Ω) ⊆ LΩ be a representation of an ontology Ω in a logical formalism
LΩ, i.e., a theory. Let L1 and L2 be two arbitrary languages, and τi : Li → LΩ for
i ∈ {1, 2} be translations from Li to LΩ with respect to R(Ω). Two expressions e1 ∈ L1

and e2 ∈ L2 are said to be conceptually equivalent with respect to τ1 and τ2 iff their
translations into LΩ are R(Ω)-equivalent:

– for terms τ1(e1) and τ2(e2): R(Ω) |=LΩ τ1(e1) = τ2(e2)
– for formulas τ1(e1) and τ2(e2): R(Ω) |=LΩ τ1(e1)↔ τ2(e2) 2

The representation formalism LΩ in this definition is a problematic parameter. Due to
the above analysis we deny the common assumption that logical languages are “ontolog-
ically neutral” [15, p. 492] and could be used without an ontological bias. Instead there
is a vicious circle in this approach. Ontologies are meant to overcome insufficiencies of
formal semantics with respect to conceptual equivalence, which is itself based on the for-
mal equivalence defined for LΩ and the encoding of Ω into LΩ – and thus on the formal
semantics of LΩ. This yields two problems that will be addressed subsequently.
Problem 1 How to assign a semantics to a language that is directly based on ontologies
and avoids the just-mentioned circularity.



A solution would further clarify how to represent and interpret ontologies ontologically.
For this purpose we introduce the notion of ontological semantics in the next section.
The approach is applicable to arbitrary languages and is intimately tied to ontologies. In
order to apply ontological semantics to the formalization of ontologies, it is necessary to
provide suitable abstract core ontologies.

Problem 2 is to develop and specify suitable abstract core ontologies.

The plural form indicates that we expect multiple solutions for Problem 2. Sect. 4 out-
lines a proposal for a small yet powerful abstract core ontology. In general, the overall
approach applied to ontologies can be understood as defining a semantics which is di-
rectly based on the abstract core level, or as one which combines the functions of an
abstract core and an abstract top ontology [7].

3. Ontological Semantics

3.1. Ontological Structures and Ontological Semantics in General

A model theoretic semantics can abstractly be understood as a system (L,M, |=) of a
language L, a set of interpretation / model structures M , and a relation of satisfaction
|= ⊆ M × L, cf. [16, Ch. I.1, II.1]. We aim at a model theoretic approach for defin-
ing a formal semantics based on purely ontological entities. For this purpose, we estab-
lish a notion of ontological structures as an analogon to (mathematical) interpretation
structures. These structures should avoid built-in ontological assumptions to the greatest
possible extent. In order to achieve this and to draw an appropriate analogy to classical
model theory, the set-theoretic background of model theory must first be explicated.

Consider a typical FOL-structure (restricting the signature to predicates and func-
tional constants for simplicity) A = (A,R1, . . . , Rm, c1, . . . , cn), where constants form
elements of the logical universe A (a set), and predicates are interpreted as relations
over A (as mathematical relations, i.e., as sets of tuples). This logical universe A does
not cover all those entities which appear as interpretations of symbols in the formal se-
mantics, in particular, it does not cover the interpretations of predicates. That means,
relations over A are assumed silently based on standard set theories. The latter typi-
cally allow for constructing tuples and power sets over a given set, hence the structure
APω

fix =
(
AP

ω
fix , r1, . . . , rm, c1, . . . , cn

)
can be derived from A, with P denoting the

power set operator and AP
ω
fix being defined by:

AP
0
fix = A (1)

AP
n
fix =

⋃
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P
((

AP
n−1
fix

)k))
for n > 0 (2)

AP
ω
fix =

⋃
n<ω

AP
n
fix (3)

In AP
ω
fix , all symbols of a logical language can be considered as constants, i.e., they are

interpreted by elements of AP
ω
fix . Some of them are in parallel subsets of (tuples over)



