A Pumping Lemma for Collapsible Pushdown Graphs of Level 2

Alexander Kartzow

Universität Leipzig

September 15, 2011
Collapsible Pushdown Systems (CPS)

- Higher-order pushdown systems (HOPS) [Maslov’76]
 - Pushdown systems with nested stack of ... of stacks
 - Operation: push / pop for each stack level

Motivation:

Theorem (Knapik, Niwinski, Urzyczyn ’02)

trees of HOPS = trees of safe higher-order recursion schemes
Collapsible Pushdown Systems (CPS)

- Higher-order pushdown systems (HOPS) [Maslov’76]
 - Pushdown systems with nested stack of . . . of stacks
 - Operation: push / pop for each stack level
- Collapsible pushdown system (CPS)
 Extension by “Collapse” operation
- defined by Hague, Murawski, Ong and Serre in ’08
- Motivation:

Theorem (Knapik, Niwinski, Urzyczyn ’02)

trees of HOPS = trees of safe higher-order recursion schemes

Theorem (Hague et al. ’08)

trees of CPS = trees of higher-order recursion schemes
Theorem (Carayol, Wöhrle ’03)

\[\text{HOPG}/\varepsilon = \text{Cauca-l-hierarchy} \]

Corollary

MSO decidable on HOPG/\varepsilon

Theorem (Model checking on CPG*/\varepsilon*)

<table>
<thead>
<tr>
<th>Formalism</th>
<th>decidability</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSO</td>
<td>undecidable</td>
<td>(Hague et al. ’08)</td>
</tr>
<tr>
<td>(L_\mu)</td>
<td>decidable</td>
<td>(Hague et al. ’08)</td>
</tr>
<tr>
<td>(FO + \text{Reach})</td>
<td>decidable on level 2</td>
<td>(Kartzow ’10)</td>
</tr>
<tr>
<td>(FO)</td>
<td>undecidable on higher levels</td>
<td>(Broadbent)</td>
</tr>
</tbody>
</table>
We do not understand the structure of CPG
No tools for “upper bounds”:
 - \emptyset is not a CPG?
 - \emptyset is not a level i–CPG?
Possible tool: pumping lemma for level i CPG
Today: pumping lemma for level 2 CPG
Stack Operations

\[
\sigma_1 \cdots \sigma_{m-1} \sigma_m \\
W_{m-1}
\]
\[
W_n \\
W_{n-1}
\]
\[
W_3 \\
W_2 \\
W_1
\]
Stack Operations

\[\sigma_1 \cdots \sigma_{m-1} \sigma_m \]

\[W_{m-1} \]

\[\vdots \]

\[W_n \]
\[W_{n-1} \]

\[\vdots \]

\[W_3 \]
\[W_2 \]
\[W_1 \]

\[\text{push}_{\tau} \]

\[\sigma_1 \cdots \sigma_{m-1} \sigma_m \tau \]

\[W_{m-1} \]

\[\vdots \]

\[W_n \]
\[W_{n-1} \]

\[\vdots \]

\[W_3 \]
\[W_2 \]
\[W_1 \]
Stack Operations

\[\sigma_1 \cdots \sigma_{m-1} \sigma_m \]

\[W_{m-1} \]

\[W_n \]
\[W_{n-1} \]

\[W_3 \]
\[W_2 \]
\[W_1 \]

\[\sigma_1 \cdots \sigma_{m-1} \]

\[W_{m-1} \]

\[W_n \]
\[W_{n-1} \]

\[W_3 \]
\[W_2 \]
\[W_1 \]

\[\text{pop}_1 \]
Stack Operations

\[\sigma_1 \cdots \sigma_{m-1} \sigma_m \]

\[W_{m-1} \]

\[\vdots \]

\[W_n \]

\[W_{n-1} \]

\[\vdots \]

\[W_3 \]

\[W_2 \]

\[W_1 \]

\[\Rightarrow \]

\[\text{pop}_2 \]

\[\vdots \]

\[W_n \]

\[W_{n-1} \]

\[\vdots \]

\[W_3 \]

\[W_2 \]

\[W_1 \]
Stack Operations

\[\sigma_1 \cdots \sigma_{m-1} \sigma_m \]

