
The SymbolicData Geometry Collectionand the GeoProver Packageshttp://www.symbolicdata.orgHans-Gert Gr�abeDepartment of Computer ScienceUniversity of Leipzig, Germanygraebe@informatik.uni-leipzig.deFebruary 22, 20021 Introduction1.1 Benchmarking Symbolic ComputationsAfter the discussions in a section at ISSAC'98 in Rostock about symboliccomputations benchmarking activities we started to collect and evaluatebenchmark material from several sources and became aware of some prob-lems related with the state of the art of such benchmarks at those times.Two of them are central:1. Most of the benchmark data exists only in printed form, often withmisprints, and is available to the public only with di�culties (oftenenough since the author changed her/his place of work or �eld of in-terests) and in very di�erent formats.2. There is no agreed upon form, how to set up and evaluate such bench-marks: What is a fair measure of computing time? How to comparethe quality of the answers beyond CPU time? etc.A reliable answer to the �rst problem would be a widely accessible cen-tral digital repository where people can store and publish (at least) theirbenchmark input data for comparison and reusage by other research groups.This requires not only to set up such a repository but also to agree upon a1



common data exchange format and to develop (and provide) tools to storeand retrieve data into/from that format. The main part of such tools canbe developed once and reused by interested parties since it requires (gen-eral) text processing and translating facilities rather than (special) symboliccomputational power.For the second question note that similar problems arise if software forsymbolic computations is tested. Tests of symbolic software (beyond earlystage 'copy and paste') require to screen large sets of data using batch pro-cessing and special test beds. The test bed environment should preparedata for input to the tested software, start and monitor its run, and storeand evaluate the output of the computation, i.e., has to provide tools withsimilar functionality as required for the repository.Note that the same tools are useful also for the collection and presenta-tion of benchmark output data.1.2 The SymbolicData ProjectThe SymbolicData project was set up to unify the e�orts of interested peo-ple in that direction. In a �rst stage we concentrated on the developmentof practical concepts for a convenient data exchange format, the collectionof existing benchmark data from two main areas, polynomial system solv-ing and geometry theorem proving, and the development of appropriatetools to process this data. A tight interplay between conceptual work, datacollection, and tools (re)engineering allowed continuously to evaluate theusefulness of each of the components.For easy reuse we concentrated on free software tools and concepts. Thedata is stored in a XML like ASCII format that can be edited with yourfavorite text editor. The tools are completely written in Perl using Perl 5modular technology.Some of our ad hoc concepts of data representation changed several timesand (although meanwhile being quite elaborated) surely will partly changein the future (e.g., lists and hashes will probably be stored in a more XMLcompliant form). Having data available in electronic form (so far) it was veryeasy to translate it into the revised formats. Hence the most diligent partof the project is the collection of benchmark data and its translation fromthe foreign to the current format of the repository. Note that our conceptof data representation is very exible. The data format can be speci�edby the user in an easy manner and very broad range, but that topic willnot be discussed in this paper. We refer to [1, 6] and the SymbolicDatadocumentation for more information.2



The SymbolicData project is part of the benchmark activities of theGerman \Fachgruppe Computeralgebra" who also sponsored the web site[8] as a host for presentation and download of the tools and data developedand collected so far. We refer to that source for more information aboutthe SymbolicData project. We kindly acknowledge support also from UMSMEDICIS of CNR/�Ecole Polytechnique (France) who provides us with theneeded hard- and software for establishing and running this web site.The project is organized as a free software project. The CVS repositoryis equally open to people joining the SymbolicData project Group. Toolsand data are freely available also as tar-�les (via HTML download from ourWeb site) under the terms of the GNU Public License.1.3 This PaperThis paper gives an introduction into the SymbolicData collection of ex-amples from geometry theorem proving (GEO records) and the GeoProverpackages [5] that provide software capable really to run (with one of themajor computer algebra systems Maple, MuPAD, Mathematica, or Reduce)these geometry theorem proofs.We give some background on geometry theorem proving and a shortoverview about the functionality of the GeoProver packages (sections 2 and3). Then we describe the design of the GEO records and the syntax of thegeneric GEO code that can be translated to the di�erent target languages(section 4).The SymbolicData tools can be used not only to manage symbolic bench-mark data but also to manage source code and documentation of a projectlike the GeoProver. This non standard application of the SymbolicData tools(with an alternative data base) will be discussed in section 5.We conclude (section 6) with some remarks about the e�orts requiredto really set up benchmark computations with the GeoProver on di�erentplatforms (Maple, MuPAD, Mathematica, Reduce) and this GEO data.2 Geometry Theorem ProvingMany hard problems in polynomial system solving arise from automatedproofs of (elementary plane) geometric problems. Synthetic geometry proofsusually involve tricky arguments that require a lot of experience and cre-ativity to be found. It was an old dream to mechanize such proofs, andalready Fermat knew a general approach: introduce coordinates, translate3



