
Chapter 9
Mathematical Foundations of Uncertain Field
Visualization

Gerik Scheuermann, Mario Hlawitschka, Christoph Garth, and Hans Hagen

Abstract Uncertain field visualization is currently a hot topic as can be seen by
the overview in this book. This article discusses a mathematical foundation for this
research. To this purpose, we define uncertain fields as stochastic processes. Since
uncertain field data is usually given in the form of value distributions on a finite set
of positions in the domain, we show for the popular case of Gaussian distributions
that the usual interpolation functions in visualization lead to Gaussian processes in
a natural way. It is our intention that these remarks stimulate visualization research
by providing a solid mathematical foundation for the modeling of uncertainty.

9.1 Introduction

The visualization of uncertain field data has attracted a lot of attention in recent
time. As practically no measured or simulated data is exact, visualization research
attempts to incorporate uncertainty in the images presented to the user. Despite this
undebated need, there has been only slow progress towards this goal. There are
many field visualization methods without an extension taking uncertainty into ac-
count. We think that a major reason for this fact is a lack of knowledge regarding
the necessary mathematical description of uncertainty in the case of fields. As we
argue in this article, stochastic processes are a viable tool to describe uncertain func-
tions over continuous domains. Since stochastic processes are usually not part of the
standard curriculum in computer science and sometimes even mathematics, visual-
ization researchers are not very familiar with this non-trivial subject.
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In many cases, the field visualization problem consists of a finite set of given
positions where the field value is known. It shall be noted that this holds for scalar,
vector, and tensor fields. Before most field visualization methods are applied, an
interpolation of these values is defined creating a continuous field over the whole
continuous domain. The uncertain field visualization problem is very similar: One
is given a finite set of positions with a (known or estimated) distribution of the
(unknown) field value at each position. We consider the prominent case of Gaussian
distributions in this article and show that all the well-known interpolation methods in
visualization can be used in this case to define the uncertain field over the continuous
domain as a Gaussian process. This rarely known fact emphasizes the potential of
stochastic processes as model for uncertain fields in visualization research.

9.2 Stochastic Processes

We want to describe a (scalar, vector or tensor) field over some closed domain D ⇢
d ,d = 1,2, or 3, that depends on some unknown (typically high dimensional)

parameter w 2 W . The whole uncertainty is contained in this parameter: If we know
the parameter w , we know the field. To keep things simple, we assume that W = u,
but that is not necessary1. In addition, we assume that W , is known i.e. the number
and type of parameters that determine our field.

In a first step, we need a probability measure on W . As W contains an uncount-
able number of elements, we use a s -algebra on W . Because of W = u, the
Borelalgebra ( u) is a natural choice2. Furthermore, we need a probability mea-
sure : ! [0,1]. As usually, this means that the probability for w 2 A ⇢ W is
(A) 2 [0,1]. Again, we assume that this probability measure is known.
In our second step, we define a random variable

X : W ! v

as measurable3 map where the s -algebra on v is the Borelalgebra ( v). Essen-
tially, this is a usual (i.e. deterministic) function, assigning each (unknown) param-
eter w 2 W a value4. If the parameter w is known, the random variable has a fixed
value. From the probability measure on W , we can derive a probability distribu-
tion of X on v: For any set A ⇢ v in the Borelalgebra ( v), we set

1 In general, we only need a complete probability space, i.e. some set W with a s -algebra and a
probability measure on this s -algebra. Completeness means that any subset of a set with measure
zero must be in the s -algebra. One can construct a complete probability space from an arbitrary
probability space by adding elements to the s -algebra and defining the measure on these elements
accordingly [4, Suppl. 2] without any change of practical relevance.
2 The Borelalgebra is the smallest s -algebra that contains all open and closed subsets. This ensures
in our case that we can measure the probability for all subsets of interest in practical cases.
3 A map is measurable if each preimage of a measurable set is measurable
4 The case v = 1 means a scalar, v = d,d = 2,3 means a vector and the case v = d⇥d = d2,d = 2,3
describes a second order tensor.



9 Foundations of Uncertain Field Visualization 97

P(X 2 A) := (X�1(A)).

