HAUPTBEITRAG / ONTOLOGIES AND REASONING

Ontologies and Reasoning
in Enterprise Service Ecosystems

Introduction
The use of ontologies to enable, facilitate, and im-
prove different aspects of enterprise systems is
alluring, since they are a means for modeling a do-
main of interest in a flexible and formal way [9]. This
in turn opens up automatic reasoning possibilities
to infer implicit knowledge or to automate specific
business tasks.

So far, there has been academic interest and early
industrial products, but there are two inhibitors
that prevent the widespread usage of ontologies in
enterprise systems. First, the actual value propo-
sition of ontologies in enterprise systems remains
vague [11,30]. That means, decision makers of-
ten do not have a clear picture of why and when
to apply ontologies in enterprise systems. Second,
many challenges have to be overcome when using
ontologies in enterprise systems. As examples for
such challenges, consider the integration of the
new technology in existing IT landscapes or the
lack of ontology experts. Hence, decision makers
often decide against ontologies and in favor of more
established technologies.

As a response, we provide a rationale for how
ontologies can benefit enterprise systems. The ra-
tionale provides a qualitative argumentation line for
how the technological features of ontologies can be
fruitfully combined to achieve business benefits. We
carefully identify the challenges of using ontologies
in enterprise systems and present two approaches
to tackle (i) the challenge of technical integration of
ontologies in existing enterprise systems and (ii) the
challenge of training existing developers to familiar-
ize them with the new technology. The rationale and
the two approaches are summarized in Sect. “Use of
Ontologies in Enterprise Systems.”

318 Informatik_Spektrum_37_4_2014

Daniel Oberle

The subsequent section gives a concrete example
of the inhibitors and use case for the second ap-
proach. Our research brought forth both a pragmatic
and an ontological scheme for service description for
enterprise ecosystems. Both schemes allow the com-
prehensive description of services in order to enable
communication and trade between ecosystem par-
ticipants. However, the strengths of the pragmatic
scheme are the weaknesses of the ontological scheme
since the pragmatic scheme relies on established
technologies. As a response, our second approach
can be utilized to facilitate the design of both service
description schemes.

The following section provides an example
for the run-time usage of both service descrip-
tion schemes and the first approach. Our research
brought forth a novel way for engineering legally
compliant services. This contribution relies on
a formalized subject matter provided by the two
aforementioned service description schemes each
contributing unique benefits required for a solution.
The coexistence of both schemes is facilitated by our
first approach to tackle the challenge of technical
integration.

Use of Ontologies in Enterprise Systems
Enterprise systems are designed to integrate com-
puter systems that run all phases of an enterprise’s
operations to facilitate cooperation and coordina-
tion of work across the enterprise. The intent is to

DOI 10.1007/500287-014-0785-5
© Springer-Verlag Berlin Heidelberg 2014

Daniel Oberle

SAP Research, Vincenz-Priessnitz-Str. 1,
76131 Karlsruhe

E-Mail: d.oberle@sap.com

Technological § Conceptual
features § Modeling

Agile
Schema
Develop-

ment

Benefit for
enterprise systems

Interaction

Practices

Technological feature is of . central . major . medium . minor importance for benefit for enterprise systems

Fig. 1 Technological, value-adding features of ontologies & reasoning lead to benefits for enterprise systems (generalized version

from [17, Fig. 3])

integrate core business processes (e. g., sales, ac-
counting, finance, human resources, inventory, and
manufacturing) [10].

An argumentation line for why and when to ap-
ply ontologies can foster their widespread usage in
enterprise systems. Such a rationale is further dis-
cussed in Sect. “Rationale” and the main subject of
our contribution in [17].

Besides, many challenges are in the way of using
ontologies in enterprise systems. The often complex
boundary conditions in an enterprise setting are an
example for such challenges. Therefore, our research
focussed on tackling some of the challenges (cf.
Sect. “Tackling the Challenges”). The first approach
tackles the challenge of having to train developers
to enable them to work seamlessly with ontolo-
gies in their familiar environment [26]. The second
approach tackles the challenge of technically inte-
grating the new technology into existing enterprise
systems [23].

Ontologies and reasoning inherit from several pre-
cursory technologies, e. g., logics, theorem provers,
deductive databases, Al, or semantic nets. There-
fore, many of the technological features are not
unique but are also offered by related technologies.
In [17, Sect. 3], we identify the following techno-
logical features of ontologies (depicted as columns in
Fig. 1):

Conceptual modeling: for capturing a universe of
discourse with intuitive modeling primitives
(classes, relations, instances).

Agile schema development: for evolving an ontology
at run time both on the instance and schema
level.

Direct interaction: for creating, changing, and pop-
ulating ontologies by generic tools.

Reuse: for sharing the knowledge in an ontology
between users.

Best practices: for improving design via founda-
tional ontologies, design patterns, and quality
criteria.

Web compliance: for publishing (RDFS [4],

OWL [15]), querying (SPARQL [24]), and anno-
tating (SA-WSDL [s5], SA-REST [8], RDFa [1])
ontological information in the Web.

Formality: for having a sound basis of the modeling
language.

Reasoning: for subsumption and consistency check-
ing as well as instance classification and retrieval
by inference engines.