all statements into algebraic formulas and try to solve the correspondingalgebraic problem by algebraic methods.The attempts to algorithmize this part of mathematics found their culmi-nation in the 80's in the work of W.-T. Wu [11] on \the Chinese Prover" andthe fundamental book [3] of S.-C. Chou who proved 512 geometry theoremswith this mechanized method, see also [2, 4, 9, 10].It is a surprising fact that tedious but mostly straightforward manipu-lations of the algebraic counterparts of geometric statements allow to provemany theorems in geometry with even ingenious \true geometric" proofs.Supported by a Computer Algebra System (CAS) for the algebraic manipu-lations part this approach obtains new power. The method is not automatic,since one often needs a good feeling how to encode a problem e�ciently, butmechanized in the sense that one can develop a tool box to support thisencoding and some very standard tools to derive a (mathematically strong!)proof from these encoded data.Such a tool box is provided by the GeoProver packages [5] that are avail-able for Reduce, Maple, MuPAD and Mathematica. A generalized syntaxthat can be mapped to each of the target languages is used to store theproof schemes in the SymbolicData GEO table.2.1 Geometry Theorems of Constructive TypeUsually geometric constructions can be compiled from a small number ofelementary constructions, e.g., drawing a line through given points, con-structing intersection points, circles with given parameters etc. In the sameway also the algebraic translation of geometric statements can be producedcascading only a small number of elementary functions and data types.We write P = Point(x; y) for a point with coordinates (x; y), g =Line(g1; g2; g3) for the linef(x; y) : g1 x+ g2 y + g3 = 0gand c = Circle(c1; c2; c3; c4) for the circlef(x; y) : c1 (x2 + y2) + c2 x+ c3 y + c4 = 0g:Note that the coordinates of lines and circles are homogeneous and de�nedby the corresponding geometric objects only upto a scalar factor.For example, to prove the centroid intersection theorem choose pointsA := Point(u1; u2); B := Point(u3; u4); C := Point(u5; u6);4



with generic (i.e., symbolic) coordinates, computeA1 := midpoint(B;C); B1 := midpoint(A;C); C1 := midpoint(A;B);and evaluate the statementis concurrent(pp line(A;A1); pp line(B;B1); pp line(C;C1)); (1)where midpoint(X;Y ) returns (a formula for) the midpoint of the line XY ,pp line(X;Y ) computes the homogeneous coordinates of the line throughX and Y and is concurrent(a; b; c) returns a polynomial in the coordinatesof the lines a; b; c (in fact, a determinantal expression) that vanishes i� theselines meet at a common point. The return values of all these functions are(sequences of) rational expressions in the coordinates of the formal inputparameters.To prove a geometry theorem of this type means to compose the nestedrational expression (1) and to check if it simpli�es to zero. If it does, itwill simplify to zero also for (almost) all special geometric con�gurationsobtained from the generic con�guration plugging in special numerical valuesfor u1; : : : ; u6.In general, we say that a geometric con�guration is of constructive type1,if its generic con�guration can be constructed step by step in such a way,that the coordinates of each successive geometric object can be expressedas rational functions of the coordinates of objects already available or al-gebraically independent variables, and the conclusion can be expressed asvanishing of a rational function in the coordinates of the available geometricobjects.Such a theorem is generically true if and only if its con�guration is notcontradictory and the conclusion expression simpli�es to zero.Note that due to Euclidean symmetry even for generic con�gurationssome of the coordinates can be chosen in a special way.2.2 Geometry Theorems of Equational TypeSurprisingly many geometry theorems can be translated into statements ofconstructive type. Problems cause geometric objects derived from non-lineargeometric conditions (angles, circles) since their coordinates usually cannotbe rationally expressed in the basic coordinates. Geometric con�gurationswith such objects require other proof techniques.1This notion is di�erent from [3]. 5



