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Abstract In the context of fluid mechanics, larger and larger flow fields arise. The

analysis of such fields on current work stations is heavily restricted by memory. Ap-

proximation limits this problem. In this paper, we discuss the impact of vector field

approximation on visualization techniques on the example of Finite-Time Lyapunov

Exponent (FTLE) computations. Thereby, we consider the results of three different

vector field compression approaches and analyze the reliability of integration results

as well as their impact on two different FTLE variants.

1 Introduction

Visualization is one of the most important tools for the investigation of complex

flow fields. Many different visualization approaches have been developed. These

include techniques ranging from the extraction and depiction of specific flow fea-

ture such as vortices [10, 11], to the computation of the topological structure of

vector fields [6, 18]. There also exist many methods to cluster vector fields [3, 16]

or compute simplified representations [1, 16]. Their main concern is to allow users

to get a good overview of the overall flow behavior. A detailed summary of the

most common visualization approaches can be found in these state-of-the-art re-

ports [8, 12, 13].

Furthermore, to handle large and complex simulation results, compression ap-

proaches were introduced in the past [2, 9, 17]. These algorithms aim at a dataset

size reduction to allow an easier transmission of datasets via networks and a fast
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evaluation even on low-end computers. While small-scale flow features could be

lost during compression, large-scale features, as well as the global flow characteris-

tic, are preserved in most cases.

Although, the previous works provide an evaluation of the quality of their results,

often there is no direct comparison to other techniques and alternative approaches.

Usually, methods are evaluated using Line Integral Convolution (LIC) [15] images

as well as the topology or quantitative discussion of the overall approximation error

and compression rates. In particular, the influence of the flow field changes on the

computation of common flow visualizations, especially in case of integration based

methods, is hardly discussed. Often, no further visualizations have been presented

on the compressed datasets.

In this paper, we investigate the applicability of Finite-Time Lyapunov Exponent

(FTLE) computations on compressed vector fields. Therefore, we present a quantita-

tive discussion of the influence of the approximation error on streamline integration.

The underlying method can be used to characterize the error distribution of the in-

tegration results between different compression techniques. Finally, we contrast the

quality of LIC and FTLE visualizations of three different compression approaches.

From our results, we derive first indications how good FTLE images can be obtained

from compressed fields.

2 Related Work

The main focus of our work is the comparison of the results of two FTLE variants

on vector fields that were compressed using different techniques. In the following,

we briefly review related work on vector field compression, as well as foundations

of the FTLE computation.

2.1 Vector Field Compression

Most vector field clusterings in literature aim at the computation of simplified repre-

sentations of a vector field, rather than to compress its dataset size. Lodha et al. [9]

first extended the clustering approach of Telea and Wijk [16] in order to compute

an error-bounded vector field compression that preserves the main characteristics of

the stationary points. Later, Theisel et al. [17] define two topologies to be equivalent

if they (1) have an identical set of stationary points, including the first derivative at

their positions; (2) have the same set of boundary switch points; and (3) all separa-

trices start or end in the same stationary point, respectively enter or leave the domain

in the same in- or outflow region. They use this definition to formulate a topology-

aware compression algorithm. The implementation of this idea iteratively applies

an edge collapse to simplify the underlying grid of the input field. Thereby, the cor-

responding changes of the vector field are tolerated, as long as the topology of the



Comparing Finite-Time Lyapunov Exponents in Approximated Vector Field 3

compressed field remains equivalent to the one of the input field. To avoid a con-

stant tracking of topology changes and to reduce the running time, they presented

a local test that can predict, whether a local change of the vector field could lead

to a change of the topological skeleton. Although the topology-aware compression

algorithm of Theisel et al. [17] achieves very high compression rates, it does not

provide any error threshold that limits the rate of change of the local flow behavior.

This can lead to large distortions in the compressed vector field.

To limit the maximal error introduced by the grid simplification, Dey et al. [2]

presented an approach that computes a Delaunay triangulation for every two-

dimensional dataset and locally removes vertex after vertex, as long as a certain error

threshold is not exceeded by the local vector field change. In contrast to Theisel et

al., their algorithm does not guarantee the preservation of the vector fields topology.