The technological features of ontologies and reason-
ing can be applied to benefit enterprise systems as
shown by the rows in Fig. 1. The figure represents

a generalization, i. e., several pilots, prototypes, and
products were analyzed to learn which technological
features are typically applied to achieve benefits for
enterprise systems:

Informatik_Spektrum_37_4_2014 319

Innovative business scenarios: The technological
feature of Web compliance allows information
to be published and queried world-wide. A high
degree of reuse lets the ontology act as a glob-
ally distributed schema and database. This,
paired with the feature of conceptual modeling,
opens up hitherto impossible business scenarios
(a concrete example is given further below).

Increased productivity of information workers: The
starting point for obtaining this benefit is the
integration of all relevant information in a way
that can easily be consumed by the informa-
tion worker (conceptual modeling). The second
crucial technological feature is direct interac-
tion, 1. e., the user-friendly way of viewing and
editing. Most examples in this category require
reuse since a group of information workers typ-
ically cooperates. Some examples also exploit
reasoning, and consequently rely on the feature
of formality.

Improved enterprise information management:
Conceptual modeling is applied here for an easy-
to-understand view of enterprise information.
To ensure sustainable modeling, building the
conceptual model with best practices can help to
capture enterprise information with particular
high quality. Also, modeling a domain once and
its enterprise wide reuse is one of the sought-
after goals. Agile schema development allows to
access and evolve the ontology over time accord-
ing to the enterprise’s representation needs. Web
compliance avoids information silos and enables
integration with information on the Web. Finally,
formality can help to counter ambiguities when
modeling enterprise information.

Increased productivity of software engineering:
Conceptual modeling of a relevant domain is the
prerequisite for obtaining this benefit. Formal-
ity and reasoning help to automate specific task
in the realm of software engineering. In some
cases, reuse is required and Web compliance can
help to annotate existing resources, e. g., Web
service descriptions.

As a concrete example for achieving the benefit of
innovative business scenarios, consider the British
Broadcasting Corporation (BBC). The BBC pub-
lishes large amounts of content online, such as
text, audio, and video about programmes or music.
The BBC Programme ontology is used to provide

320 Informatik_Spektrum_37_4_2014

ONTOLOGIES AND REASONING IN ENTERPRISE SERVICE ECOSYSTEMS

machine-readable representations enabling richer
applications on top of the BBC’s data. The system
gives the BBC the flexibility and a maintainability
benefit: the web site becomes the BBC’s APL The
ontological representations allow third-party devel-
opers to use the BBC’s data to build and monetize
new applications [14].

The BBC Programme ontology is an intuitive
conceptual model allowing third-party developers to
easily understand the BBC’s data. This technological
feature of conceptual modeling paired with the fea-
ture Web compliance is of central importance here.
Ontological content descriptions are published and
interlinked across the BBC’s websites according to
W3C Semantic Web recommendations such as RDFS
or OWL. In addition, the technological feature of
reuse is of importance since the BBC Programme on-
tology extends the already existing Music Ontology
and FOAF vocabulary.

The use of ontologies in enterprise systems is also
hindered by challenges which we identify in [17]. The
challenges can be aligned on an axis that moves from
technology-agnostic to ontology-specific (cf. Fig. 2).
The first challenge concerns the often tedious techni-
cal integration. In the case of the BBC example above,
ontology mappings as well as an ontology store have
to be integrated with the existing landscape of BBC’s
enterprise system.

The second challenge concerns different use
cases that might require different mappings, stores,
and reasoners, however. In this case, the challenge of
technical integration might have to be faced » times.

As a consequence, the third challenge is to arrive
at a positive overall cost-benefit ratio. The hope is
that modeling a domain once in an ontology will
suffice for all use cases. However, different use cases
typically have different representation needs, i.e.,
the modeling depends on the use case (challenge 4).
Correspondingly, the BBC Programme ontology
might not suffice for the representation needs of
all new applications envisioned by third-party
developers.

Since one hardly finds metrics or scientific
methods to prove the advantages of ontologies, how
to measure the benefits? represents the fifth chal-
lenge. Finally, the training of existing employees
or the acquisition of ontology experts is difficult
for every new technology. BBC first needed to ac-

Technology agnostic
challenges

Ontology-specific
challenges

i i
Challenge 1 Challenge 3:

Technical Integration Cost-benefit ratio
Challenge 2:

How to measure

the benefits?
Challenge 4:

i
Challenge 5:

Fig. 2 Overview of
challenges aligned on an
axis that moves from
technology agnostic to

n x Technical Modeling depends Chﬁ;ei:iaz & ontology-specific challenges
Integration ? on use case (derived from [17, Fig. 4])
quire ontology expertise either by training existing 3 N g‘
developers or by hiring new ones. x § 8 M
In the following we discuss our approaches to S 3 a
counter two of the challenges. Our first approach | t |
counters the challenge of training by enabling soft- vl | T | Wyl
. . Simplicity Preservation
ware engineers to develop enterprise systems on fl] | | |
the basis of an ontology in their familiar environ- . l bl J‘
ment [26]. The second addresses the challenge of g-‘; § § 5 ‘?’
technical integration by mapping between pragmatic 2 §< 3
© <

class models and ontologies [23]. Recommendations
of how to deal with the remaining challenges are
discussed in [17, Sect. 7].

