

FAnToM Lessons Learned from Design, Implementation, Administration and Use of a Visualization System for Over 10 years

Alexander Wiebel MPI for Human Cognitive and Brain Sciences, Leipzig Christoph Garth IDAV @ UC Davis Mario Hlawitschka IDAV @ UC Davis Thomas Wischgoll AVIDA @ Wright State University Gerik Scheuermann BSV @ Universität Leipzig

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

The Idea of FAnToM

- Field Analysis using Topological Methods
 - Visualization of fields in 2D/3D
 - Scalar, vector and tensor fields
 - Provides framework for team's research in new algorithms
 - Implementation, testing, application
 - Contains many state-of-the-art methods in the field
 - Designed for commodity hardware
- Later:
 - Flow Visualization
 - Gradual extension to medical and graph visualization

- October 1998 start at University of Kaiserslautern
 - Grant from "Stiftung Rheinland-Pfalz für Innovation"
 - DFG grant "Visualization of Nonlinear Vector Field Topology" (VNV)
 - PIs: Prof Dr. Hans Hagen, Dr. Gerik Scheuermann
 - Development Lead: Thomas Wischgoll
- November 2001 DFG VNV II
 - Development Lead: Christoph Garth
- May 2004 moved to University of Leipzig
 - PI: Prof. Dr. Gerik Scheuermann
 - Development Lead: Mario Hlawitschka and Alexander Wiebel
- April 2005 DFG VNV III
- June 2008 DFG VNV IV
- October 2009 current state
 - Development Lead: Dominic Schneider

Alexander Wiebel, et al. FAnToM - Lessons learned ...

- October **1998** start at University of **Kaiserslautern**
 - Grant from "Stiftung Rheinland-Pfalz für Innovation"
 - DFG grant "Visualization of Nonlinear Vector Field Topology" (VNV)
 - Pls: Prof Dr. Hans Hagen, Dr. Gerik Scheuermann
 - Development Lead: Thomas Wischgoll
- November 2001 DFG VNV II
 - Development Lead: Christoph Garth
- May 2004 moved to University of Leipzig
 - PI: Prof. Dr. Gerik Scheuermann
 - Development Lead: Mario Hlawitschka and Alexander Wiebel
- April 2005 DFG VNV III
- June 2008 DFG VNV IV
- October 2009 current state
 - Development Lead: Dominic Schneider

Alexander Wiebel, et al. FAnToM - Lessons learned ...

- October 1998 start at University of Kaiserslautern
 - Grant from "Stiftung Rheinland-Pfalz für Innovation"
 - DFG grant "Visualization of Nonlinear Vector Field Topology" (VNV)
 - PIs: Prof Dr. Hans Hagen, Dr. Gerik Scheuermann
 - Development Lead: Thomas Wischgoll
- November 2001 DFG VNV II
 - Development Lead: Christoph Garth
- May 2004 moved to University of Leipzig
 - PI: Prof. Dr. Gerik Scheuermann
 - Development Lead: Mario Hlawitschka and Alexander Wiebel
- April 2005 DFG VNV III
- June 2008 DFG VNV IV
- October 2009 current state
 - Development Lead: Dominic Schneider

Alexander Wiebel, et al. FAnToM - Lessons learned ...

- October 1998 start at University of Kaiserslautern
 - Grant from "Stiftung Rheinland-Pfalz für Innovation"
 - DFG grant "Visualization of Nonlinear Vector Field Topology" (VNV)
 - PIs: Prof Dr. Hans Hagen, Dr. Gerik Scheuermann
 - Development Lead: Thomas Wischgoll
- November 2001 DFG VNV II
 - Development Lead: Christoph Garth
- May 2004 moved to University of Leipzig
 - PI: Prof. Dr. Gerik Scheuermann
 - Development Lead: Mario Hlawitschka and Alexander Wiebel
- April 2005 DFG VNV III
- June 2008 DFG VNV IV
- October 2009 current state
 - Development Lead: Dominic Schneider

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Application Data

- Tailored to fluid dynamics data sets
 - Unstructured meshes
 - 2D: quads, triangles

• 3D: hexahedra, prisms, pyramids, tetrahedra

- Large meshes (for commodity hardware)
 - millions of cells

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Application Data

Locally refined data →Strongly varying cell sizes

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Overview

- Point Location
- Algorithm Execution Model
- New and established visualization techniques

- Point location is important for line integration
 - Stream lines, streak lines, path lines

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces
 - Vector field topology
 - \rightarrow separatrices

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces
 - Vector field topology
 - \rightarrow separatrices
- Why is it important?
 - Interpolation value at samples between given data points
 - Interpolation performed in cell
 - \rightarrow need to find the cell the sample lies in