In order to provide an error-bound that retains the main characteristic of the lo-

cal flow and additionally preserves the vector field topology as one important flow

feature, we presented a new compression algorithm [20] that is based on a region-

wise linear approximation of the input field. Thereby, the maximal approximation

error within each local linearization is bound by a user-defined error threshold Emax.

Note to the reviewers: A detailed description of this algorithm can be found in the

appendix.

2.2 Variants of Finite-time Lyapunov Exponents

A common visualization approach, which has been investigated in detail in the past

years, is FTLE as presented by Haller [5]. An FTLE field shows the rate of sep-

aration, respectively convergence, of closely neighbored particles over the time in

space. Since its introduction, the basic FTLE computation was extended, for in-

stances, to compute the separation of flow from surfaces [4] up to the extraction of

the efficient separation of surfaces in three-dimensional fields [14].

Besides the common flow-map based FTLE (F-FTLE) computation we will use

another variant: The Localized Finite-time Lyapunov Exponent (L-FTLE) of Kas-

ten et al. [7]. It uses a computation along path lines that only depends on the first

derivative. An important advantage of this FTLE variant is that it is more robust

with respect to noise and thus might be well suited for compressed fields.

3 Data Acquisition

We use different types of compression algorithms for our comparison. We focus on

topology-preserving and error-bounded compression techniques and want to study

the influence of these properties on visualizations of the compressed fields. Thereby,

we want to compare the different compressed fields against each other as well as

against the original, uncompressed vector field.
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To facilitate these comparisons, we apply two approaches: a quantitative, statisti-

cal analysis of the quality of streamline integration, and a qualitative, visual analysis

of visualization results. Both approaches are described in the following.

3.1 Quantitative Analysis of Streamline Integration

The goal of the quantitative analysis is to assess the impact of the compression on

the quality of integrations in the compressed field. This facilitates the comparison to

the original vector field and allows to obtain a quality measure for the compression

technique.

For this evaluation, we want to compare the deviation of streamlines in the com-

pressed field from streamlines in the original vector field. A natural concept that

allows to derive the deviation values is the flow map. The flow map stores the end

point after a certain integration time for every position in the field. To assure compa-

rability between the original field and the compressed field, we use the grid points of

the original field as seed positions for both fields. The resulting flow map is stored

on the grid of the original vector field. So, the deviation of streamlines can then

be derived as a scalar field that contains the Euclidean distance of the particle end

points between the two flow maps. The resulting field shows how much the flow

behavior differs locally between the compressed and the uncompressed vector field.

As we are interested in the minimal and maximal deviation, as well as the distri-

bution of integration errors, we use box plots [19] and histograms to visualize the

flow map differences. Thereby, we can juxtapose the deviation distribution for mul-

tiple integration times. In this paper, we focus on integration times that are suitable

for FTLE computations.

3.2 Qualitative Visual Analysis

For a qualitative comparison of different compression techniques, we compute and

visually compare LIC and FTLE images. Thereby, the LIC images allow us a com-

parison of the characteristic, topological flow patterns. To evaluate how well conver-

gence and divergence of flow is preserved, we compare FTLE images of compressed

fields to the FTLE images of the original vector field. From the flow maps, we com-

pute F-FTLE fields in a first step. Thereby, we use streamline integration instead of

path line integration, to apply FTLE on steady fields. As a second FTLE variant,

we compute the L-FTLE fields. In contrast to the original implementation of Kasten

et al. [7], we do not use a precomputed and interpolated Jacobian field. We use the

constant derivative that is given for each triangle cell, respectively for each linearly

approximated region.
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4 Results

We now discuss the results of the flow map and the FTLE computations described

in Sec. 3 on the basis of two real-world datasets: the Kármán vortex street and a

two-dimensional simulation of a jet stream. In the following, we first describe the

used dataset and then show and discuss the results of (1) a topology-preserving non-

error-bounded, (2) an error-bounded non-topology-preserving, and (3) a topology-

preserving and error-bounded compression algorithm.