AP
ω
fix . Hence, the elements ofAP

ω
fix are interrelated according to the underlying set theory

(i.e., set theory functions as an abstract top ontology here) – except forA-members. Only
the elements ci which interpret FOL constants are unconstrained by the set theory and
may be related in arbitrary ways.
APω

fix appears as an adequate “template” for our intended ontological structures, in
contrast to the classical structure A. An ontological structure O is meant to provide
constant-like interpretations for all symbols in terms of appropriate “members” of some
“universe” O ofO. Technically, we say that those “members” are associated with O. No
hidden assumptions are to be made on interrelations withinO – if there are interrelations,
they should be captured in an axiomatization using the symbols of the language. As onto-
logical structures, neither O nor what is associated with O can generally be constrained
to refer to mathematical notions. Altogether, this leads us to the following definition:

Definition 2 An ontological structure O can be described as O = (O, c1, c2, . . .) where
O is an arbitrary entity and the ci are entities associated with O. 2

RenderingO as an arbitrary entity may sound problematic. In other attempts to character-
ize O one may state that it is a “structure of intended semantics” (intended by the user of
the language), a part of the world, or a state of affairs. In terms of situation theory [17],O
corresponds closest to a “union” of real situations and events (but integrating individuals
and categories). For a simplistic example, assume someone watching lion Leo in chas-
ing some other animal. The observer may thus claim the existence of a corresponding
part of the world O which would have associated with it the actual process / event, Leo,
the categories of lion and chasing, Leo’s participation in that process, etc. Referring to a
single observer as well as to “reality” are problematic issues themselves, but cannot be
discussed here. We just note that our view is more similar to that in [18, p. 13, Sect. 3.1,
§2] which allows for a cognitive bias with respect to reality than to a purely objective
and subject-independent view on reality. It must further account for entities in the widest
sense, e.g. including hypothetical and fictitious entities, as well.

From the point of view of the ci, O forms a kind of “aggregate” which comprises
at least the ci (and possibly further entities). The relation associated with must likewise
be understood ontologically. In particular, we see this as a basic relation which general-
izes e.g. part-of and inherence (which connects qualities with their bearers), and might
include set membership. It is necessary that O offers counterparts for all basic syntactic
entities of a language in the form of the ci (see the treatment of FOL predicates below).
Therefore, the ci may be of arbitrary ontological kinds. All ci andO coexist legitimately,
without assuming reductions among them. For instance, we see no reductions among lion
Leo, the category of lions, the chasing, and an ontological structure all of those entities
are associated with. In addition, more entities may be associated with O than only the
interpretations of the constants of a language. E.g. one can expect many, more or less
detailed ontological structures comprising Leo. To emphasize the fact again, in general,
O is not considered a set.

Definition 3 An ontological semantics for an arbitrary language L is a model theoretic
semantics whose interpretation structures are ontological structures. 2

This definition is clearly a very general characterization. For ontological structures as
introduced in Def. 2 only constants can be interpreted immediately. In order to establish
an ontological semantics for a declarative language L directly, more complex syntactic
constructions must be assigned ontological interpretations in terms of those structures.



We indicate this direct approach for FOL in Sect. 3.2. Beforehand, note a difference in
assigning an ontological semantics to a language L and common definitions of formal
semantics. Given L in terms of a grammar G, G usually bottoms out with identifiers,
i.e., symbols for which no further distinctions are made in the semantics. For example, in
FOL, a non-terminal ‘predicate’ would have a range of admissible predicate-identifiers
(terminals) assigned, but those do not influence the standard semantics of FOL. The latter
is usually defined by non-terminal syntactic categories and a few fixed terminal symbols
(or keywords), like ‘∧’ and ‘→’. In contrast, ontological semantics / interpretations must
ensure an appropriate interpretation for each single terminal in each particular use of a
language. Since the number of non-terminal syntactic categories is limited, languages
can be used very differently, which refers to their syntactic constructs and thus indirectly
to the resulting formal semantic counterparts. It corresponds to our prior analysis that
these distinct forms of using a language are only remotely dependent on classical formal
semantics, and should be explicated by an ontological semantics.