As final step, we will define uncertain fields now. Basically, we need to define a
random variable at every position x2D. However, there has to be some strong corre-
lation between the random variables at close positions because, in visualization, we
are usually dealing with continuous or even differentiable fields. Following Adler
and Taylor [2], we define an uncertain field depending on our uncertain parameter
w 2 W over the domain D as a measurable, separable5 map

f : W ! ( v)D.

In perfect analogy to random variables, each parameter w 2W gets assigned a deter-
ministic function fw : D ! v, here denoted as an element of ( v)D. Furthermore,
for each position x 2 D, we have a random variable fx : W ! v that assigns a fixed
value at point x 2 D to the parameter w 2 W . We will use the notations

fw(x) := fx(w) := f (w,x) := ( f (w))x 2 v

for the value of the uncertain field f at position x 2 D given parameter w 2 W . The
measure on ( v)D can be defined by a consistent description of distributions on
arbitrary finite subsets of positions in D6.

If we consider the situation at a single point x 2 D and a measurable subset of
values V ⇢ v, e.g. V is closed or open, we have the probability

P( f (w,x) 2V ) = ({w| f (w,x) 2V}).

5 This condition removes subtle measurement problems without imposing restrictions of practical
relevance, see Adler and Taylor [2, p. 8]. The concept was originally introduced by Doob [4] in his
book on stochastic processes. In essence, it demands a dense countable subset D ⇢ P, and a fixed
null set N 2 with (N) = 0 such that for any closed B ⇢ d and open I ⇢ P

{w| f (x,w) 2 B8x 2 I}D{w| f (x,w) 2 B8x 2 I \D}⇢ N

with symmetric set difference D .
6 According to Doob [4, I.5,II.1] and going back to theorems by Kolmogorov, one needs to define
probability distribution functions

Fx1,...,xn (a1, . . . ,an) = (|x1| a1, . . . , |xn| an)

for arbitrary finite tuples (x1, . . . ,xn) of points in D, such that the following rather obvious two con-
sistency conditions hold for all finite subsets of points {x1, . . . ,xn} and value bounds a1, . . . ,an 2 :

Fx1,...,xn (a1, . . . ,an) = Fxa1 ,...,xan (aa1 , . . . ,aan )8 permutations a

and
Fx1,...,xm (a1, . . . ,am) = lim

l j!•, j=m+1,...,n
Fx1,...,xn (a1, . . . ,an)8m < n

We will use multivariate Gaussian distributions for this purpose in the next sections. This footnote
illustrates that other distributions are possible.
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As an example for the probability space (W , , ), we assume that we have a set
of positions {p1, . . . , pN} 2 2 in the plane. At these positions, we have uncertain
scalar values {v1, . . . ,vN} 2 with normal distributions7 Wi ⇠ N(µi,si). We may
assume that these values are not independent with covariances

Ci j = E((vi �µi)(v j �µ j)) with si =
p

Cii.

Then, we have (W , , ) = ( N , ( n),N(µ,C)). This means that our probability
space is N-dimensional real space with an N-dimensional normal distribution with
mean vector µ 2 N and (symmetric) covariance matrix C 2 N⇥N . It shall be
noted that it is possible to derive a space with independent Gaussian variables with
potentially smaller dimension M < N by spectral decomposition of C and using the
eigenvectors with eigenvalue different from 0. In the following sections, we will see
how we can define an uncertain scalar field from these data.

9.3 Gaussian Processes

The previous section introduced stochastic processes without referring to a specific
type of distribution at every position. A careful look at the footnotes or intuition
tells that the distributions at the different points have to be somehow consistent, and
that a simple solution might be to use distributions of the same type everywhere.
Looking at the literature, it can be said that Gaussian distributions are the most often
used case. If one uses them, one arrives at the special topic of Gaussian processes.
They have been analyzed in detail with respect to geometric properties by Adler and
Taylor [1, 2, 3] in a mathematically rigorous fashion. But Gaussian processes have
also been applied in other areas of computer science. A nice example is provided
by machine learning as described in the book by Rasmussen and Williams [7]. This
section and the rest of the article will focus on Gaussian processes.