For example, given generic points A = Point(a1; a2); B = Point(b1; b2);C = Point(c1; c2); a point P = Point(x1; x2) is on the bisector line of theangle 6 ABC i� 6 ABP = 6 PBC, or, in GeoProver notation, i�l2 angle(pp line(A;B); pp line(P;B)) =l2 angle(pp line(P;B); pp line(C;B))In this formula l2 angle(g; h) denotes the tangens of the angle between thelines g = Line(g1; g2; g3) and h = Line(h1; h2; h3) that can be computed asg2 h1 � g1 h2g1 h1 + g2 h2 :This condition on P translates into a polynomial of (total) degree 4 inthe generic coordinates and quadratic in the coordinates of P . It describesthe condition for P to be on either the inner or the outer bisector of 6 ABC.Note that in our algebraization of unordered geometry there is no way todistinguish between the inner and outer bisectors.To prove the bisector intersection theorem we \compute" the coordinatesof the intersection points P of the bisectors through A and B and show thatthey belong to the bisectors through C. Due to Euclidean symmetry we canchoose special coordinates for A and B to simplify calculations.A:=Point(0,0); B:=Point(1,0); C:=Point(u1,u2);P:=Point(x1,x2);polys:={ is_point_on_bisector(P,A,B,C),is_point_on_bisector(P,C,A,B)};f � 2x2 + 2u1 x2 + 2x2 x1 � 2x2 u1 x1 � u2 x22 + u2 � 2u2 x1 + u2 x12;2x2 u1 x1 � u2 x12 + u2 x22gpolys is a system of two polynomial equations of degree 2 in (x1; x2) withcoe�cients inQ(u1; u2). It has 4 solutions that correspond to the 4 intersec-tion points of the bisector pairs through A and B. They can be computed,e.g., with Maple:solve(polys,{x1,x2});�x2 = %1; x1 = 1=2 u2 � 2%1 + 2u1%1u2 �%1 �6



%1 = RootOf �4u2 Z 4 + ��8u12 � 8u22 + 8u1� Z 3+ ��4u1 u2 + 4u12u2 � 4u2 + 4u23� Z 2 + 4u22 Z � u23�The solution involves algebraic RootOf -expressions that require a powerfulalgebraic engine to cope with.Another approach uses direct reformulation of the geometry theorem asa vanishing problem of the polynomial conclusion on the zero set of thesystem of polynomials that describe the given geometric con�guration.For our example, we ask if the conclusion polynomialcon:=is_point_on_bisector(P,B,C,A);2u12x2 x1+2u2 x22u1�2u2 x12u1�u2 x22+u2 x12+2u2 x1 u12�2u22x1 x2�2x2 u1 x1�u12u2+2u22x2�u23+2x2 u12�2u13x2+2u23x1 � 2u1 x2 u22vanishes on the variety of zeroes of polys regarded as zero dimensionalpolynomial system in Q(u1; u2)[x1; x2]: This follows if the normal form ofcon with respect to a Gr�obner basis of polys vanishes. Hence the followingMaple computation veri�es the theorem:with(Groebner):TO:=plex(x1,x2): gb:=gbasis(polys,TO):normalf(con,gb,TO); 0In general, this kind of algebraization of geometry theorems yields a poly-nomial ring S = k[v] with variables v = (v1; : : : ; vn), a polynomial systemF � S that describes algebraic dependency relations in the given geometriccon�guration, a subdivision v = x [ u of the variables into dependent andindependent ones, and the conclusion polynomial g(x;u) 2 S.A set of variables u is independent wrt. an ideal I = I(F ) i� k[u] \ I =(0), i.e., if u is algebraically independent on the variety Z(F ) de�ned byF . In most practical applications such a subdivision is obvious. A strongveri�cation can be derived from a Gr�obner basis of F wrt. an appropriateterm order.Z(F ) may be decomposed into irreducible components that correspondto prime components P� of the ideal I = I(F ) generated by F over the ringS = k[x;u]. Since P� contains I the variables u may become dependent wrt.P�. Prime components where u remains independent are called generic, theother components are called special. By de�nition, every special componentcontains a non zero polynomial in the independent variables u. Multiplying7