Push Operation

\[\begin{array}{c}
\vdots \\
W_n \\
W_{n-1} \\
W_3 \\
W_2 \\
W_1 \\
\vdots \\
\end{array} \]

\[\begin{array}{c}
\vdots \\
W_n \\
W_{n-1} \\
W_3 \\
W_2 \\
W_1 \\
\vdots \\
\end{array} \]

\[\text{push}_2 \]
Stack Operations

\[
\begin{align*}
\sigma_1 \cdots \sigma_{m-1} \sigma_m &= w_m \\
W_{m-1} &= w_m v_{m-1} \\
W_n &= w_m v_n \\
W_{n-1} &\neq w_m v_{n-1} \quad \text{collapse} \\
W_3 &= w_3 \\
W_2 &= w_2 \\
W_1 &= w_1 \\
\end{align*}
\]
Definition CPG

- Transition relation Δ:
 state + topmost letter \mapsto new state + stack-operation

e.g. $\delta = (q, \sigma) \mapsto (q', \text{pop}_2)$

- Configuration (q, s) – q state, s stack (of level 2)

- $(q, s) \xrightarrow{\delta} (q', \text{pop}_2(s))$

- CPG: configurations of CPS + labelled transition relation

- CPG/ε: ε-contraction of CPG
Example of CPG

Grid MSO-interpretable ⇒ MSO undecidable

Alexander Kartzow (Universität Leipzig)
Example of CPG

Grid MSO-interpretable \Rightarrow MSO undecidable
Example

$\mathcal{L} := (T, \text{succ})$ with $T := \{0\}^* \cup \{0^{n-1}1^j : 0 \leq j \leq 2^n\}$ is a 2-CPG/ε
The Pumping Lemma for 2-CPG

Definition

\[G = (V, (\gamma \rightarrow)_{\gamma \in \Gamma}) \]

\[L \subseteq \Gamma^* \]

\[\overset{L}{\rightarrow} := \{(v_1, v_2) : v_1 \overset{\gamma_1}{\rightarrow} \ldots \overset{\gamma_n}{\rightarrow} v_2, \gamma_1 \ldots \gamma_n \in L\} \]

Theorem

\[G \text{ 2-CPG}/\epsilon, g_0 \in G; \]

L, K regular languages, \[\overset{L}{\rightarrow} \text{ finitely branching} \]

\[\exists \ c, d \text{ s.t. } g_0 \overset{L}{\rightarrow} g_1 \overset{L}{\rightarrow} \ldots \overset{L}{\rightarrow} g_n \text{ and } |\{g : g_n \overset{K}{\rightarrow} g\}| > 2^{2c+dn} \]

\[\Rightarrow |\{g : g_n \overset{K}{\rightarrow} g\}| = \infty. \]

Suffices: \[\overset{L}{\rightarrow} \text{ finitely branching at } g_0, g_1, \ldots, g_{n-1}. \]
Application to trees

Example

\[T := (T, \text{succ}) \text{ with } \]
\[T := \{0\}^* \cup \{0^{n-1}1j : 0 \leq j \leq 2^{\log(n)n}\} \]

is not a 2-CPG/ε

Proof.

For \(L = K = \Gamma \), we get \(c, d \)

Choose \(n_0 > 2^{c+d} \) then \(\log(n_0)n_0 > c + dn_0 \)

\(\text{P.L.} \Rightarrow 0^{n_0-1}1 \) has infinitely many successors.
Application to Graphs

\[\mathcal{G} : 2 \text{-CPG}/\varepsilon \]
Application to Graphs

\[G: 2\text{-}\text{CPG}/\varepsilon \]