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces
 - Vector field topology
 - \rightarrow separatrices
- Why is it important?
 - Interpolation value at samples
 - Interpolation performed in cell
 - → need to find the cell the sar

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces
 - Vector field topology
 - \rightarrow separatrices
- Why is it important?
 - Interpolation value at samples
 - Interpolation performed in cell
 - → need to find the cell the sar

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces
 - Vector field topology
 - \rightarrow separatrices
- Why is it important?
 - Interpolation value at samples
 - Interpolation performed in cell
 - → need to find the cell the sar

- Point location is important for line integration
 - Stream lines, streak lines, path lines
 - Stream surfaces
 - Vector field topology
 - \rightarrow separatrices
- Why is it important?
 - Interpolation value at samples
 - Interpolation performed in cell
 - → need to find the cell the sar

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Point location of VTK not appropriate for data
 - Uniform subdivision of octree wastes memory

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Point location of VTK not appropriate for data
 - Uniform subdivision of octree wastes memory

- Method developed specifically for FAnToM
 - [LST2003] Max Langbein, Gerik Scheuermann, Xavier
 Tricoche. An Efficient Point Location Method for Visualization in Large Unstructured Grids.

- Adaptive kD-tree
 - $\sim 1\%$ of mesh vertices

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Adaptively subdivided kD-tree
 - $\sim 1\%$ of mesh vertices
- Identifies vertex close to point

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

- Adaptively subdivided kD-tree
 - $\sim 1\%$ of mesh vertices
- Identifies vertex close to point
- Cast ray to sought position
- Follow ray using cell adjacency information

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Data Flow Networks

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Data Flow Networks

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

FAnToM: Explicit Execution Control

- Two kinds of elementary algorithms
 - Data algorithms
 - Transform data sets
 - Write/Re-load
 - Visualization algorithms
 - Produce graphical representations from data
- (Re)Execution explicitly controlled by user
 - Possibly by scripting engine

Explicit Execution Control: Advantages

- Large data sets on commodity hardware
 - Splitting of pipeline at user-define points
 - Do not need to recompute the network
- Additional flexibility
 - Increased interactivity of visualization process
- During development of new algorithms
 - Fast sanity checks

Explicit Algorithm Execution Example

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

F 💿 FAnToM - /u/wiebel/.myconfig/scripts/startUp.py					
Eile Algorithms Viewer Scripts Developer Info		_			
🖻 🖄 💋 🕈 🤤 📢 🌾		Primitive List		Toggle	
PERSPECTIVE		ORTHOGRA	PHIC	Reset	
REHR (XT+-2) Dataset Browser - FAnToM					×
Tensor Fields		Tensor Sets			
Index Name	Data Alignment	Dimension	Order	# Tensors	
0 velocity field	point-based	3	1	4291741	
1 velocity boundary field	point-based	1	0	4291741	
2 density field	point-based	1		4291741	
3 density boundary field	point-based	1	0	4291741	
4 pressure field	point-based	1	0	4291741	
5 pressure boundary field	point-based				
6 sa_viscosity field	point-based	-			
Position Sets		Cell Definitio	ns		-
Dimension #Positions Type)	# Cells	# Positions	Туре	-
3 4291741 FPo:	sitionSet3DArbitrary	13470352	4291741	FCellDefinitions3DUnstructured	
		499470	4291741	FCellDefinitions2Din3DUnstructur	ed
		5573	4291741	FCellDefinitions2Din3DUnstructur	ed
		284153	4291741	FCellDefinitions3DTriangulation	
		8776	4291741	FCellDefinitions3DTriangulation	
		21430	4291741	FCellDefinitions2Din3DUnstructur	ed 🗌
		84584	4291741	FCellDefinitions3DTriangulation	-
			z	FAnToM	
Cursor: X 0.366505 Y 0.238857 Z	0 Status	Algorithm termin	ated success	sfully.	

Max Planck Institute for Human Cognitive and Brain Sciences

FAnToM - /u/wiebel/.myconfig/scripts/startUp.py		
File Algorithms Viewer Scripts Developer Into	F 💽 Color Map	o 8
PERSPECTIVE	Main Settings Color Bar	
REAR(XY→-Z)	Source Field	pressure boundary field_triangulated
	Color Scheme	
	Mode	Rainbow
	Fixed Color	
	Scaling Mode	Linear 🔤
	Color Maximum and Minimu	m for Min-Max-Scaling
	Minimum for Color Mapping	0
z	Maximum for Color Mapping	100
	Filtering	
	Outlier filtering threshold	0
	Generated Primitives	
	Alpha Lit Primitives	▼
	Smooth Primitives	<u> </u>
	Triangle Offset	0
	Use Shaders	
		QK Apply Scancel Revert
Cursor: X 0.366505 Y 0.238857 Z 0 Status	Algorithm terminate	d successfully.

