Problem Set 1 for "Automata Theory"

Deadline: April 22, 13:15

In all problems the alphabet is $A = \{a, b\}$. Recall that $|w|_a$ denotes of the number of letter a in word w.

H 1-1 Find finite automata recognizing the following languages over the alphabet A:

(8	a)	Ø

(f) A^*

(b) $\{\epsilon\}$

 $(g) (AA)^*$

(c) $\{a\}$

(h) A^*bA^*

(d) {ba}

(i) A^*a

(e) b^*

(i) A^{+}

- H 1-2 Prove that the automata in Examples 1.2 and 1.3 from the lecture recognize the respective languages.
- H 1-3 Construct an automaton recognizing the language:

$$\{w\in A^*: \left|w\right|_a \text{ even, but } \left|w\right|_b=2\}.$$

The solution to the following problem problems should be prepared but not handed in.

- S 1-1 Find a finite automaton recognizing $L = A^* \setminus A^*abbA^*$.
- S 1-2 Determine the language recognized by the automaton in Example 1.4 from the lecture.
- S 1-3 Find a finite automaton recognizing the language consisting of all words, where every subword ba is immediately preceded by a letter a.