\(\xrightarrow{L} \): \(L \) regular
Application to Graphs

\[\mathcal{G} : \text{2-CPG}/\varepsilon \]
\[\rightarrow : L \text{ regular} \]
\[(M_{g_0}, \rightarrow) \not\cong \mathcal{T} \text{ for} \]
\[M_{g_0} := \{ g \in \mathcal{G} : g_0 \xrightarrow{L^*} g \} \]
1. Stacs’10:
 - Encoding of vertices of 2-CPG/ε in trees
 - $L \rightarrow$ is represented by finite tree-automaton A_L

2. Apply regular pumping lemma to A_L.
Automaticity

- \mathcal{T}: set of all trees (finite binary Σ-labelled)
- automaton = (nondeterministic) finite tree-automaton

Definition

$R \subseteq \mathcal{T} \times \mathcal{T}$ binary relation of trees

A automaton

R automatic via A: A accepts $t_1 \otimes t_2 \iff (t_1, t_2) \in R$ ($L(A) = R$)
Definition

\(R \subseteq M \times M \) relation over arbitrary set

\(f : M \rightarrow T \) injective function

\(A \) automaton

\((f, A)\) **automatic presentation of** \(R \): \(f(R) \) automatic via \(A \) where

\[f(R) := \{(f(m_1), f(m_2)) : (m_1, m_2) \in R\} \]

Theorem (Kartzow’10)

\(\mathcal{G} \) 2-CPG/\(\varepsilon \) with edge labels from \(\Gamma \)

\(L \subseteq \Gamma^* \) regular,

then \(L \rightarrow \) has a tree-automatic presentation \((f, A)\).
Lemma (regular pumping lemma)

\[A \text{ with } d \text{ states} \]
\[\exists t \in L(A) \text{ with } |t| > d \Rightarrow |L(A)| = \infty \]

- \(|u| \leq d \)
- \(t \)
- \(u \)
- \(t' \)
- \(u' \)
Lemma

Automaton A with d states
R automatic via A
Trees t_1, t_2 s.t. $|t_2| > |t_1| + d$
$(t_1, t_2) \in R \Rightarrow \{ t : (t_1, t) \in R \}$ is infinite

Proof.
Lemma

Automaton A with d states

R automatic via A

Trees t_1, t_2 s.t. $|t_2| > |t_1| + d$

$(t_1, t_2) \in R \Rightarrow \{ t : (t_1, t) \in R \}$ is infinite

Corollary

$|\{ t : (t_1, t) \in R \}| > (|\Sigma| + 1)^2^{|t_1|+d} \Rightarrow \{ t : (t_1, t) \in R \}$ is infinite

Proof.

There are $(|\Sigma| + 1)^{2n}$ different Σ-labelled trees of depth n. □
Lemma

Automaton \(A \) with \(d \) states

\[R \text{ automatic via } A \]

Trees \(t_1, t_2 \) s.t. \(|t_2| > |t_1| + d \)

\((t_1, t_2) \in R \Rightarrow \{ t : (t_1, t) \in R \} \text{ is infinite set.}\)

Lemma

\(\emptyset \text{ 2-CPG}/\varepsilon; \)

\(L \) regular such that \(L \) is finitely branching.

There is a constant \(d \) such that \(g_0 \xrightarrow{L} g_1 \xrightarrow{L} \ldots \xrightarrow{L} g_n \Rightarrow |g_n| \leq |g_0| + dn. \)
Theorem

Let $\mathcal{CPG}/\varepsilon; L, K$ regular languages, \to^L finitely branching

$\exists c, d \text{ s.t. } g_0 \xrightarrow{L} g_1 \xrightarrow{L} \ldots \xrightarrow{L} g_n \text{ and } |\{g : g_n \xrightarrow{K} g\}| > 2^{c+dn} \Rightarrow |\{g : g_n \xrightarrow{K} g\}| = \infty.$
Conclusion

- pumping lemma for 2-CPG/ε: tool for disproving membership
- regular reachability \xrightarrow{L} on 2-CPG/ε is tree-automatic
- pumping lemma for finite automata applied to regular reachability yields pumping lemma for 2-CPG/ε.

Open questions

- pumping lemmas for higher level CPG
- pumping lemma for the whole hierarchy
- other techniques for disproving membership