4.1 Datasets

4.1.1 Kármán Vortex Street

The Kármán vortex street is a well-known flow pattern that shows the flow separa-

tion from an obstacle. In this dataset, the flow goes around a bar, which is rotated

by 45 degrees towards the inflow. After passing the obstacle, the flow shows a char-

acteristic periodic swirling. The original dataset is given on a triangulated grid with

156842 cells. Figures 1(a) and 1(c) show a LIC image and the F-FTLE image of

this vector field.

(a) LIC image of the Kármán vortex street (b) F-FTLE (dt = 2.0)

(c) LIC image of the Jet Stream (d) F-FTLE (dt = 2.5)

Fig. 1 LIC and F-FTLE images of the uncompressed, original Kármán vortex street (upper row)

and the Jet Stream dataset (bottom row)
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4.1.2 Jet Stream

The Jet Stream dataset shows a flow that enters the domain through a narrow open-

ing on the left side at a velocity of Mach 0.1. This produces an expansion of the

flow which results in a complex flow behavior with many vortices and small tur-

bulent flow structures. The original vector field is given on a triangulated grid with

2922912 cells. Figures 1(c) and 1(d) show a LIC image and the F-FTLE image of

this vector field, respectively.

4.2 Topology-preserving Compression without Error-bounds

As an example for a topology-preserving compression algorithm, we consider the

algorithm of Theisel et al. [17] and achieve very high compression rates of 99.9%

for the Kármán vortex street and 99.6% for the Jet Stream dataset.

First, we quantitatively analyze the integration errors. Fig. 2(a) shows box plots

of the flow map differences for various integration times for the Kármán vortex

street. The errors are distributed mostly uniformly, as can be seen from the underly-

ing histograms. With increasing integration times the average as well as the maximal

error increases nearly linearly. Given the dimensions of the vector field of 20 by 4,

we have a deviation of about 10% of the domain diameter at an integration time of

2.5. Fig. 3(a) shows the results of the quantitative integration error analysis on the

Jet Stream dataset. This fields has a dimension of 25 by 20. Therefore, the maximal

error at an integration time of 2.5 is about 10% of the domain diameter. However,

the overall distribution of the errors is not uniform, but concentrated near the mini-

mum. Three quarters of the data points have an error of below 0.4.

For a qualitative analysis of the compression results, we consider the visual qual-

ity of LIC and F-FTLE images. Despite the high compression rate, both LIC images

in Fig. 2(e) and Fig. 3(b) show that overall flow patterns are preserved very well.

Especially in the Jet Stream dataset, the singularities, their region of influence as

well as their interaction is clearly visible and the image is very similar to the LIC

image of the uncompressed field (cf. Fig. 1). Only the inflow area in the Jet Stream

dataset is distorted.

We see the reason for these good results in the preservation of the topological

skeleton. When interpreting LIC images, the viewer focuses on well known flow

patterns, e.g., laminar flow or characteristic linear flow in the vicinity of stationary

points. Therefore, the perception of a LIC image is mainly sensitive to the existence

and location of the stationary points. As these do not change during compression

because of the algorithm design, the overall quality of the LIC images remains very

good.

Figures 2(g) and 4(a) show the F-FTLE images of the Kármán vortex street and

the Jet Stream respectively. In both cases, we see strong artifacts from the coarse un-

derlying grid. Because Theisel et al. only aim at the construction of a topologically

equivalent compressed vector field, they remove features that are not represented by
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the topological skeleton. Thus, the typical flow separation and convergence of the

Kármán vortex street has been removed as it can not be seen in Fig. 2(g). Only close

to the bar and the topological skeleton, some features are still visible, but a distor-

tion is also noticeable in those areas. The FTLE results of the Jet Stream dataset

suffers from similar problems. By comparing Figures 1(a) and 3(b), one can see that

the compression causes a shift of the inlet towards the lower left domain boundary.

Therefore, the final FTLE image is not only too coarse to see small features but also

shows high FTLE values in regions of nearly stagnating flow in the original field.