Tackling “Training:” An Adjustable Transformation
from OWL to Ecore. In the BBC example, develop-
ers have to map media content residing in BBC’s
established enterprise systems to ontological rep-
resentations and publish the latter on Web sites.

In an ideal case, the developer is supported in the
authoring of and programmatic access to the BBC
Programme ontology by his or her familiar develop-
ment environment (e. g., Eclipse). The development
environment should make working with ontologies
as seamless as possible, especially if the developer is
unfamiliar with ontologies.

At first sight, the task of incorporating ontolo-
gies seems straightforward, since the main modeling
primitives (classes and relations) in common soft-
ware engineering languages, such as UML or its
Eclipse-specific variant Ecore [29], and ontology
languages, such as W3C OWL [15], are similar. At
second sight, there are less similarities between
both languages, which makes the transformation
intricate. For example, Ecore relies on the unique
name assumption unlike OWL. In addition, this
lack of similarities opens configuration options for
transforming OWL ontologies.

Therefore, we contribute a unidirectional trans-
formation from OWL to the modeling language
Ecore at design time (cf., [26]). The transformation

Fig. 3 Slider metaphor for the adjustable transformation from
OWL to Ecore [26, Fig. 3]

allows developers to “import” an existing ontology,
such as the BBC Programme Ontology, into Eclipse.
Once imported, the developer can utilize all of the
familiar Ecore plug-ins to manage the conceptual
model.

Because of the configuration options, we allow
the developer to adjust the transformation between
the two extremes of a result simple to understand
or a result that preserves as much as possible of
the source ontology. Hence, the realization of our
transformation features two “sliders” as depicted in
Fig. 3.

The upper slider concerns the TBox of the
source ontology which basically contains classes,
relations, and axioms. The minimal transformation
is to capture only classes and relations (position
TBox). The position customized TBox allows the
handling of equivalent classes in OWL and the cre-
ation of helper classes to represent them. At position
TBox + OCL, the transformation tries to preserve
as much of the ontology as possible by expressing
OWL axioms in the Object Constraint Language of
UML/Ecore.

The lower slider concerns the ABox which con-
tains concrete instances of classes and relations. It
is possible to disregard the ABox completely (pos-
ition No ABox), to transform instances in general

Informatik_Spektrum_37_4_2014 321

(ABox), to handle also equivalent instances (cus-
tomized ABox), and to preserve as much as possible
(ABox + OCL).

Tackling “Technical Integration:” Mapping Prag-
matic Class Models to Reference Ontologies. The
challenge of technical integration concerns the
handling of software components such as ontol-
ogy stores or mappings in existing and established
enterprise systems. Ontologies often play the role
of a reference model, i. e, a generic, commonly
agreed upon conceptual model of a domain. To this
end, modeling decisions are taken in a way such
that the intended meaning of domain terms is cap-
tured as precisely as possible. One goal of reference
ontologies is to facilitate and enable information
integration across enterprise systems. Indeed, the
BBC Programme ontology acts as a reference model
to facilitate information exchange between BBC
and third-party enterprise systems to enable new
applications.

However, existing enterprise systems on the
side of the third party are often based on database
schemas or class models that deviate from the ref-
erence ontology although they potentially capture
the same domain. The reason is that class models are
task-specific, with the focus on an efficient imple-
mentation of an application. In contrast to reference
ontologies, modeling decisions are geared towards
a pragmatic and efficient model. Due to those dif-
ferences, one often faces the situation where class
models and reference ontologies are incompatible in
the sense that a 1:1 mapping between them does not
exist.

Since the reference ontology is typically de-
signed ex post, i. e., long after enterprise systems
have been put in place, the enterprise systems’
pragmatic class models have to be mapped to such
a reference ontology. Mapping between the BBC Pro-
gramme ontology and a pragmatic class model in
the enterprise system of a third party is typically
a non trivial task which requires a flexible mechan-
ism to cope with all kinds of disparities between the
two kinds of models. Further, the mapping has to
be bidirectional, since the third party’s enterprise
system has to send and receive messages adhering
to the BBC Programme ontology. In addition, the
mapping process itself must happen at run time and
on the instance level for coping efficiently with the
disparities between reference ontology and class

322 Informatik_Spektrum_37_4_2014

ONTOLOGIES AND REASONING IN ENTERPRISE SERVICE ECOSYSTEMS

model. Finally, the established enterprise systems
cannot be touched in most cases. That means, the
mapping mechanism has to be realized in a non
intrusive way.

In [23], we contribute a novel approach to facil-
itate the technical integration by mapping between
reference ontologies and class models. As required
for integrating existing enterprise systems, the ap-
proach is non intrusive, i. e., it can be implemented
without having to change the class model. The
approach is flexible, i. e., it does not rely on 1:1 map-
pings between the class model and the reference
ontology.

Instead of using static mappings between the
class model and the ontology, our approach uses
declarative mapping instructions. For each class
of the pragmatic model, mapping instructions are
written that explain the classes (or other constructs)
of the class model in terms of the reference ontology.
Formalizing the mapping instructions is performed
at design time and by an expert. The mapping in-
structions are processed by a mapping execution
engine. For each enterprise system, two separate
mapping execution engines are established: one
for mapping from the class model to the reference
ontology, and one for mapping from the reference
ontology to the class model.