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

FAnToM - /u/wiebel/.myconfig/scripts/startUp.py	······································	
Eile Algorithms Viewer Scripts Developer Info	F 💿 Cut Out Part of Field 🙆	8
🖻 🖄 🔗 💠 🥰 📢 🕅	Source Field velocity field	
PERSPECTIVE	Cutting Tune	Н
	Cound Type Box	•
	Use Inverted	
	Box	
	Minimum x 221.5467 y. 346.4750 z. 47.93451 Get Mark	er
	Maximum x: 1322.930 y: 1502.344 z: 1040.659 Get Mark	er
	Sphere	
	Center x: 0 y: 0 z: 0 Get Mark	er
	Radius 10	1
	Cyfinder	
	Center of Cylinder Axis x: 0 y: 0 z: 0 Get Mark	er
	Radius of Cylinder 10	٦
	End of Cylinder Axis x 1 y. 0 z. 0 Get Mark	er
	Interval (A,B)	-
	A -1	٦
	В 1	1
	Normal	
	Normal x: 1 y: 0 z: 0 Get Mark	er
Y	Apply Scancel Revert	5
Cursor: X -11757.3 Y 18348.2 Z 13534.1 Status	Algorithm terminated successfully.	

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

FAnToM - /u/wiebel/.myconfig/scripts/startUp.py		· · · · · · · · · · · · · · · · · · ·	
Eile Algorithms Viewer Scripts Developer Info	F 💽 Cut Out Part of F	leid 📀	×
🖻 🖄 🥖 🖸 🤜 隊	Source Field	pressure boundary field_triangulated	¢
PERSPECTIVE	Cutting Type	Box	\$
	Use Inverted		
	Box	~ [224 5467] ~ [246 4750] ~ [47 02454] [Cm44	artiar
	Minimum	x. 221.5467 y. 346.4750 Z. 47.934511 Get M	anker
	Maximum	x: [1322.930] y: [1502.344] z: [1040.659] Get M	arker
	Sphere		
	Center	x: 0 y: 0 z: 0 Get M	arker
	Radius	10	
	Cylinder		
	Center of Cylinder Axis	x: 0 y: 0 z: 0 Get M	arker
	Radius of Cylinder	10	
	End of Cylinder Axis	x 1 y: 0 z 0 Get M	arker
	Interval [A,B]		
	A	-1	
	В	1	
	Normal		
	Normal	x 1 y: 0 z: 0 Get M	arker
Y		≪ <u>O</u> K <a>Apply <a>Cancel Reve	ert
Cursor: X -13925.6 Y 17278.9 Z 13063.9 Status	Algorithm terminate	ed successfully.	

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

F 🧿 FAnToM - /u/wiebel/.myconfig/script:	s/startUp.py		8 0 S			
Eile Algorithms Viewer Scripts Develop	per Info					
🖻 🖄 🛷 🗬 🔍 🕅	•	Primitive List	Color Bar [15] Toggle			
PERSPECTIVE			Reset	_		
F	(Hyper) Streamline for 2D and 3D		٥	8		
	Main Representation Integration			_		
	Source Field	cutOutPart_tF		¢		
	Seeding Strategy	Random		¢		
x	Start Point	x: 895.0452	24: y: 899.92541(z. 663.26122) Get Marker			
	Number of Random Points	1000				
	Width of Random Region	x: 3000	y: 3000 z 3000 Get Marker			
	Seeding Field	velocity field		¢		
	Threshold for Seeding	0.5				
	Modulo	1		_		
			Apply Cancel Revert			
		9.9	9000e+04			
Cursor: X -10935.1 Y 19362.2	Z 12770.4 Status	Algorithm tern	ninated successfully.			

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

F 💿 FAnToM - /u/wiebel/.myconfig/scripts/s	tartUp.py	····· 😢 🔕	8
File Algorithms Viewer Scripts Developer	r Info	silities List (Color Par (15))	10
	Fill	illove List (Color Bar [15]) 🗢 Togg	
PERSPECTIVE	■ • (Hyper) Streamline for 2D and 3D <2>	Reset	• ×
	Main Representation Integration		
	Source Field	cutOutPart_tF	÷
	Seeding Strategy	Random	\$
	Start Point	x: 983.94068! y: 927.79750! z. 694.	126360 Get Marker
	Number of Random Points	30	
	Width of Random Region	x: 100 y: 100 z 100	Get Marker
	Seeding Field	velocity field	\$
	Threshold for Seeding	0.5	
	Modulo	1	
			Cancel Revert
		FAnToM	Ĵ
Cursor: X 313.416 Y 1282.51 Z	1344.23 Status Alg	orithm terminated successfully.	