FTLE images show divergence and convergence in the flow and thus are highly

sensitive to deviations in direction and magnitude of the vector field. Topology-

preservation only guarantees a preservation of the overall flow behavior in the in-

dividual basins, but it does not necessarily preserve the course of the streamlines.

High deviations in the flow direction are still possible without altering the topology.

Therefore, the high compression rate has a significant impact on the quality of FTLE

images.

4.3 Error-bounded Compression without Topology-Preservation

Since FTLE computation on topology-preserved vector fields is affected by large ar-

tifacts from the underlying coarsened grid, we study the results of the error-bounded

vector fields approximation algorithm that is presented in [20]. In order to study only

the influence of the error-bound Emax on the vector field approximation, we removed

the topology-preservation from the algorithm. This approach achieves compression

rates of 97.8% for the vortex street and 99.2% for the Jet Stream dataset that we

used in Figures 2 and 3. Thereby, an error-bound of 0.1 is used for the Kármán

vortex street, respectively 0.4 for the Jet stream dataset.

Again, we first quantitatively analyze the integration error-based on the flow map

differences in the original and the approximated vector fields. The results in Fig-

ures 2(b) and 3(c) show strong differences to the results of the previous section.

On both fields, the maximal error is only about 1% of the field dimensions. On

both fields, we see an over-linear growth of the maximal error with integration time.

However, the average error grows much slower. When considering the distribution

of the error values, we see that the range of possible errors is dominated by outliers

and the majority of errors have a small magnitude. From the associated LIC images

(cf. Fig. 2(f) and Fig. 3(d)), we can see that these outliers are concentrated around

the main vortices and between the inflow and the neighbored nearly stagnating flow.

We expect only small integration errors even with higher integration times, though

we know that some artifacts will be present due to the outliers.

The LIC images in Figures 2(f) and 3(d) verify our assumptions. In case of the

Kármán vortex street, the typically swirling flow behind the rotated bar is better

preserved then in Fig. 2(e). This is due to the fact that the error-bounded algorithm

preserves a higher number of cells (cf. Figures. 2(c) and 2(d)), which allows a more

detailed approximation of the original field while decreasing the compression rate.
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(a) Error distribution (topology-preserving) (b) Error distribution (error-bounded)

(c) Compressed grid (topology-preserving) (d) Compressed grid (error-bounded,

Emax = 0.4)

(e) LIC of compressed vector field (topology-preserving)

(f) LIC of compressed vector field (error-bounded, Emax = 0.4)

(g) F-FTLE of compressed vector field (topology-preserving, dt = 2.0)

(h) F-FTLE of compressed vector field (error-bounded, Emax = 0.4, dt = 2.0)

Fig. 2 In order to compare the integration results of the first two compression techniques, Fig-

ures 2(a) and 2(b) show the histogram of the error values in flow map differences for multiple

integration durations. The box plots mark their quartiles, the plus their average and the circle their

maximal value. Figures 2(e) to 2(h) show LIC images and F-FTLE images of the compressed vector

fields. To analyze the distribution of the integration error in the compressed field (for an integration

time of 2.0, we added iso-lines to emphasize the upper 25% (blue) and the upper 5%(red) of all

error values in the domain.—Please note the different scale of the ordinate of the shown error plots.

Although the areas of the higher approximation error seem to cover large parts of the domain, the

overall error in Fig. 2(f) is much smaller compared to Fig. 2(e).
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(a) Error distribution (topology-preserving) (b) LIC of compressed vector field (topology-

preserving)

(c) Error distribution (error-bounded) (d) LIC of compressed vector field (error-

bounded, Emax = 0.1)

(e) Error distribution (topology-preserving and

error-bounded)

(f) LIC of compressed vector field (topology-

preserving and error-bounded, Emax = 0.1)

Fig. 3 In order to compare the integration results of the used compression techniques, Figures 3(a),

3(c) and 3(e) show the histogram of the flow map differences for multiple integration times. The

box plots mark their quartiles, the plus their average and the circle their maximal value. Fig-

ures 3(b), 3(d) and 3(f) show the LIC images the compressed vector fields. To analyze the dis-

tribution of the integration error in the compressed field (for an integration time of 2.5, we added

iso-lines to emphasize the upper 25% (blue) and the upper 5% (red) of all error values in the

domain.
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(a) topology-preserving (b) error-bounded (c) topology-preserving and

error-bounded

Fig. 4 These three images show the F-FTLE results for the Jet Stream dataset. The results were

computed for all compression techniques that are used in this work. Thereby, an integration time

of 2.5 and an error-bound of Emax = 0.1 was used.