As before, let (W , , ) be a known probability space. Let D ⇢ d ,d = 1,2, or 3
be the known domain of our field and let v be the set of potential values of our
field, i.e. v = 1 means a scalar field, v = d means a vector field, and v = d⇥d means
a tensor field of second order. A measurable, separable map

f : W ! ( v)D

is called Gaussian random field on D if for all finite tuples (x1, . . . ,xn) of points in
D the random variable ( fx1 , . . . , fxn) is a v⇥ n-dimensional Gaussian random vari-
able. The function

7 A normal distribution on is defined by a probability density function

f(x) = 1p
2ps

exp�
(x�µ)2

2s2 .

µ is the mean of the distribution and s the standard deviation.
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µ : D ! v, µ(x) = E( fx)

with expectation E is called expectation function. The map

C : D⇥D ! v⇥v C(x,y) := E(( fx �E( fx))( fy �E( fy)))

is called covariance function. For any function µ : D ! v and any non-negative
definite function C : D⇥D ! v⇥v, there is a unique Gaussian process with ex-
pectation function µ and covariance function C, see Adler and Taylor [2, p.5]! This
statement is the basis behind the design and use of Gaussian processes in machine
learning as described by Rasmussen and Williams [7]. However, we think that an
approach starting with interpolation is more appropriate to visualization, as this is
the usual way of defining continuous fields from discrete data in our discipline.

9.4 Linear Interpolation on the Line as a Gaussian Process

This section considers a very simple example. We take the real line as domain, i.e.
D = . We assume that we are given two uncorrelated Gaussian distributions of
scalar values

W1 ⇠ N(µ1,s1) and W2 ⇠ N(µ2,s2)

at the points x1 = 0 and x2 = 1 as data. We want to describe a simple linear interpo-
lation. Since the two values are uncorrelated, we take W = 2 as parameter space,
the Borelalgebra ( 2) as s -algebra and the 2-dimensional normal distribution

= N(µ,C) with

µ =

✓
µ1
µ2

◆
, C =

✓
s1

s2

◆

as probability distribution. This means that we assume two normally distributed,
independent real parameters that will determine our uncertain field. In this simple
case, the two random variables

W1 : W ! ,W1(w) = w1, W2 : W ! ,W2(w) = w2

determine the values at the two given positions x1 and x2, respectively. It is natural
to define the linearly interpolated uncertain field f on the real line by

f : W ! ( ) , ( f (w))x := w1(1� x)+w2x.

With the notation
fw(x) = w1(1� x)+w2x,

it becomes pretty clear that we are really defining a linear interpolation of the values
at 0 and 1 on the real line for each given w . However, the whole point of the chapter
is that we are really defining a Gaussian process! The short argument is that this
follows from slightly more abstract arguments of Adler and Taylor [3, pp. 17–19].
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However, some basic computations might improve understanding of this point: At
every position x 2 D, we have the random variable

fx(w) = w1(1� x)+w2x.

As w1,w2 are independent Gaussian variables, this is a Gaussian variable with ex-
pectation

µ(x) = E( fx(w)) = µ1(1� x)+µ2x

and variance

s2(x) = E(( fx(w)�µ(x))2) = s2
1 (1� x)2 +s2

2 x2.

For the covariance function C : D⇥D ! , we have

C(x,y) = E(( fx(w)�µ(x))( fy(w)�µ(y)))
= E(((w1 �µ1)(1� x)+(w2 �µ2)x)((w1 �µ1)(1� y)+(w2 �µ2)y))
= (1� x)(1� y)E((w1 �µ1)

2)+ xyE((w2 �µ2)
2)

= (1� x)(1� y)s2
1 + xys2

2

because of the independence of w1,w2, i.e. E((w1�µ1)(w2�µ2)) = 0. For s1 =s2,
this coincides with the construction by Pöthkow and Hege [5].