3.2. Application to FOL Syntax

We sketch a definition of ontological semantics for FOL syntax, following classical def-
initions in a rather straightforward way in most cases, cf. [19, Sect. 2.2].4 We assume
appropriate valuations ν for variables in addition to an ontological structure O under
consideration, where variables are assigned to entities associated with O. For a valuation
ν, ν[xe ] refers to any valuation which agrees with ν on all assignments, yet only that of x
is e in ν[xe ]. O |=ν φ means that O satisfies a formula φ for ν, O |= φ that O |=ν φ for
every ν.

FOL logical constants do not have entities associated with O as semantic counter-
parts, corresponding to the case of set-theoretic interpretations. Rather, they manipulate
or determine the combination of structures based on expressions and sub-expressions.
They are defined for ontological structures in strict analogy to the standard definitions,
e.g. for conjunction and negation:

O |= ¬α iff O 6|= α . (4)

O |= α ∧ β iff O |= α and O |= β . (5)

For quantification there are several options. Here, we adopt a variant that is equivalent
with the classical definition and maintains the duality between existential and universal
quantification.

O |=ν ∃x . φ iff there is an e associated with O s.t. O |=ν[ x
e ] φ . (6)

O |=ν ∀x . φ iff O |=ν[ x
e ] φ for every e associated with O . (7)

Notably and despite of adopting the same definitions, the nature of quantification changes
considerably due to O being the domain of quantification (cf. the relations of A and
AP

ω
fix above). Further definitions, e.g. of the validity of formulas regarding a structure, of

logical validity, etc. also strictly follow their set-theoretic equivalents.

4Here we neglect epistemological issues as well as discussions on truthmakers, different degrees of convic-
tion like beliefs, assumptions, truths, etc. Currently, we assume as a simplification only that all formulas share
a common degree of conviction.



The major difference to the set-theoretic approach refers to predication. Classical seman-
tics provides a uniform account in terms of set-membership: P (x1, . . . , xn) is true in in-
terpretation I iff (xI1, . . . , x

I
n) ∈ P I . It is hard to provide a uniform ontological account

of (syntactic) predication, because an arbitrary ontological interconnection among the
arguments may be chosen for each individual predicate. For example, an atomic sentence
part-of(x, y) may be read semantically as “x is a part of y” (intensionally, in contrast to
(xI , yI) ∈ part-ofI which reduces “part of” to an extensional set of argument tuples).
This would require a semantic condition like:

part-of(x, y) iff “x is a part of y”. (8)

It is clearly undesirable to introduce every predicate in terms of informal phrases. More-
over, such definition would not profit from the requirement for an ontological semantics
for a syntax with part-of(x, y) to contain an entity for the symbol part-of in its onto-
logical structures. In this connection abstract core ontologies (ACOs) become relevant.
An ACO should comprise a few basic entities and should be capable of classifying ar-
bitrary entities (at a very abstract level). With sufficiently rich logical connectives, this
allows for formally defining common predication patterns with respect to arbitrary enti-
ties (see Sect. 4 for sample patterns based on our proposed abstract core ontology). But
before an actual formal proposal is to be made, let us consider to what extent classical
interpretations can be “reused”.

3.3. A Formalization Method based on Approximations of Ontological Models of FOL

The direct approach to defining an ontological semantics is not favorable due to the weak
theoretical basis of such semantics. A better approach, especially for FOL, would be to
build on classical theoretical results and to use established theorem provers for reasoning
over ontological interpretations. Therefore, a major question concerns the relationship
of ontological and set-theoretic interpretations, and whether the latter may be used for
simulating or approximating ontological structures. For the present discussion we avoid
interferences among the two types of semantics by restricting every ontological struc-
ture O = (O, c1, c2, . . .) such that neither sets nor representational entities / syntactic
elements like symbols are associated with O. Otherwise, one would have to take e.g.
relationships between fore- and background membership relations into account.