But in contrast to the simple flow characteristic of the vortex street, which is well

preserved, the approximation of the Jet Stream shows strong differences. Figure 3(d)

shows that the inflow as well as the main vortices are correctly approximated. But

since the topology is very sensitive against vector field perturbations, one can clearly

see changes of the vector fields topology. Especially in the lower part of the field,

the weaker vortices begin to vanish at an error threshold of 0.1. So, depending on

the chosen error threshold, the topology can change significantly and LIC images

can no longer give reliable information of the main global flow behavior.

The FTLE results in Figures 2(h) and 4(b) are very similar to the corresponding

FTLE images of the original fields in Fig. 1. All main features of the original FTLE

fields are preserved. Especially in case of the Kármán vortex street, the characteristic

flow separation and attachment behind the obstacle are very well perceptible. This is

due to the fact that the local error threshold limits the allowed magnitude and angle

changes that are introduced by the compression approach. These findings are also

indicated by the small error magnitudes that we find in the flow map differences

(Figures 2(b) and 3(c)). We did not expect this result because vanished saddle and

center points should result in much higher integration errors theoretically. On the

other hand, there are also clearly visible artifacts, especially in the case of the Jet

Stream. These are probably caused by the outliers that are visible in the error plots.

The position of the artifacts correspond to the areas of maximal error in the LIC

images (Figures 2(f) and 3(d)). These areas also correspond to the boundaries of

the linearly approximated regions that are used by the algorithm [20], which, by the

design of the algorithm, tend to have the largest errors.

4.4 Error-bounded Topology-preserving Compression

As a synthesis from the previous sections, we apply the original approximation algo-

rithm of [20] to the datasets. This algorithm combines the topology-preservation ap-

proach of Theisel et al. with an error-bound. We achieve compression rates between

92.3% (for Emax = 0.1) to 94.8% (for Emax = 0.4) for the Kármán vortex street and
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compression rates between 99.5% (for Emax = 0.02) to 96.0% (for Emax = 0.1) for

the Jet Stream dataset.

Similar to the error-bounded approach without the topology-preservation, the er-

ror distributions in Fig. 3(e) show fast increasing error outliers and a slow increasing

average error over integration time. Also the location and the extent of the regions

with the highest error are similar. Thus, the topology-preservation has no further in-

fluence on the error distribution in this case. However, the LIC images clearly show

that all features of Fig. 1(c) could be preserved. The inflow could be correctly ap-

proximated as well as all topological features. Also the FTLE fields in Figures 4(b)

and 4(c) look nearly the same. This is due to the fact that the same error measure

was used, which locally limits the magnitude and angle differences between the

approximated the original field.

We use this compression method to study FTLE on compressed fields in more

detail. First, we investigate the influence of the integration times. Figure 5 shows

a sequence of FTLE results of the Kármán vortex street for different integration

times. Counterintuitively, longer integration times lead to smoother FTLE images.

Whereas the highest integration time theoretically leads to the most error-prone im-

age, these images also contain nearly no visual artifacts of the underlying coarse

region-wise linearly approximated vector field. Compared to that, the smaller inte-

gration times are more precise and lead to a coarser looking result, since shorter

integration times emphasize the transitions between to neighbored linearizations.

Given the overall small integration error, we can still consider the results with high

integration times reliable.

Second, we applied the L-FTLE algorithm to the compressed fields. L-FTLE

is expected to compensate discontinuities at cell or linearly approximated region

boundaries. The results for the Jet Stream dataset are shown in Fig. 6. While on

the original field, L-FTLE leads to sharper images (cf. Figures 1(d) and 6(c)), on

the compressed fields it appears to emphasize artifacts. These outweigh the flow

features, so that the images cannot be interpreted correctly anymore. We assume

that this is a consequence of the coarse, piece-wise linear vector field approximation,

especially the piece-wise constant Jacobian.