them all together yields a non degeneracy condition h = h(u) 2 k[u] on theindependent variables such that a zero c 2 Z(F ) with h(c) 6= 0 necessarilybelongs to one of the generic components. Hence they are the \essential"components and we say that the geometry theorem is generically true, whenthe conclusion polynomial g vanishes on all these generic components.If we compute in the ring S0 = k(u)[x] as we did in the above example,i.e., consider the independent variables as parameters, exactly the genericcomponents of I remain visible. Hence if the normal form of g wrt. a Gr�obnerbasis G of F computed in S0 vanishes the geometry theorem is genericallytrue. More subtle examples can be analyzed with the Gr�obner factorizer ormore advanced techniques.3 The GeoProver PackagesTo really run mechanized geometry theorem proofs as described in the pre-vious section requires a target CAS and several ingredients:(1) The CAS should be capable of the required algebraic manipulations.(2) We need tools to translate geometric statements into their algebraiccounterparts.(3) We need a \proof writer" that combines these tools and tries to write(realistic) proof schemes for given geometry theorems.(4) The CAS should be able to analyze the algebraic situation (e.g., tosolve systems of equations, to compute Gr�obner bases and normalforms etc.)Topic (1) requires only facilities to compute with rational expressionsand is usually not the bottleneck for geometry theorem proving. For someproofs topic (4) may be really challenging since it exploits the full computepower of the algebraic engine of the target CAS.On the other hand di�erent proof schemes of the same problem can yieldalgebraic formulations of very di�erent run time also within the same CAS.3.1 About the GeoProverThe GeoProver (formerly GEOMETRY) provides tools for topic (2). It isa small package for mechanized (plane) geometry manipulations with nondegeneracy tracing, available for di�erent CAS platforms (Maple, MuPAD,Mathematica, and Reduce) that provides a set of functions to cope with8



generic and special geometric con�gurations containing points, lines andcircles as introduced above.We don't give here a formal description of all these functions but referthe interested reader to the sample calculations in the previous section andthe documentation [5] of the package. For some target systems there is alsoa plot extension that allows to draw graphics from scenes, i.e., (of coursespecial) geometric con�gurations.Altogether the package provides the casual user with a couple of proce-dures that allow him/her to mechanize his / her own geometry proofs. A�rst prototype grew out from a course of lectures for students of computerscience on this topic held by the author at the Univ. of Leipzig in fall 1996.It was updated and completed to version 1.1 of a Reduce package after asimilar lecture in spring 1998. Later on in cooperation with Malte Witte,at those times one of my students, the package was translated to the othertarget systems.For version 1.2 I prepared a scheme that uses the SymbolicData toolsto handle the versions for di�erent platforms in a unique way. This genericmanagement of the source code uses many ideas approved during the com-pilation of the SymbolicData GEO records. I come back to that topic below.Note that for version 1.2 not only the package name changed (to avoidname clashes with another Maple package called 'geometry') but also thenames of the procedures were completely revised.3.2 Writing Mechanized Geometry ProofsIn most cases topic (3) is straightforward, in particular if the geometric state-ment is already highly constructive. But in some applications the \proofwriters" had to develop really ingenious and non trivial ideas to write re-liable proofs that can be run automatically. For example, Wu proposed in[11] the following constructive proof for the bisector intersection theorem:� Start with the vertices A;B and the (future) intersection point P ofthe bisectors through A and B.� Draw the lines c through AB, d through AP and e through BP .� Draw lines u; v derived from c by reection wrt. to the axes d; e.These lines will meet in a point C such that d and e are the bisectorsof ABC through A and B.� Compute is point on bisector(P;B;C;A), i.e., prove that P is alsoon the third bisector. 9



Here is the proof scheme written down in the MuPAD version of the Geo-Prover language.A:=Point(0,0); B:=Point(1,0); P:=Point(u1,u2);c:=pp_line(A,B); d:=pp_line(A,P); e:=pp_line(B,P);u:=sym_line(c,d); v:=sym_line(c,e);C:=intersection_point(u,v);is_point_on_bisector(P,B,C,A);Letter by letter the same proof scheme works also for Maple. Reduce (inthe default settings) does not distinguish between up-case and down-caseletters and reports e to be protected. Mathematica requires square bracketsand does not accept underscores as valid letters for function names. Genericcode handling has to clear all these obstacles. Our solution will be describedbelow.S.-C. Chou is probably one of the most diligent \proof writers" whocollected in [3] more than 500 examples of geometric statements and appro-priate algebraic translations.During our work on the SymbolicData GEO collection we stored (andpartly modi�ed and adapted) about 200 of them. We collected also solutionsof geometry problems from other sources, e.g., the IMO contests, see [7].Much of this work was done by my \proof writers", i.e., the students MalteWitte and Ben Friedrich who compiled �rst electronic versions for many ofthese examples.4 GEO Records and GEO Code4.1 About the SymbolicData Data Base StructureWe mentioned already in the introduction that records in the SymbolicDatadata base are stored as ASCII �les (sd-�les) in a (at) XML like syntax. Atypical example of such a record, the record Parallelogram_2 in the GEOtable, is given on page 11. It contains information and a mechanized proofscheme for the following geometry theorem:The intersection point of the diagonals of a parallelogram is themidpoint of each of the diagonals.The sd-�les are tight to Perl hashes (sd-records) by the SymbolicDatatools in a transparent way. Hence additional Perl programming required forbenchmark activities (the SymbolicData Compute environment is still under10