Starting from an ontological structure O with its “universe” O, our approxima-
tion is initiated by an algebraic structure A(O) = (U(O), c1, c2, . . .) where U(O) =
{x | x is associated with O} is a set of urelements (entities which are not sets). Conse-
quently, every ci ∈ U(O) is the very same entity as considered ontologically (which con-
nects to the relation between A and AP

ω
fix in Sect. 3.1). Next, we enrich these structures

such that FOL formulas under a set-theoretic interpretation can be given an ontologi-
cal interpretation, as well. Based on Sect. 3.2 the syntactic constructions which concern
logical constants and quantification are directly transferable. It remains to accommodate
the semantics of predication, now continuing the argumentation of Sect. 3.2. We aim at
linking predication with intensions (via constants for the ci) by explicit definitions:

∀x̄ . P (x̄)↔ φ(x̄) . (9)



Above we have indicated the potential diversity of interpreting (syntactic) predication
ontologically, and we have argued that abstract core ontologies can be used to “bootstrap”
such definitions. This leads us to the following method of formalizing ontologies.

Formalization Method. For an abstract core ontology Ωbase, we introduce a basic sig-
nature Σbase for expressing relations of Ωbase by predicate symbols. Moreover, intercon-
nections within Ωbase are specified axiomatically in a theory Axbase ⊆ L(Σbase). The
major guideline of the method is to represent entities of every ontological kind, e.g. in-
cluding categories and (ontological) relations, first as a functional constant in FOL. The
introduction of new predicates (beyond Σbase) must then be accompanied by a definition
which involves previously introduced syntactic elements, most reasonably those func-
tional constants which are understood to represent the intension of a predicate. Moreover,
the new symbol(s) for representing an entity can be characterized axiomatically. 2

FOL theories resulting from this method and their set-theoretic models can easily be re-
lated to an ontological semantics and ontological models. The main idea is that variables,
functional constants and the Σbase predicates are interpreted intensionally (or ontolog-
ically), whereas all other predicates are conceived extensionally, e.g., for P /∈ Σbase
the expression P (x) is ontologically interpreted as x ∈ P∈, which is adequate from
a classical and an ontological point of view.5 Moreover, an intensional specification of
each predicate is available due to the required definitions and possibly additional ax-
ioms. Those definitions must ultimately rely on Σbase-predicates, i.e., some intension-
ally interpreted relations from an abstract core ontology. Illustrations of the approach are
presented in Sect. 4.

3.4. Ontological Usage Schemes

In terms of the approximation proposed for FOL, we can define a translational variant
for ontological semantics.
Definition 4 Let L be an arbitrary language, and let Ω be an ontology for L with a FOL
representation R(Ω) ⊆ LΩ, L(Σbase) ⊆ LΩ according to the formalization method. An
ontological usage scheme of L is a translation τ : L→ LΩ.
For a set S ⊆ L of L-expressions, its ontological image is the deductive closure of
R(Ω) ∪ {τ(s) | s ∈ S}. 2

Ontological usage schemes have the intended advantage compared to the direct ap-
proach of defining an ontological semantics: one can rely on theoretical results estab-
lished against the background of classical semantics, as well as on corresponding the-
orem proving algorithms and software. Nevertheless, the resulting classical models re-
main approximations of possible ontological models. In particular, given the exclusion
of sets and symbols, there are far less ontological models of a theory T than there are
set-theoretic approximations, because for the latter e.g. distinct, but isomorphic struc-
tures are also models of T . The existence of ontological models based on the existence
of classical models must thus be justified individually. Moreover, the relation between
set theory (as an ontology of sets) and the remaining ontological theory must be clari-
fied. Altogether we think that a careful reuse of existing work clearly outweighs those
approximation effects.