Service Description for Enterprise

Ecosystems
The following section gives a concrete example of the
inhibitors and use case for our adjustable transform-
ation from OWL to Ecore. The example concerns
enterprise service ecosystems where several parties
have a share in delivering a service. A good ex-
ample is third-party logistics services: in order to
transport a good, several carrier services might be
combined with customs clearing and warehousing.
Each individual carrier, the customs clearance, and
warehousing might be different companies with dif-
ferent service offerings. These constitute a service
ecosystem where it is the task of a third-party logis-
tics provider (3PL) to combine offerings to a service
bundle meeting the specific needs of a customer.

This situation requires a shared and compre-
hensive description of services in order to enable
information exchange between ecosystem partic-
ipants. The service description has to take into
account business, operational, and technical aspects
of a service. For example, the description needs to

Adjustable Transformation
from OWL to Ecore

’:

foundation

service level
partlclpants technlcal
prlcmg functlonal
legal % ------------------ 1 service F —————)‘ |nteract|on ‘

USDL (Ecore)

capture the price plan, licensing issues, function-
ality, service level agreements, or the interaction
protocol. The description should be (i) normative
for all participants, (ii) formal in order to be ma-
chine processable, and (iii) serializable in XML for
use in the Web. This allows ecosystem participants to
exchange relevant information uniformly between
their corresponding enterprise systems, and, thus,
lower the integration costs.

As a response, our research approached service
description for enterprise ecosystems both as a refer-
ence ontology and as a pragmatic class model. The
first scheme is the Service Ontology (cf. [19]) and
the second scheme is the Unified Service Description
Language (USDL) (cf. [18]).

The coexistence of both schemes is a direct
consequence of the inhibitors of ontologies and
reasoning. The Service Ontology leverages techno-
logical features of OWL and is afflicted with several
challenges of adopting the new technology. Vice
versa, the strengths of USDL are the weaknesses of
the Service Ontology since USDL relies on the more
established Ecore language. Our adjustable trans-
formation from OWL to Ecore facilitates the design of
both service description schemes: aspects modeled
in OWL can be imported into Eclipse. This avoids
manual remodeling of every aspect in USDL from
scratch.

Service Ontology (OWL)
Fig. 4 The design of USDL [18, Fig. 5] and Service Ontology [19, Fig. 2] is facilitated by the adjustable transformation from OWL to Ecore

Our first scheme for a comprehensive service de-
scription is the Service Ontology. The Service
Ontology allows each provider to describe differ-
ent facets of their services as instances of predefined
classes and relations. Thus, the third-party logistics
provider could rely on concise ontological descrip-
tions of carrier, custom clearance, and warehousing
service to create a desired bundle.

The Service Ontology is depicted by a pyra-
mid on the right hand side in Fig. 4. The pyramid
is a metaphor for the number of classes and relations
that increases from top to bottom. The Service On-
tology is specified in OWL and consists of several
modules. The modules are depicted as parts of the
pyramid and can be divided into four layers.

The Upper Level consists of a concise founda-
tional ontology which (i) is used as a modeling
starting point because it provides a basic set of
generic classes and relations valid in any domain.
Using a foundational ontology as a modeling basis
means relating core classes and relations to some
proposed invariant categories of human cognition.
What is typically gained is an increased understand-
ing of one’s own ontology as well as a cleaner design.
(ii) The foundational ontology helps defining gen-
eral ontology design patterns as best practices for
recurring modeling needs. All this represents one

Informatik_Spektrum_37_4_2014 323

reason for choosing an ontology to capture a ser-
vice description (i. e., the technological feature of
best practices). This level introduces fundamental
classes, such as Object or Event, a whole taxonomy
of specializations, as well as basic relations, such as
part-of.

Several Core Modules are built around the Core
Service Description module, which captures infor-
mation common to every service (e. g., information
about the service provider, quality of service, etc.).
In addition, different aspects of a service description
(legal, business model, technical, rating, UI, etc.) are
placed in separate modules and linked to the classes
belonging to the Core Service Description module.
So far, several core modules have been designed to
a mature state and published in diverse literature:

Core Service Description Module: Introduces ne-
cessary information common to every service
and independent of a specific industry or aspect,
e.g., classes such as Service, Service Provider,
Service Action, etc., further discussed in [7].

Pricing Module: Allows to capture the complete
Price Plan of a service with its Price Components
and Price Levels (cf., [12,13]).

Legal Module: Formalizes service licenses accord-
ing to German or US copyright law (discussed
in [3]).

Classification Module: Ontological representations
of existing classification schemes, such as UN-
SPSC or eClass [16, Sect. 10].

Documentation Module: Covers organizational
knowledge including, e. g., knowledge about
which service is described in which docu-
ment [16, Sect. 11].

Idea Module: Its task is to represent information
about the service engineering phase as discussed
in [27].

Rating Module: Captures ratings of customers after
consumption of a service [16, Sect. 9].

Industry Modules (e. g.,logistics, automotive, health-
care, or public services modules) can be modeled by
exploiting the aforementioned ontology modules.
The core knowledge specified in the Core Service
Description module and adjacent aspect-related core
modules can be specialized for specific industries.
In our example, a logistics module would intro-
duce Logistic-Service as a subclass of Service of the
Core Service Description module. Logistic-Service

324 Informatik_Spektrum_37_4_2014

ONTOLOGIES AND REASONING IN ENTERPRISE SERVICE ECOSYSTEMS

could be further specialized in Road Transport,
Airfreight, etc.