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Max Planck Institute for Human Cognitive and Brain Sciences

Integration of New and Established Visualization Techniques

- Application scientist trust their methods
 - Understand them (e.g. mathematically)
 - Often yielded valid results
- They distrust new methods

Integration of New and Established Visualization Techniques

- Application scientist trust their methods
 - Understand them (e.g. mathematically)
 - Often yielded valid results
- They distrust new methods

- Present new methods together with well-established ones
- User may gain confidence in new method
- User will learn to use new methods faster in known context

Conclusion

- Good performance handling of large unstructured data on commodity hardware by
 - Small memory footprint data structure
 - Efficient point location
 - Explicit algorithm execution model
- Provide well-known techniques together with new ones

Acknowledgements

• Developers in Leipzig, Kaiserslautern and the USA

- Active Developers: Dominic Schneider, Wieland Reich, Clemens Fritzsch, Cornelius Müller, Mario Hlawitschka, Markus Rohrschneider, Mathias Goldau, Patrick Oesterling, Christoph Garth, Alexander Wiebel, Sebastian Eichelbaum, Xavier Tricoche
- Former Developers: Tom Bobach, Max Langbein, Heike Jaenicke, Ralph Schurade, Qin Wang, Gerald Struck, Tobias Hilbert, Oliver Paech, Thomas Wischgoll, Stephan Kühn, Joana Bendoraityte, Stefan Seemann, Minjie Chen, Michael Schlemmer, Eduard Deines, Julia Ebling, Nikolai Ivlev, Martin Oehler, Jan Frey, Arvid Bessen, David Gruys, Kai Hergenröther, Evi Worf, Marco Tannert, Stefan Schubert, Enrico Rose, Aragorn Rockstroh, Stefan Claus, Erik Auerswald, Christian Lenz, Igor Strasser, Guangyu Wang, Simon Klebeck, Stefan Veit, Tobias Salzbrunn, Gerik Scheuermann

• DFG and "Stiftung Rheinland-Pfalz für Innovation" for funding

- Many "application scientists" for ideas
 - especially Markus Rütten, DLR

MAX PLANCK INSTITUTE FOR HUMAN COGNITIVE AND BRAIN SCIENCES LEIPZIG

Alexander Wiebel

Image and Signal Processing University of Leipzig

Gerik Scheuermann

Christoph Garth Mario Hlawitschka

Advanced Visual Data Analysis Wright State University

Thomas Wischgoll

FAnToM - Lessons learned ... Max Planck Institute for Human Cognitive and Brain Sciences

Montag, 12. Oktober 2009

Alexander Wiebel, et al.

Local Adaptive Refinement of Mesh

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Cell Location at Boundary

Figure 3: search ray started at vertex a to find cell for point b hits the boundary at c, kdtree leaf face k is cut in elongation of search ray and alternative search rays can be started from vertices d-g, which lie in kdtree leaves neighboring to k, and the ray from d finds the correct answer

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Performance of Point Location Infrastructure

Dataset	NACA	GBK	ICE	DELTA	F6	BMW
Number of points	24K	32K	1.0M	1.9M	3.6M	4.3M
Number of cells	38K	174K	2.6M	6.3M	8.4M	13.5M
Tetrahedrons	-	174K	0.9M	3.9M	2.2M	7.8M
Prisms	-	-	1.7M	2.4M	6.2M	5.6M
Pyramids	-	-	15k	-	15k	130k
max edge ratio	10000	7.8	45355	2797	38298	20779
max cells per point	7	50	88	88	308	77
total used memory	6MB	22MB	191MB	464MB	783MB	1085MB
kdtree statistics						
memory for kdtree	0.4MB	0.4MB	26MB	26MB	52MB	104MB
building time for kdtree(s)	0.63	0.8	31.8	63.5	128	152
divided by $n \lceil \log_2(n) \rceil$	1.75	1.67	1.59	1.59	1.61	1.53
search in kdtree(μ s)	3.33	3.13	6.05	6.73	7.28	7.28
divided by $\lceil \log_2(n) \rceil$	0.222	0.208	0.303	0.321	0.331	0.317
point location statistics						
mean μ s per search	93	147	180	181	219	163
mean cells gone	2.89	4.42	4.68	4.78	5.76	4.36
max cells gone	33	16	6127	414	10032	50856
# re-search after boundary hit	53	0	69413	36129	361878	222348
mean # rays per re-search	1.47	-	4.60	1.90	2.35	2.74
maximum # rays per re-search	6	-	730	43	150	658

Table 1: Test statistics for the six chosen data sets NACA, GBK, ICE, F6 and BMW.