######################################################## Record 'GEO/Parallelogram_2'<Id> GEO/Parallelogram_2 </Id><Type> GEO </Type><Key> Parallelogram_2 </Key><prooftype> constructive </prooftype><parameters> [u1, u2, u3] </parameters><coordinates>$A:=Point[0,0]; $B:=Point[u1,0]; $D:=Point[u2,u3];$C:=intersection_point[par_line[$D,pp_line[$A,$B]],par_line[$B,pp_line[$A,$D]]];$P:=intersection_point[pp_line[$A,$C],pp_line[$B,$D]];</coordinates><conclusion>$result:=sqrdist[$A,$P]-sqrdist[$C,$P];</conclusion><CRef>PROBLEMS/Geometry/Parallelogram => problem description</CRef><Comment>Feb 10 2002 graebe: translated to GeoProver 1.2 syntax</Comment><Version> ... </Version><PERSON> graebe </PERSON><Date> Nov 1 1999 </Date># End of record 'GEO/Parallelogram_2'#######################################################The GEO record `Parallelogram 2'development) can easily access the values of the di�erent attributes of arecord. In section 6 we describe a benchmark computation on GEO recordsthat gives a real estimation of additional Perl programming e�orts requiredto set up such a computation. Note that since the detailed requirements ofsuch a computation are almost unknown to the SymbolicData developers itis di�cult (and probably even not worth) to design a reliable interface.Similar records share a common structure and are collected into tables.The SymbolicData geometry theorem proof schemes are collected in the GEOtable. The corresponding sd-�les are physically stored in a subdirectory GEOof the SymbolicData data directory ($SD HOME/Data by default).11



######################################################## Record 'META/Key'<Id> META/Key </Id><Type> META </Type><Key> Key </Key><Syntax> KeyName </Syntax><description>Identifying key of the record. Must be unique within its Type</description><help>Identifying key of the record. Must be unique within its Type</help><htm> ignore </htm><level> 0 </level><order> 3 </order><Version> ... </Version><PERSON> graebe </PERSON><Date> Jul 6 2000 </Date># End of record 'META/Key'#######################################################The META record `Key'The common structure of the records within such a table is reected ina common XML tag structure (attributes) that is �xed in another table {the corresponding META table. This allows for exible extension not onlyof data but also of data structures and tag syntax restrictions. We refer to[1, 6] and the SymbolicData documentation for more details.The content of a typical META record (the description of the attributeKey) is shown on page 12. It is stored in the same format as a datarecord and contains information about importance (level), output order(order), HTML handling (htm), verbose and detailed descriptions (helpand description) of the attribute to be de�ned. Note that most of thesetags can be omitted since they have default values.Let us describe the attributes of the GEO records in more detail. Sev-eral attributes are prede�ned, i.e., inherited from a \master table". Id, Keyand Type identify the record within its table resp. within the data base.ChangeLog, Comment, Date, PERSON and Version contain information aboutthe history of the given record. In particular, the value of the attributePERSON is a reference to the table PERSON that collects information (a�li-12



ations, email addresses, etc.) of persons who contributed to SymbolicData.This guarantees a fair authorship management of di�erent contributionsalong the GNU Public License conditions that apply to SymbolicData as awhole.The CRef attribute, also inherited from the master table, attaches crossreference information to one of the records in the (primary) data base. Inrelational data base models such cross references are usually stored in specialrelation tables that can easily be searched for di�erent keys. We decided toput this cross reference information into one of the main (primary) recordsand to provide tools to extract it as secondary data in SQL compliant form.This avoids to develop anew elaborated search and select facilities for theprimary (XML based) data.Cross references in the GEO table usually point to the PROBLEMStable that contains descriptions of the geometry theorems to be proved.Note that di�erent GEO records can point to the same PROBLEMS recordsince there may be di�erent proof schemes for the same theorem. Othercross references point to GEO records as foreign keys, e.g., from the INTPStable of polynomial systems if the system is generated from the GEO record,from the BIB table of bibliographical references, if a paper refers to the proofscheme stored in the record, etc. We will not go into detail about this pointbut concentrate on the main attributes of the GEO records.4.2 The Main Attributes of the SymbolicData GEO CollectionGEO record proof schemes are divided (roughly) into two types accordingto their prooftype attribute: constructive and equational.The generic variables are provided as values of two attributes:parameters a list u of independent parametersvars a list x of dependent variables (equational proofs only)For equational proofs the variable lists x and u are chosen in such a way thatu is a maximal independent set of variables for the given algebraic varietyover k[x;u] as de�ned above.Since the proof schemes should translate into di�erent target systems weneed a special language to write them down. The structure of this specialGEO code will be described below. We continue with the description ofthe other attributes.The following attributes (with GEO code values) are mandatory:13