Finally, concrete logistics providers are able to
describe their services as instances of the classes and
relations of the modules at run time. For example,
UPS would instantiate the class Road Transport of
the logistics industry module together with a con-
crete price plan, license description, and so on. The
instances are depicted as a mesh below the pyramid
and can potentially be distributed across the Web
according to the principles of Linked Data. The latter
represents a second reason why an ontology was
chosen for capturing a service description (i. e., the
technological feature Web compliance).

Although the Service Ontology provides benefits
by leveraging the technological features best prac-
tices and Web compliance, the challenges of training
and technical integration prevent a successful and
widespread usage.

Therefore, our second scheme for a comprehen-
sive service description, viz., USDL, was created in
parallel. The schema of USDL is modeled with the
more common Eclipse Modeling Framework and
its UML dialect called Ecore [29]. Thus, it relies on
well established tooling and is accessible to the vast
majority of software engineers. USDLs structure is
depicted on the left side of Fig. 4 and basically covers
the Core Modules of the Service Ontology, where
each aspect (legal, pricing etc.) has a dedicated UML
package. In essence, each UML package consists of
one comprehensive class model with associations to
class models in other packages.

As a consequence, several aspects were mod-
eled twice at design time: once with ontological
analysis applying best practices and once as a prag-
matic class model. In order to avoid this double
effort and facilitate the design of both schemes,
our adjustable transformation from OWL to Ecore
can be used. Thus, the knowledge can be cap-
tured and maintained in the more expressive
Service Ontology and transformed to USDL in
widespread software engineering environments
when required.

Engineering Legally Compliant Services
The following section gives an example for the usage
of the Service Ontology and USDL at run time. The

Formalization of
Legal Concepts
and Norms
Mapping
Pragmatic
Class Models
to Reference
Ontologies

Prerequisite

Legal Expert

Formalization of the
Subject Matter

USDL Documents

Semi-automated
Legal Reasoning

Prerequisite

Service Ontology

Service Engineering Environment

Legal Advice
Fig. 5 Overview of the

framework for engineering
compliant services adapted
from [21, Fig. 2]. The coexis-
tence of USDL and the Service
Ontology is facilitated by our
approach for mapping

Service Engineer

pragmatic class models to
reference ontologies

example concerns service ecosystems in the Web,
where service value chains can be created ad hoc,
especially with fully automated, software-based ser-
vices. As an example, consider the Google Maps and
Facebook Web services. A third party can mash up
both services to provide a value-adding ‘person loca-
tor app’ to track and display the location of Facebook
friends.

The flexibility and volatility of such dynam-
ically created service value chains is powerful,
yet it also creates new threats. In particular, the
prevailing paradigm of checking the legal com-
pliance of the individual services before they are
ever used is no longer possible. The unanticipated
combination of Google Maps and Facebook ser-
vices by a third party might indeed violate data
privacy laws. For example, the German Federal Data
Privacy Act (FDPA) prohibits the transfer of per-
sonal data (potentially the Facebook ID to Google)
by a third party without consent by the user in
most cases.

As a reaction to this paradigm shift, we con-
tribute a solution for enabling service engineers to
ensure legal compliance by design in [21]. We claim
that a technology-supported framework must be
established to convey and manifest legal require-
ments in software-based services as early as possible.
The framework semi-automatically advises service
engineers — who are usually legal laymen - about
legal reasoning. This support is integrated in the

development environment of the service engineer
(e.g., [28]). An overview of the framework is given
in Fig. 5.

The framework relies on a formalized subject
matter provided by USDL descriptions. Yet, an
ontological representation of the subject matter
is required to enable legal reasoning. Conse-
quently, or approach for mapping pragmatic class
models to reference ontologies is required to facil-
itate the coexistence of both service description
schemes.

The prerequisite for our framework is the for-
malization of legal concepts and legal norms of

a given statutory provision, e. g., the FDPA, in an
ontology (cf. also Fig. 5). The task of formalizing
legal concepts benefits from the technological fea-
tures conceptual modeling and best practices which
help to capture the intended meaning of legal con-
cepts. As an example, consider the legal concept of
Personal Data in the FDPA below. A legal expert has
to capture its main properties, viz., PersonalData
subclass of Information, concerns Circumstances and
about Natural Person.

Section 3 FDPA: Further definitions

(1) “Personal data” shall mean any information
concerning ... circumstances about a ... natural
person.

Informatik_Spektrum_37_4_2014 325

The task of formalizing legal norms leverages the
technological features of formality and reasoning.'
The structure of a legal norm often takes the form of
an “if ... then” rule as demonstrated by Sect. 4 FDPA
below. Ontology languages usually allow to represent
and reason with such rules.

Section 4 FDPA: Lawfulness of data collection,
processing and use

(1) The collection, processing and use of per-

sonal data shall be lawful only if permitted or
ordered by this act ... or if the data subject has
provided consent.

Consequently, the formalized legal concepts (writ-
ten in sans serif font) can be assembled by logical
operators (AND, OR, —) resulting in the formalized
legal norm below. This allows to capture the rule-like
nature of a legal norm in the same language as the
formalized legal concepts.