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Taken from [LST2003]

- Adaptively subdivided kD-tree
 - ~1% of mesh vertices
 - Identifies cell close to point
- Cast ray to sought position
- Follow ray using cell adjacency
 - Special treatment:
 - mesh holes
 - boundaries

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

kD-tree Data Structure

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

Cell Vertex and Neighborhood Information

Taken from [LST2003]

Alexander Wiebel, et al. FAnToM - Lessons learned ...

Max Planck Institute for Human Cognitive and Brain Sciences

```
File Edit Options Buffers Tools Python Help
```

```
FIsosurfaceAlgorithmParam2 = {
          'Alpha' : 0.5,
         'Color of Isosurface' : FColor( 0.588235, 0.588235, 0.588235 ),
'Enable Backface Lighting' : 1,
'Isovalue / Percentile [%]' : 20,
          'Method to be Used' : 1.
          'Mode' : 0,
          'Position' : FArray( 0, 0, 0 ),
         'Swooth Isosurface' : 1,
         'Tensorfield' : FIndex(0),
         'Use Acceleration' : 1,
          'Use Lit Triangles' : 1]
FShowBoundingBoxAlgorithmParam3 = [
         'Draw as Tubes' : 1,
          'Field' : FIndex(0),
         'Line Color' : FColor(1, 1, 1),
         'Line Width' : 5.
         'Side Color' : FColor( 0.499992, 0.499992, 0.499992 ),
          'Solid +X' : 0,
          'Solid +Y' : 0,
         'Solid +Z' : 0,
          'Solid -X' : 0.
         'Solid -Y' : 0,
         'Solid -Z' : Ol
 # now, we are starting the algorithms
 print "Python will now start the algorithms."
fantom.runAlgo( "FTensorFieldReaderVTKProfile", FTensorFieldReaderVTKAlgorithmParam0)
fantom.runAlgo( "FColorMapProfile", FColorMapAlgorithmParam1)
fantom.runAlgo( "FIsosurfaceProfile", FIsosurfaceAlgorithmParam2)
fantow.runAlgo( "FShowBoundingBoxProfile", FShowBoundingBoxAlgorithwParaw3)
crint "Python script execution done."
# end of script
--:-- ReVisE Example.py Bot L51 (Python)------
```

🚰 💿 emacs@hegel.informatik.uni-leipzig.de <9>	۲	۲
File Edit Options Buffers Tools Python Help		
'Solid -Y' : 1, 'Solid -Z' : 1}		
# now, we are starting the algorithms		
print "Python will now start the algorithms."		
<pre>#loading the data fantom.runAlgo("FTensorFieldReaderVTKProfile", FTensorFieldReaderVTKAlgorithmParam0)</pre>		
<pre>#showing the graphics fantow.runAlgo("FShowGridProfile", FShowGridAlgoritheParam1) fantow.runAlgo("FNewHyperStreamlineProfile", FNewHyperStreamlineAlgorithmParam103) fantow.runAlgo("FShowBoundingBoxProfile", FShowBoundingBoxAlgorithmParam103)</pre>		
<pre>#flying around the scene two times #first turn, mowing upwards for j in range(0,100,1): FSnapshotAlgorithmParam2['Camera Position']=FArray(sin(0.02*3.14159*j), cos(0.02*3.14159*j), -1 + 0.02 * j) FSnapshotAlgorithmParam2['Filename']="movieImage2_%.4i.png" %j fantom.runAlgo("FSnapshotProfile", FSnapshotAlgorithmParam2)</pre>		
<pre># second turn, this time moving downwards for j in range(100,200,1): FSnapshotAlgorithwParam2['Camera Position']=FArray(sin(0.02*3.14159*j), cos(0.02*3.14159*j), 1 - 0.02 * (j-100) FSnapshotAlgorithwParam2['Filename']="movieImage2_%.4i.png" %j fantow.runAlgor "FSnapshotProfile", FSnapshotAlgorithwParam2 print "dome."</pre>)	
# end of script		
-: novie.py Bot L107 SVN:9594 (Puthon)		
Wrote /u/wiebel/.scripts/Examples/wovie.pu		

Max Planck Institute for Human Cognitive and Brain Sciences

Montag, 12. Oktober 2009

Max Planck Institute for Human Cognitive and Brain Sciences