coordinates assignments that construct step by step the genericgeometric con�guration of the proof schemeconclusion the conclusion of the proof scheme (optional if prooftype is deduction)This already completes the data required for a constructive proof scheme.For equational proof schemes the following additional (optional) attributeswith GEO code values are de�ned:polynomials a list of polynomial conditions describing algebraic de-pendency relations in the given geometric con�gura-tionconstraints a list of polynomial non degeneracy conditionssolution a way to solve the algebraic problem (given in ex-tended GEO code syntax)The proof idea can be sketched within the ProofIdea attribute as plain textif not yet evident from the code.4.3 The Generic GEO Code SyntaxThe main reason to invent a generic GEO code language results from ouraim to run geometry theorem proof schemes on di�erent target CAS. Agood but expensive idea would be to de�ne an appropriate (context free)programming language and to write cross compilers or to invent a reliable(full) XML markup and to use style sheet translations. Since the syntaxesof the target languages are very similar we can avoid these e�orts and de�nethe generic language in such a way, that it can be cross compiled using onlyregular patterns. Due to its elaborated pattern matching facilities Perl isbest suited to realize this approach.Since proof schemes are composed by a sequence of assignments withnested function calls as right hand sides referring to previously de�ned geo-metric objects and rational expressions as arguments the GEO code languageshould meet the following requirements:(1) Due to di�erent naming conventions of the target CAS it should bepossible to identify (and substitute) variable, symbol and functionnames.(2) It should easily be possible to map the generic GEO code to the syntaxof the target CAS without name clashes.14



(3) It should provide a concept not only to translate the proof scheme, butalso to run and evaluate it on the target CAS. For equational proofschemes this requires additional e�orts to give a \generic" solution forthe algebraic part of the problem.For (1) note that in this context the words `variable' and `symbol' areused in a slightly di�erent meaning compared to the previous paragraph:the former are `symbols with values' (e.g., names for points, lines, circles),the latter `symbols without values' (i.e., names for parameters and vari-ables in the previous sense). It is a special peculiarity of symbolic com-putations that these name spaces usually overlap. For geometry theoremproof schemes this overlap can be avoided. We use Perl like syntax (i.e.,\$[a-zA-z][a-zA-z0-9]* in Perl regexp notation) for variable names andsmall letter / digit combinations (i.e., [a-z][a-z0-9]* in Perl regexp nota-tion { we don't allow capital letters to avoid name clashes both in Reduceand Mathematica) for symbol names.Most CAS use parentheses both to group arithmetic expressions and infunction calls. Since this cannot be distinguished within a regular languagewe use the Mathematica convention (i.e., brackets) for function call notation.To compile lists (e.g., in the polynomials part) and to pick up numer-ators and denominators (e.g., in the conclusion) the GEO code syntaxprovides the additional function names List, Numerator and Denominator.For (2) note that if the user follows a slightly more restrictive namingconvention for symbols they map one to one to each of the target CAS. Dueto the common origin almost the same applies to the GeoProver functionnames and the syntax of rational expressions. Slightly more e�orts arerequired for variable names, since typical names for points (e.g., C;D;E)are protected in some of the target CAS. Below you �nd the 3-line Perlscript (it is part of the SymbolicData tools) that translates the generic GEOcode to MuPAD.sub MuPAD{ local $_=shift;tr/\[\]/\(\)/;s/List\[/geoList\[/gs; # since List is now a key words/\$(\w+)/_$1/gs;return $_;} 15



For (3) we systematically assign the variable names $polys, $con and$result to the list of polynomials, to the conclusion (in equational proofschemes) and to the result (in particular to the conclusion in constructiveproof schemes) if applicable. This allows easily to monitor the results of thecomputation. For constructive proof schemes the translated GEO code {with the GeoProver package for the given target CAS previously loaded {should return 0 (or a list of zeroes if several conclusions are to be veri�ed).A generic solution for the algebraic part of equational proof schemesis given (with the same notational conventions) as value of the attributesolution. It uses the following additional \generic" functions:geo gbasis[polys,vars]to compute a lexicographical wrt. vars Gr�obner basis of polysgeo normalf[p,polys,vars]to compute the normal form of the polynomial or list of polyno-mials p wrt. the given polynomials polys (usually a lexicographicalwrt. vars Gr�obner basis)geo solve[polys,vars]to �nd the zeroes of the list of polynomials polys wrt. varsgeo solveconstrained[polys,vars,nondegs]that works as geo solve but take the list of polynomials nondegsas non-degeneracy conditionsgeo eliminate[polys,vars,evars]to eliminate the variables evars from the polynomials polys in thevariables varsgeo eval[con,sol]to substitute the output sol of geo solve in the expression congeo normal[u]to compute a rational normal form of ugeo simplify[u]to simplify uThere are small supplementary �les with collections of function de�nitionsfor each of the target CAS that map these generic functions to the respectivesyntax or give a reliable solution using the algebraic tools provided by theCAS.
16