9.5 General Interpolation

We turn now to a realistic interpolation scenario. We consider some closed domain
D ⇢ d . We assume that we are given N positions p1, . . . , pN 2 D. At these po-
sitions, we are given N uncertain v-dimensional values with normal distributions,
say

W i ⇠ Nv(µ i,Ci),8i = 1, . . . ,N

where Ci 2 (v⇥v) denotes the covariances between the dimensions at a single po-
sition. We still assume that the N values are independent. Our interpolation method
is given by N (deterministic) weight functions

fi : D ! ,8i = 1, . . . ,N with fi(p j) = di j

with Kronecker d . This is the typical case in finite element formulations and for
almost all grid based field data in visualization.

We define our probability space via W = N⇥v, Borelalgebra (W) and

⇠ N(µ,C), µ =

0

B@
µ1

...
µN

1

CA , C =

0

B@
C1

. . .
CN

1

CA
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as probability measure. Our uncertain field f is defined as

f : W ! ( v)D, f (w,x) = fw(x) = fx(w) = ( f (w))x =
N

Â
i=1

w ifi(x).

Fixing position x 2 D, we get a random variable

fx : W ! v

that describes the distribution of values at that position as a Gaussian distribution

fx ⇠ N(µ(x),C(x)), µ(x) =
N

Â
i=1

µ jf j(x), C(x) 2 v⇥v,Ckl(x) =
N

Â
i=1

Ci
klf 2

i (x).

Looking at the whole uncertain field again, we have the expectation function

µ : D ! v, µ(x) =
N

Â
i=1

µ jf j(x)

and the covariance function

C : D⇥D ! v⇥v, Ckl(x,y) =
⇢

0 k 6= l
ÂN

i=1 ÂN
j=1 fi(x)f j(y)Ck

i j k = l

because of the independence of wk,wl . It should be noted that the definition of an
interpolation as above and the definition of a covariance function as usually done in
machine learning, see Rasmussen and Williams [7], is actually equivalent, see Adler
and Taylor [3, pp. 17–19].

Finally, we describe the case of dependent data at given N positions. To simplify
notation, we formulate only the scalar case. We consider a closed domain D ⇢ d

and N positions p1, . . . , pN 2 D. At these positions, we are given N uncertain scalar
values with normal distributions

W i ⇠ N(µi,Cii) 8i = 1, . . . ,N

with covariances8

Ci j = E((W i �E(W i))(W j �E(W j))).

The interpolation is again given by N deterministic weight functions

fi : D ! ,8i = 1, . . . ,N with fi(p j) = di j

8 In praxis, the covariances are either given or have to be estimated from several given sample
fields. Obviously, this estimation might be a challenge in its own right as the number of positions
is almost certainly larger than the number of sample fields. Pöthkow et al. [6] made some comments
in this direction.
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with Kronecker d . The interesting point is that the dependence of the uncertain val-
ues typically reduces the number of independent uncertain parameters. Mathemati-
cally, this means that the (symmetric) covariance matrix C has only M <= N inde-
pendent rows. One can find them by principal component analysis9. Let l1, . . . ,lM 2

be the non-zero eigenvalues of C, e1, . . . ,eM 2 N the corresponding eigenvec-
tors. Let L 2 M⇥M be the diagonal matrix of the non-zero eigenvalues l1, . . . ,lM .
We model our probability space via W = M , Borelalgebra (W) and ⇠ N(0,L)
as probability measure. This probability space consists of M independent normally
distributed scalar parameters with mean 0. The uncertain field f is defined as

f : W ! ( v)D, ( f (w))x =
N

Â
i=1

 
µi +

M

Â
k=1

wkek
i

!
fi(x).

The Gaussian distribution at each position x, mean function and expectation function
can be derived from here as before.

9.6 Conclusion

We have shown that stochastic processes provide a suitable mathematical founda-
tion for the definition of uncertain fields in visualization. In the case of given Gaus-
sian distributions, we have demonstrated how the well-known interpolation methods
allow to define Gaussian processes from uncertain field data. We hope that these re-
marks will stimulate and simplify research on the visualization of uncertain field
data. Of course, there is much more to say on the topic that would require more
space than available here. For further reading, we recommend the cited literature
below.
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