(a) dt = 0.8 (b) dt = 1.2

(c) dt = 1.6 (d) dt = 2.0

Fig. 5 F-FTLE images of our error-bounded, compressed vector field (the topology-preserving and

error-bounded algorithm was used with Emax = 0.1) for different integration lengths. The main flow

features can clearly be seen in all four images. However, the result appears to be much smoother

with longer integration times.
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(a) L-FTLE (dt = 2.0) (b) L-FTLE (Emax = 0.4,dt = 2.0)

(c) L-FTLE (dt = 2.5) (d) L-FTLE (Emax = 0.1, dt = 2.5)

Fig. 6 These two images show a comparison of the L-FTLE results computed on the uncompressed

Jet Stream dataset (left) and its error-bound compression (right). The result of the compressed field

clearly shows artifacts of the region-wise approximation.

5 Discussion

We found that the two criteria, preservation of topology and a bounded approxima-

tion error, have a different impact on the resulting compressed field with respect to

the achieved compression rate as well as on the preserved flow features. The best

compression rates can be achieved when no error-bound is used. This is shown by

the results of Theisel et al. [17]. The introduction of an error-bound has a large neg-

ative impact on the compression rate. The worst compression rates were achieved

when fulfilling both criteria.

Depending on the flow features that should be preserved by the compression,

the different compression algorithms have their advantages and disadvantages. In

order to preserve the topology, either the topology has to be preserved explicitly,

or an appropriately small approximation error has to be used (cf. Dey et al. [2]).

When the compressed fields are mainly used for the generation of LIC images, the

preservation of topology seems to be the more important compression criterion. For

non-topological flow features, such as convergence and divergence, a suitable error-

measure should be used, e.g., one that limits the deviation of flow direction.

The integration error that results from the compression not only depends on the

vector field itself but on the design of the particular compression algorithm. Error-

bounded algorithms from [20] show a characteristic small number of high error

outliers, which are located at the transitions between the linearly approximated re-

gions.

In every case, the integration error increases with longer integration times, be-

cause the error accumulates along the streamlines. On the other hand, longer inte-

gration times lead to smoother FTLE images with less visual artifacts in our exam-
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ples. Since the overall error is higher in these images, they are also less reliable.

Therefore, the integration time is not only is one of the most important parameters

of the FTLE computation, here it also controls the trade-off between the visual ap-

peal of the images and their correctness. As long as the integration error in the flow

maps remains in the scale of the cell resolution, a meaningful preview of the original

dataset can be obtained, as shown in the examples of Sec. 4.4.

6 Conclusion and Future Work

In this work we compared three different vector field compression algorithms with

respect to their applicability in vector field visualization. One method with an un-

bounded approximation error results in very high compression rates while preserv-

ing the vector fields topology. The others limit the local vector field deviation—and

also the compression rate—by using a user-defined error threshold. In particular, we

compared the quality of the flow map computation in uncompressed and compressed

vector fields as well as the results of FTLE computations.

Thereby we showed, that preservation of the topological skeleton is not sufficient

to preserve flow features. Additionally, a mechanism to control the overall approxi-

mation error is needed. The quality of the integration results as well as the computed

FTLE images of compressed vector fields largely depends on the used error-bounds,

respectively the compression rates. Given a compressed field, the integration time

not only controls the quality of the FTLE results, but also influences the error dis-

tribution in the resulting field. We showed this by the example of two real-world

datasets.

For future work, more datasets and vector field compression techniques could

be investigated to extend the comparison of the different algorithm approaches.

Thereby, an interesting question is, whether there is a characteristic development of

the error distribution with increasing integration times for a particular compression

method and which properties of the method are causing it. Such research appears to

be possible, since we have seen characteristic error distributions for the individual

algorithms. Further, it could be possible to develop a guideline that helps to de-

cide, which compression techniques can be used to facilitate certain visualizations

or analysis tasks on compressed vector fields.
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