5 Using the SymbolicData Tools for the GeoProverSource Code ManagementSeveral points around the GeoProver code management suggest to look fora generic solution:(1) Changes or extensions of the GeoProver have to be incorporated intothe package sources for each of the target CAS. This causes problems forthe version management and is a permanent source for code inconsistency.Hence one may ask if some of these changes could be done once and in ageneric (and consistent) way.(2) An e�cient compilation of geometric con�gurations usually makesgood use of geometric \macros", i.e., shortcuts for construction schemes ofstandard tasks that are built up from a small number of elementary steps.For example, the sentence \construct the circumcenter of the triangleABC" can be decoded as \construct the intersection point of the midpointperpendiculars of AB and AC".Such macros correspond to nested GEO code function callscircumcenter[$A,$B,$C] =intersection point[midpoint perpendicular[$A,$B],midpoint perpendicular[$A,$C]]The code required to add such a function to the GeoProver packages foreach of the target CAS could easily be generated from this generic GEO codestatement. Of course, this requires much more e�orts than the translationof GEO code proof schemes since the target CAS greatly di�er syntacticallyand even conceptually in the way how functions and packages have to bede�ned.(3) The di�erent target CAS have very di�erent, di�ering from versionto version and in most cases not yet thoroughly tuned policies for pack-age documentation. This requires a exible organization of the GeoProverdocumentation that keeps the essential parts close to the sources.Since the SymbolicData tools can be combined also with alternative databases I used them to manage a GeoProver code data base. It consists of� inline parts for each of the target CAS with the (CAS-speci�c) \inline"de�nitions of the most elementary functions,� a SymbolicData Prover table that collects information about all Geo-Prover export functions (one per record),17



� additional Perl code (SymbolicData action de�nitions) to compile thepackage code for the target CAS from these sources.A typical record (of the function centroid) of the Prover table is givenbelow. At the moment it provides the function name (attribute Key), syn-tactical information about the function call (attribute call), a generic GEOcode de�nition (attribute code { if it is absent this function is de�ned in theinline part), a short (attribute verbose) and a more detailed description.########################################################### Record 'Prover/centroid'<Id> Prover/centroid </Id><Type> Prover </Type><Key> centroid </Key><call> centroid[$A::Point,$B::Point,$C::Point]::Point </call><verbose> centroid of the triangle </verbose><code>intersection_point[median[$A,$B,$C],median[$B,$C,$A]]</code><description>Centroid of the triangle <math>ABC</math>.</description><Date> Feb 9 2002 </Date># End of record 'Prover/centroid'#########################################################The record `Prover/centroid' in the GeoProver code data baseNow the code base can be extended easily and in a consistent way withnew macros: De�ne a new Prover record and rebuild the sources for thetarget systems. For example, to add a new function circumcenter therecord should essentially contain the following information:<call> circumcenter[$A::Point,$B::Point,$C::Point]::Point </call><verbose> circumcenter of the triangle </verbose><code>intersection_point[midpoint_perpendicular[$A,$B],midpoint_perpendicular[$A,$C]]</code><description>The circumcenter of the triangle <math>ABC</math>.</description> 18



6 Benchmark Computations on GEO RecordsWe conclude this paper with some remarks about the e�orts required toreally set up benchmark computations on the GEO records with the Symbo-licData tools. We report on the computations for a beta test of MuPAD 2.5since they reect exemplary these e�orts.For a �rst screening we posed the following general conditions:(1) We compile all examples into a single input �le /tmp/mupad.in toavoid multiple startup overhead.(2) We cancel the computation of a given example with the traperrorMuPAD function if it spends too much computing time.(3) We run the computation as batch processmupad-2.5 </tmp/mupad.in >/tmp/mupad.out &We use the SymbolicData tools to create the required input �le. Notethat the tools are driven by the main program symbolicdata. It allowsto access the di�erent tasks de�ned in the basic Perl modules through anelaborated actions concept. Its synopsis issymbolicdata [-req file] actions [options] [args]On start-up, symbolicdata loads all the basic Perl modules, initializes thedata base, parses the command-line arguments up to the mandatory actionargument(s), and loads the global action hash that speci�es, in a well-de�ned format, all known (or, \registered") actions and their properties.This action hash can easily be extended at run-time using the �rst (optional)-req file argument, where file is the name of a Perl module containingthe new action de�nitions. It is loaded before the actions are parsed. Formore details we refer to [1, 6] and the SymbolicData documentation.We use this extension concept for our goal, compose the required actionde�nition, save it to a �le and call it with symbolicdata. You �nd the Perlcode for the new SymbolicData action MuPADTrapCode on page 22.Some remarks on the code:� The req slot of the action activates the SymbolicData Perl moduleGEO/GEO.pm that contains functions to map GEO code to di�erenttarget CAS. See code part (1).� The argvcall slot is a special action mode to process all argumentsat once. It requires to expand the arguments (i.e., sd-�le names) andto pick up the corresponding records. This is done in code part (3).19