5There is one ontological concession, namely to grant sets an ontological status. This is applicable in GFO.
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Figure 1. Overview of the ontology of categories and relations. The upper part shows two major distinc-
tions of Entity, the first into categories and individuals based on instantiation, the second into relational (Rel)
and non-relational (NonRel) entities. The lower part illustrates major categories relevant for relations, and
their mediation between entities (note that Player and PlayerCat are extensionally equivalent with Entity
and Category, respectively). Primed relations originate from their counterparts by lifting those to the level of
categories, whereas primed roles are roles of primed relations.

4. Ontology of Categories and Relations

As a suitable abstract core ontology for formalizing top-level ontologies, we advocate an
ontology of categories and (ontological) relations based on [20,21,7,2], among others.
Fig. 1 outlines its major constituents in UML notation [4]. The most general notion
for anything which exists is entity in GFO. Categories are those entities which can be
instantiated (instance-of), in contrast to individuals. For example, a particular lion leo is
an individual whereas lion is a category6. Relations are granted an ontological status as
categories of relators, specific entities which mediate between other entities. Relators are
composed of (relational) roles7, which appear like parts of a relator (role-of) and which
“link” it to one of its arguments, cf. [20]. Roles are doubly dependent entities. Firstly,
an entity plays a role (plays), which is a dependence on that player. Secondly, a role
depends on other roles appearing in a relator, which must consist of at least two roles.
Fig. 2 illustrates a part-of relator mediating between lion Leo and its head.

6We use the term “category” in accordance with GFO for anything which can be instantiated or predicated of
something else. This is a much less specific use than the common philosophical reading of category as “highest
kinds or genera” [22].

7This notion of roles differs from the notion of roles in description logics. The latter would typically corre-
spond to relators connecting two arguments, hence being composed of two roles in the present sense.
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Figure 2. An example of relation analysis in GFO based on a phrase like “Lion Leo’s head is a part of Leo”.
The relation part-of is a category of relators, instantiated (::) by r1. The relator r1 mediates between Leo’s
head c1 and leo via its two roles q1 and q2, determined by the given role categories as roles of part and whole,
respectively.

This ontology is adopted due to (a) the fundamental nature of categorization and (b)
the possibility of relating two entities which appears as soon as they are distinguished
from each other. The constituents of the approach further suffice to analyze themselves.
Moreover, we see similarities with the most abstract levels in meta-modeling approaches
which reinforces this position, cf. the root diagram of the Kernel package in the UML
Superstructure Specification [23, fig. 7.3, p. 25].

The above formalization method can now be illustrated in connection with the on-
tology. Let Σbase = (::, ,() comprise only three binary predicates for our basic rela-
tions: x :: y for “x instantiates y”, x  y for “x plays role y”, and x( y meaning “x
is a role of y”. To distinguish symbols from their denotations, P ι refers to the intended
denotation of a symbol P . If P ι has an extension, i.e., a set of instances or argument
tuples, this is denoted by P∈.

We introduce exemplary definition patterns which capture common types of pred-
ication, starting with the unary case. Unary predicates typically refer to non-relational
categories. Following our method we introduce a functional constant cP and a unary
predicate P . The following definition is added to bind P to its counterpart cP .

∀x . P (x)↔ x :: cP . (10)

Classically, a FOL model interprets P and :: as sets over some universe which has an el-
ement interpreting cP . The ontological interpretation of this formula (or of a correspond-
ing classical model) is that cP captures an intension cP

ι directly, and – as (10) states –
P captures cP

∈, the extension of cP ι. Apart from this definition, appropriate axioms
involving cP

ι via P or cP should be stated.
For relations, there are several options of how n-ary predicates, n ≥ 2, can be

understood to abbreviate the linking of arguments via relators. A weak form (for a binary
predicate R) is “there is a relator r which is an instance of the relation cR with respect to
which x and y play roles in r”:

∀xy . R(x, y)↔ ∃rq1q2(

q1 6= q2 ∧ r :: cR ∧

x q1 ∧ q1 ( r ∧

y  q2 ∧ q2 ( r ) .