((Collection(X) OR Processing (X) OR Use (X))

AND performedUpon (X,Y) AND Personal Data(Y))
AND

(Permission(P) OR Order (P)) AND givenFor(P,X)))
OR

(Consent(C) AND Data Subject (D) AND about(Y,D)
AND gives(D,C) AND permits(C,X))

N

Lawfulness(L) AND givenFor (L,X)

Another prerequisite for the framework is the for-
malization of the subject matter (cf. also Fig. 5).
In legal terms, the subject matter is the real-world
situation which is under consideration. In our case,
the subject matter can be formalized by our service
description schemes.

It is expected that USDL becomes the lingua
franca for service descriptions in the Web, since it is
a pragmatic approach relying on a well-established
and widespread modeling language and infrastruc-
ture. Therefore, the main source for a formalized
subject matter will be USDL documents. Yet, the
subject matter must also be represented in an
ontology language to facilitate the legal reason-
ing process described in the subsequent section.
Therefore, our framework internally relies on ser-

A norm s typically represented by a paragraph, section, or sentence in
a provision.

326 Informatik_Spektrum_37_4_2014

ONTOLOGIES AND REASONING IN ENTERPRISE SERVICE ECOSYSTEMS

vice descriptions given by means of the Service
Ontology.

The coexistence of USDL and the Service On-
tology is facilitated by our approach for mapping
pragmatic class models to reference ontologies as de-
picted in Fig. 5. It allows to flexibly represent USDL
documents as instances of the Service Ontology at
run time.

Legal reasoning is a complex intellectual process,
so far only executable manually by a legal expert
and involves basically two steps. In the first step,
the legal expert identifies the legal consequence
he or she wishes to attain. In our example, this
would be the legal consequence of “lawfulness”
of the abovementioned transfer of Facebook IDs.
This determines a limited set of norms from which
to start, namely Sect. 4 FDPA in our case. In turn,
the legal expert has to look for further norms that
influence the desired legal consequence. Thus, the
legal expert mentally constructs a norm graph that
enables him or her to decide whether the origi-
nally intended legal consequence can be reached
or not.

This step can be automated by an inference
engine based on the formalized legal norms. In
our example, the legal consequence of “lawful-
ness” would represent the primary norm in our
graph. Note that further formalized legal norms
are required to infer whether lawfulness is given.
For example, Consent requires another set of for-
malized legal norms that specify whether the
consent is effective according to Sect. 4a (1) FDPA
and so on.

The second step requires the legal expert to
legally subsume an actual subject matter under the
legal concepts of the norm graph. The legal expert
tries to translate and align elements of the subject
matter to legal concepts. As an example, the legal ex-
pert has to answer whether Facebook IDs represent
personal data as defined in Sect. 3 (1) FDPA. This le-
gal subsumption process cannot be fully automated
since it requires human interpretation of the individ-
ual subject matter. A Facebook ID can be personal
data if it allows to identify the corresponding natural
person with some effort. This may vary depending
on the actual Facebook ID and requires the legal
expert to check accompanying legal documents or
earlier decisions of legislation.

In the prevailing paradigm, the third party, which
is about to mash up the Google Maps and Facebook
services, would have to consult a legal expert to per-
form the legal reasoning steps. This is both time and
cost intensive. Hence, the challenge is to enable the
service engineer - who usually is a legal layman - to
perform the legal reasoning steps.

Our approach is to automate the legal subsump-
tion process as much as possible. For example, the
legal concept of Age can be subsumed automatically
since it does not require further interpretation. For
all other legal concepts, a wizard guides the service
engineer by giving explanations and displaying ac-
companying legal documents, such that a layman
is enabled to make the bulk of the decisions. If the
service engineer is not capable of making such a de-
cision, there still is the possibility to consult a legal
expert.

If the legal subsumption process can be com-
pleted and the desired legal consequence is not
attained, the service engineer is advised about how
to react. For example, the user of the ‘person locator
app must be informed about the pending transfer of
his Facebook ID and must provide explicit consent.

Conclusion and Outlook
In enterprise settings, decision makers often have
a hard time deciding in favor of ontologies as op-
posed to more established technologies. Therefore,
our rationale for why and when to apply ontolo-
gies can foster the widespread usage of ontologies
in enterprise systems. In addition, our research con-
tributes an adjustable transformation from OWL
to Ecore as well as an approach for mapping prag-
matic class models to reference ontologies. Both help
to tackle challenges when adopting ontologies in
enterprise systems. We have demonstrated the use-
fulness of both approaches for the Service Ontology
and USDL as well as for the task of engineering
compliant services. All of them represent scientific
contributions in their own right.

Appendix

This article represents a summary of my cumulative
habilitation treatise consisting of [17-19, 21, 23, 26].
As can be seen in the bibliography, several coauthors
have contributed to the individual publications as

follows: Although I have been the initiator and driver
behind [26], the work was executed in-depth by Tir-
dad Rahmani, who has been a researcher at that time
and in turn supervised the student Marco Dahms.
Our publication in [23] represents a major part of
Heiko Paulheim’s dissertation (cf., [22]). However, I
have been responsible for further developing, gen-
eralizing, and positioning the approach in the larger
context of software engineering.