� Code part (2) prints the MuPAD preamble (path setting and initial-ization code for the MuPAD GeoProver package) to stdout.� Code part (4) translates the GEO code of the proof scheme of therecord $r to the MuPAD syntax.� Code part (5) is (almost) pure MuPAD code. It de�nes a functiongeotest (anew for each record) with the MuPAD code of the proofscheme for the given record that is called later on with traperror andtime to time or interrupt the computation.The remaining code analyzes the output of the traperror call and thecontent of the variable result (the translation of $result to MuPADcode) if the computation �nished.All MuPAD code is sent to stdout and should be redirected to thedesired �le.References[1] O. Bachmann and H.-G. Gr�abe. The SymbolicData Project: Towardsan electronic repository of tools and data for benchmarks of computeralgebra software. Reports on Computer Algebra 27, Jan 2000. Centrefor Computer Algebra, University of Kaiserslautern.See http://www.mathematik.uni-kl.de/~zca.[2] S.-C. Chou. Proving elementary geometry theorems using Wu's algo-rithm. In Contemp. Math., volume 19, pages 243 { 286. AMS, Provi-dence, Rhode Island, 1984.[3] S.-C. Chou. Mechanical geometry theorem proving. Reidel, Dortrecht,1988.[4] S.-C. Chou. Automated reasoning in geometries using the characteristicset method and Gr�obner basis method. In Proc. ISSAC-90, pages 255{260. ACM Press, 1990.[5] H.-G. Gr�abe. GeoProver - a small package for mechanized planegeometry, 1998{2002. With versions for Reduce, Maple, MuPAD andMathematica.See http://www.informatik.uni-leipzig.de/~compalg/software.[6] H.-G. Gr�abe. The SymbolicData benchmark problems collection of poly-nomial systems. In Proceedings of ADG-02, Karlsruhe, 2002. to appear.20



[7] The International Mathematical Olympiads, since 1959.See, e.g., http://www.kalva.demon.co.uk/imo.html.[8] The SymbolicData Project, 2000{2002.See http://www.SymbolicData.org.[9] W.-T. Wu. Some recent advances in mechanical theorem proving ofgeometry. In Contemp. Math., volume 19, pages 235 { 241. AMS, Prov-idence, Rhode Island, 1984.[10] W.-T. Wu. On the decision problem and the mechanization of theorem-proving in elementary geometry. In Contemp. Math., volume 19, pages213 { 234. AMS, Providence, Rhode Island, 1984.[11] W.-T. Wu. Mechanical Theorem Proving in Geometries. Number 1in Texts and Monographs in Symbolic Computation. Springer, Wien,1994.
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################################################################$ACTIONS -> {MuPADTrapCode} ={req => 'GEO/GEO.pm', # (1)argvcall => sub {print Preamble::MuPAD()."Pref::echo(FALSE);Pref::prompt(FALSE);\n"; # (2)my $maxtime=200;shift; my $arg=ExpandArgv(shift);my (@l,$r,@u);map push(@$l, Record->new($_)), (@$arg); # (3)for $r (@$l){ @u=GEO::CreateSolution($r,'MuPAD'); # (4)print <<EOT; # (5)//==> Example $r->{Key}clear_ndg():geotest:=proc() begin$u[1]end_proc:print(Unquoted,"##> $r->{Key} starting");te:=traperror(print(time(geotest())),$maxtime);if te=0 thenprint(Unquoted,"##> $r->{Key} finished"); print(_result);elif te=1320 then print(Unquoted,"##> $r->{Key} timed out");else print(Unquoted,"##> $r->{Key} error");print(prog::error(te),lasterror())end_if:EOT}print "quit;\n";},};################################################################Perl code for the MuPADTrapCode action
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