(11)

This form entails symmetry of R, which may be counterintuitive for cR
ι. It can be

strengthened to specify the instantiated role categories, cf. also Fig. 2. Moreover, assume



that R is based on two intensionally distinct role categories (Q1 6= Q2), each with ex-
actly one role individual perR-relator, following the “closed world” intuition that a tuple
(x, y) contains exactly x and y. This case concludes our sample patterns.

∀xy . R(x, y)↔ ∃rq1q2Q1Q2(

q1 6= q2 ∧Q1 6= Q2 ∧ r :: cR ∧

x q1 ∧ q1 ( r ∧ q1 :: Q1 ∧

y  q2 ∧ q2 ( r ∧ q2 :: Q2 ∧

∀q′(q′( r → (q′ = q1 ∨ q′ = q2) ) ) .

(12)

5. Discussion

5.1. Reconsideration of the Motivating Problems

The overall purpose of this paper is to propose a theoretical foundation for explain-
ing “meaning-preserving” translations among languages, which maintain the declarative
contents among the different expressions of those languages. This differs from simula-
tions among the dynamics of the languages, e.g. encodings of reasoning problems of one
logic into another. One may argue that logical formalisms can be used with intensional
interpretations independently of or in addition to their set-theoretic model theory. Even
if this is case, those intensional interpretations remain implicit and thus cannot be used
e.g. for translations among languages.

The general approach to ontological semantics clearly adopts ontological entities
as its foundation and thus avoids Problem 1, the circular interplay between ontologies
and formal language semantics based on mathematical notions. The same applies in-
directly to ontological usage schemes and ontological images of arbitrary expressions,
i.e., translations of those expressions into FOL formalizations constructed according to
the presented method. Classical models of ontological images are potential approxima-
tions which can help in determining ontological models. Moreover, ontological images
comprise explicit ontological explanations for each predicate, which binds their exten-
sional interpretation to complex expressions with intensional components (through the
intensionally understood functional constants and basic relations). This suggests the need
for refining Def. 1 of conceptually equivalent expressions in our initial analysis. For in-
stance, two predicates are conceptually equivalent by Def. 1 if they originate from two
intensionally distinct, but extensionally equivalent categories. Due to the formalization
method, a suitable refinement of that definition can be based on the identity of functional
constants and of compositions via basic relations. A related aspect is the dependence of
Def. 1 on the chosen logic. For example, assume that an ontology is represented (i) in a
monotonic logical language and (ii) a nonmonotonic language. In its present form, there
will be immediate differences in the resulting notions of conceptual equivalence. We see
a need for further investigations in this respect, which may involve different types of
categories.

Allowedly, the formalization method is rather simple and could be adopted on an
ad hoc basis. Readers who share our analysis and / or who take a purely proof-theoretic
point of view may thus miss benefits of the approach, e.g. computational ones. Concep-



tually, we believe that the theory will prove useful in some respects. Deriving a novel
definition for conceptual equivalence is one candidate for this. Another is the provision
of justifications or rejections of certain formalizations. To name an example, if one were
to formalize a category entity as the category which classifies everything (including sets),
a predicate Entity could not be introduced meaningfully in line with formula (10) since
this would contradict the well-foundedness of standard set theories.

The second problem of providing an abstract core ontology has been addressed in the
previous section by outlining an ontology of categories and relations. This is a proposal
of one potentially suitable ontology rather than its “unique solution”, and different such
proposals should be compared and evaluated. In general, ontological semantics leads
to the fact that comparisons of two ontology representations R(Ω1) and R(Ω2) with
an ontological semantics must determine one of the compared systems as a point of
reference. Considering the use of a third ontology R(Ωref) in this respect does not differ
significantly, because then embeddings of the R(Ωi) into R(Ωref) are required – which
is a case of the first kind.