USDL required more than a dozen man years by
an interdisciplinary team of colleagues at different
SAP Research locations. I have been responsible for
USDL from May 2010 to December 2011. Besides
acting as product manager, my main contribution
during this time span was to scientifically pos-
ition USDL resulting in [18] and [2]. The efforts
and overall design of the Service Ontology have
been conceived and coordinated by me as docu-
mented in [19] (an English translation of the German
Wirtschaftsinformatik journal [20]). However, simi-
lar to USDL, several colleagues contributed several
modules to the ontology, e. g., [3,27]. I have initi-
ated and driven further development of the central
ontology module (cf. [7] - authors are listed in al-
phabetical order) based on Ferrario’s and Guarino’s
seminal work in [6]. In addition, I have been con-
tributing to the Pricing Module [12] by supervising
master student Tom Kiemes.

The original ideas of engineering legally com-
pliant services stem from Dr. Oliver Raabe at the
KIT. Contributions were worked out in close cooper-
ation with Richard Wacker, Christian Baumann, and
Christian Funk, who were PhD-students at that time.
Oliver Raabe acted as lead and supervisor for all
aspects of legal science. I acted as lead and super-
visor for all aspects concerning computer science.
Our main contribution in [21] is a peer-reviewed
fragment of [25].

Acknowledgements
I would like to express my gratitude to all my coau-
thors, supervisors, as well as the reviewers of this
document: Alistar Barros, Christian Baumann,
Nadeem Bhatti, Saartje Brockmans, Marco Dahms,
Felix Drefs, Jiirgen Ebert, Roberta Ferrario, Andreas
Friesen, Christian Funk, Nicola Guarino, Steffen
Heinzl, Pascal Hitzler, Christian Janiesch, Tom
Kiemes, Uwe Kylau, Jens Lemcke, Michael Niemann,
Heiko Paulheim, Roland Plendl, Florian Probst,
Oliver Raabe, Tirdad Rahmani, Sebastian Rudolph,

Informatik_Spektrum_37_4_2014

327

{ONTOLOGIES AND REASONING IN ENTERPRISE SERVICE ECOSYSTEMS

Ansgar Scherp, Steffen Staab, Rudi Studer, York Sure,
Susan Marie Thomas, and Richard Wacker.

Funding
The work presented here was funded by the Ger-
man Federal Ministry of Economy and Technology
(BMWi) under the THESEUS/Texo project as well as
the Smarter Privacy project.

References

1. Adida B, Birbeck M, McCarron S, Pemberton S (2008) RDFa in XHTML: Syntax
and processing. Recommendation, W3C, http://www.w3.org/TR/rdfa-syntax/,
22.8.2013

2. Barros A, Oberle D (eds) (2012) Handbook of Service Description: USDL and its
Methods. Springer, New York

3. Baumann C, Loés C (2010) Formalizing copyright for the internet of services. In:
Kotsis G, Taniar D, Pardede E, Saleh |, Khalil Ibrahim | (eds) iiWAS2010 — The
12th International Conference on Information Integration and Web-based
Applications and Services, 8-10 November 2010, Paris, France, ACM, pp 714-721

4. Brickley D, Guha RV (2004) RDF vocabulary description language 1.0: RDF Schema.
Recommendation, W3C, http://www.w3.org/TR/rdf-schema/, 25.2.2014

5. Farrell J, Lausen H (2007) Semantic annotations for WSDL and XML Schema. Rec-
ommendation, W3C, http://www.w3.org/TR/sawsdl/, 28.8.2007

6. Ferrario R, Guarino N (2008) Towards an ontological foundation for services sci-
ence. In: Domingue J, Fensel D, Traverso P (eds) Future Internet — FIS 2008, First
Future Internet Symposium, FIS 2008, Vienna, Austria, September 29-30, 2008,
Revised Selected Papers, vol 5468 of Lecture Notes in Computer Science, Springer,
pp 152-169

7. Ferrario R, Guarino N, Janiesch C, Kiemes T, Oberle D, Probst F (2011) Towards an
ontological foundation of services science: the general service model. In: Bern-
stein A, Schwabe G (eds) 10th International Conference on Wirtschaftsinformatik,
16-18 February 2011, Zurich, Switzerland, vol 2, pp 675-684, Lulu.com

8. Gomadam K, Ranabahu A, Sheth A (2010) SA-REST: Semantic annotation of web
resources. Member submission, W3C, http://www.w3.org/Submission/
SA-REST/, 5.4.2010

9. Guarino N, Oberle D, Staab S (2009) What is an ontology? In: Staab S, Studer R
(eds) Handbook on Ontologies, Handbooks on Information Systems, 2nd edn.
Springer, pp 1-17

10. Gartner Inc. (2004) The Gartner glossary of information technology acronyms and
terms

11. Inmon B (2007) The semantics mystery. BeyeNETWORK, Article no. 4605,
http://www.b-eye-network.com/print/4605, 7.6.2007

12. Kiemes T, Oberle D (2010) Generic modeling and management of price plans in
the internet of services. In: Fahnrich K-P, Franczyk B (eds) Informatik 2010: Ser-
vice Science — Neue Perspektiven fiir die Informatik, Beitrage der 40. Jahresta-
gung der Gesellschaft fiir Informatik e.V. (G), Band 1, 27.9.-1.10.2010, Leipzig,
LNI, vol 175, GI, pp 533-538