Another important aspect of the general approach is its non-reductionism. In partic-
ular, we consider everything in an ontological model to be on a par with each other. The
use of an abstract core ontology as a means to analyze entities and to initiate formal-
izations is not to be understood as a reduction to notions in the abstract core ontology,
neither for its categories nor relations. Metaphorically, it is not sufficient to think of leo
as an individual (at the abstract core level), nor as a lion (at a domain level), but leo is
only fully recognized as leo, and is analyzable and related to other entities.

5.2. Related Work

There is an overwhelming amount of broadly related work, e.g. meta-modeling in con-
ceptual modeling, works based on situation theory [17,24] and information flow theory
[25,26] as well as approaches to intensional logics like Montague’s, Tichý’s, cf. [27], and
George Bealer’s [28]. From the perspectives of these fields, our approach originates from
“practical” concerns in representing foundational ontologies like GFO, whereas estab-
lishing detailed connections to them is an ongoing effort. Situation theory in its origins
is currently the most promising candidate regarding a tight linkage and particular aspects
of its motivations. Nevertheless, basic differences remain there, as well, e.g., a built-in
“ontology” of primitives (individuals, relations, space-time locations) plus situations and
their construction from these primitives, and a set-theoretic metatheory.

Concerning knowledge representation, we focus on the approach of Ontology-Based
Semantics by Ciocoiu and Nau [5]. It shares its motivation and goals with ours, and we
agree with most of the analysis in its Sections 1 and 2, leading to the use of an ontology
as a common semantic foundation. However, Problem 1 (circularity) is not identified in
[5], but a classical FOL representation R(Ω) ⊆ LΩ of the ontology is used. For defining
ontology-based models of a language L, the authors use a two-step translation, (i) from
L into a FOL language L, and (ii) an interpretation in the sense of [19, Sect. 2.7] from
L into LΩ. We have reservations about both steps. For (i), this requires an encoding of
ontological notions into set theory, which may differ for the same ontological notions
contained in distinct languages. Some of these encodings cannot be unified in the sec-
ond step, because those interpretations maintain the number of free variables in inter-
preted predicates, which prevents switching from a constant lion to a predicate Lion, for
instance. On the other hand, (ii) may allow for too strong encodings in other respects.



Finally, note that recent language proposals (e.g. Common Logic [29]; [30] in descrip-
tion logics) relate to our approach. They allow for syntactic expressions which seemingly
require a classical higher order semantics, like in the theory {P (R), R(x, y)}. These lan-
guages have a non-standard set-theoretic semantics with parallels to our FOL approxi-
mations. It is promising to use the syntax of these languages with an ontological seman-
tics, or to build approximations due to their semantics. However, the method of linking
all predicates (more generally, composed syntactic expressions) to “intensional specifi-
cations” is not enforced elsewhere. It should be added since it is of major relevance for
appropriate definitions of conceptual equivalence.

6. Conclusions

In this paper we have argued that it is insufficient to rely on conventional formal seman-
tics when representing ontologies, due to their foundational role with respect to seman-
tics. We proposed a new type of model theoretic semantics called ontological seman-
tics together with an approximation for FOL syntax in order to utilize existing work, re-
sulting in an additional, translation-based definition. Complementarily, we have outlined
an ontology of categories and relations as one meta-ontological option for applying this
semantics to the formalization of ontologies.

Essentially, our approach for formalizing ontologies should add a level of explana-
tion to the encoding of ontological into abstract mathematical notions. We expect that
this leads to “meaning-preserving translations” which may appear conceptually more
adequate than conventional formal reductions (which are undoubtedly very valuable in
other respects). This should influence working with ontologies, in particular ontology
matching and integration. Moreover, the resulting theories offer specific properties which
may be exploited, e.g. for modularly structured ontologies.

Future work comprises further studies of the proposed structures and their approxi-
mations. Furthermore, the general approach requires to explore its application based on
different logics and the use of different abstract core ontologies. Instead of unique final
solutions, for all parameters we expect a plurality of options which should compete with
respect to practical applications.
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