13. Kiemes T, Oberle D, Novelli F (2010) Towards a reusable and executable pricing
model in the internet of services. In: Kotsis G, Taniar D, Pardede E, Saleh I, Khalil
Ibrahim | (eds) iiWAS2010 — The 12th International Conference on Information

328 Informatik_Spektrum_37_4_2014

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

Integration and Web-based Applications and Services, 8-10 November 2010,
Paris, France, ACM, pp 722-729

. Kobilarov G, Scott T, Raimond Y, Oliver S, Sizemore C, Smethurst M, Bizer C, Lee R

(2009) Media meets semantic web — how the BBC uses DBpedia and linked

data to make connections. In: Aroyo L, Traverso P, Ciravegna F, Cimiano P, Heath T,
Hyvénen E, Mizoguchi R, Oren E, Sabou M, Paslaru Bontas Simperl E (eds) The Se-
mantic Web: Research and Applications, 6th European Semantic Web Conference,
ESWC 2009, Heraklion, Crete, Greece, 31 May—4 June 2009, Proceedings, Lecture
Notes in Computer Science, vol 5554. Springer, pp 723-737

. McGuinness DL, van Harmelen F (2004) OWL Web Ontology Language Overview.

Recommendation, W3, http://www.w3.0rg/TR/owl-features/, 10.2.2014

. Oberle D (2010) Service ontology final report. Deliverable D.TEX0.9.3.2b, BMWi,

Theseus Programme, Use Case Texo

. Oberle D (2013) How ontologies benefit enterprise applications. Semantic Web

Journal, DOI: 10.3233/SW-130114, http://iospress.metapress.com/content/
k16n012507037044/

. Oberle D, Barros A, Kylau U, Heinzl S (2013) A unified description language for

human to automated services. Information Systems 38(1):155-181

. Oberle D, Bhatti N, Brockmans S, Niemann M, Janiesch C (2009) Countering ser-

vice information challenges in the internet of services. Business & Information
Systems Engineering 1(5):370-390

Oberle D, Bhatti N, Brockmans S, Niemann M, and Janiesch C (2009) Effiziente
Handhabung von Service Informationen im Internet der Dienste. Wirtschafts-
informatik 5:429-452

Oberle D, Drefs F, Wacker R, Baumann C, Raabe O (2012) Engineering compliant
software: advising developers by automating legal reasoning. SCRIPTed 9(2):280—
313

Paulheim H (2011) Ontology-based Application Integration. Springer

Paulheim H, Oberle D, Plendl R, Probst F (2019) An architecture for information
exchange based on reference models. In: Sloane AM, ABmann U (eds) Software
Language Engineering — 4th International Conference, SLE 2011, Braga, Portugal,
3—4 July 2011, Revised Selected Papers, Lecture Notes in Computer Science, vol
6940. Springer, pp 160-179

Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. Recom-
mendation, W3C, http://www.w3.org/TR/rdf-sparql-query/, 15.1.2008

Raabe O, Wacker R, Oberle D, Baumannn C, Funk C (2012) Recht ex machina: For-
malisierung des Rechts im Internet der Dienste. Springer, Heidelberg

Rahmani T, Oberle D, Dahms M (2010) An adjustable transformation from OWL to
Ecore. In: Petriu DC, Rouquette N, Haugen @ (eds) Model Driven Engineering Lan-
guages and Systems — 13th International Conference, MODELS 2010, Oslo,
Norway, 3-8 October 2010, Proceedings, Part Il, Lecture Notes in Computer
Science, vol 6395. Springer, pp 243-257

Riedl C, May N, Finzen J, Stathel S, Kaufman V, Krcmar H (2009) An idea ontology
for innovation management. Int J Semantic Web Inf Syst 5(4):1-18

Scheithauer G, Voigt K, Bicer V, Heinrich M, Strunk A, Winkler M (2009) Integrated
service engineering workbench: service engineering for digital ecosystems. In:
Chbeir R, Badr Y, Kapetanios E, Traina AJM (eds) MEDES '09: International ACM
Conference on Management of Emergent Digital EcoSystems, Lyon, France, 27—
30 October 2009. ACM, pp 446-449

Steinberg D, Budinsky F, Paternostro M, Merks E (2009) EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley

White A (2009) Semantic web moving ever close to the ‘semantic enterprise’?
Gartner Blog Network, http://blogs.gartner.com/andrew_white/2009/04/30,
30.4.2009

http://www.w3.org/TR/rdfa-syntax/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/sawsdl/
http://www.lulu.com
http://www.w3.org/Submission/SA-REST/
http://www.w3.org/Submission/SA-REST/
http://www.b-eye-network.com/print/4605
http://www.w3.org/TR/owl-features/
http://iospress.metapress.com/content/k16n012507037044/
http://iospress.metapress.com/content/k16n012507037044/
http://www.w3.org/TR/rdf-sparql-query/
http://blogs.gartner.com/andrew_white/2009/04/30

	Introduction
	Use of Ontologies in Enterprise Systems
	Rationale
	Tackling the Challenges

	Service Description for Enterprise Ecosystems
	The Service Ontology
	The Unified Service Description Language (USDL)

	Engineering Legally Compliant Services
	Formalization of Legal Concepts and Norms
	Formalization of the Subject Matter
	Semi-automated Legal Reasoning
	Legal Advice

	Conclusion and Outlook
	Appendix
	Personal Contributions

	Acknowledgements
	Funding
	References

