The SymbolicData Geometry Collection
and the GeoProver Packages

http://www.symbolicdata.org

Hans-Gert Grabe
Department of Computer Science
University of Leipzig, Germany
graebe@informatik.uni-leipzig.de

February 22, 2002

1 Introduction

1.1 Benchmarking Symbolic Computations

After the discussions in a section at ISSAC’98 in Rostock about symbolic
computations benchmarking activities we started to collect and evaluate
benchmark material from several sources and became aware of some prob-
lems related with the state of the art of such benchmarks at those times.
Two of them are central:

1. Most of the benchmark data exists only in printed form, often with
misprints, and is available to the public only with difficulties (often
enough since the author changed her/his place of work or field of in-
terests) and in very different formats.

2. There is no agreed upon form, how to set up and evaluate such bench-
marks: What is a fair measure of computing time? How to compare
the quality of the answers beyond CPU time? etc.

A reliable answer to the first problem would be a widely accessible cen-
tral digital repository where people can store and publish (at least) their
benchmark input data for comparison and reusage by other research groups.
This requires not only to set up such a repository but also to agree upon a

common data exchange format and to develop (and provide) tools to store
and retrieve data into/from that format. The main part of such tools can
be developed once and reused by interested parties since it requires (gen-
eral) text processing and translating facilities rather than (special) symbolic
computational power.

For the second question note that similar problems arise if software for
symbolic computations is tested. Tests of symbolic software (beyond early
stage 'copy and paste’) require to screen large sets of data using batch pro-
cessing and special test beds. The test bed environment should prepare
data for input to the tested software, start and monitor its run, and store
and evaluate the output of the computation, i.e., has to provide tools with
similar functionality as required for the repository.

Note that the same tools are useful also for the collection and presenta-
tion of benchmark output data.

1.2 The SymbolicData Project

The SymbolicData project was set up to unify the efforts of interested peo-
ple in that direction. In a first stage we concentrated on the development
of practical concepts for a convenient data exchange format, the collection
of existing benchmark data from two main areas, polynomial system solv-
ing and geometry theorem proving, and the development of appropriate
tools to process this data. A tight interplay between conceptual work, data
collection, and tools (re)engineering allowed continuously to evaluate the
usefulness of each of the components.

For easy reuse we concentrated on free software tools and concepts. The
data is stored in a XML like ASCII format that can be edited with your
favorite text editor. The tools are completely written in Perl using Perl 5
modular technology.

Some of our ad hoc concepts of data representation changed several times
and (although meanwhile being quite elaborated) surely will partly change
in the future (e.g., lists and hashes will probably be stored in a more XML
compliant form). Having data available in electronic form (so far) it was very
easy to translate it into the revised formats. Hence the most diligent part
of the project is the collection of benchmark data and its translation from
the foreign to the current format of the repository. Note that our concept
of data representation is very flexible. The data format can be specified
by the user in an easy manner and very broad range, but that topic will
not be discussed in this paper. We refer to [1, 6] and the SymbolicData
documentation for more information.

The SymbolicData project is part of the benchmark activities of the
German “Fachgruppe Computeralgebra” who also sponsored the web site
[8] as a host for presentation and download of the tools and data developed
and collected so far. We refer to that source for more information about
the SymbolicData project. We kindly acknowledge support also from UMS
MEDICIS of CNR/Ecole Polytechnique (France) who provides us with the
needed hard- and software for establishing and running this web site.

The project is organized as a free software project. The CVS repository
is equally open to people joining the SymbolicData project Group. Tools
and data are freely available also as tar-files (via HTML download from our
Web site) under the terms of the GNU Public License.

1.3 This Paper

This paper gives an introduction into the SymbolicData collection of ex-
amples from geometry theorem proving (GEO records) and the GeoProver
packages [5] that provide software capable really to run (with one of the
major computer algebra systems Maple, MuPAD, Mathematica, or Reduce)
these geometry theorem proofs.

We give some background on geometry theorem proving and a short
overview about the functionality of the GeoProver packages (sections 2 and
3). Then we describe the design of the GEO records and the syntax of the
generic GEO code that can be translated to the different target languages
(section 4).

The SymbolicData tools can be used not only to manage symbolic bench-
mark data but also to manage source code and documentation of a project
like the GeoProver. This non standard application of the Symbolic Data tools
(with an alternative data base) will be discussed in section 5.

We conclude (section 6) with some remarks about the efforts required
to really set up benchmark computations with the GeoProver on different
platforms (Maple, MuPAD, Mathematica, Reduce) and this GEO data.

2 Geometry Theorem Proving

Many hard problems in polynomial system solving arise from automated
proofs of (elementary plane) geometric problems. Synthetic geometry proofs
usually involve tricky arguments that require a lot of experience and cre-
ativity to be found. It was an old dream to mechanize such proofs, and
already Fermat knew a general approach: introduce coordinates, translate

all statements into algebraic formulas and try to solve the corresponding
algebraic problem by algebraic methods.

The attempts to algorithmize this part of mathematics found their culmi-
nation in the 80’s in the work of W.-T. Wu [11] on “the Chinese Prover” and
the fundamental book [3] of S.-C. Chou who proved 512 geometry theorems
with this mechanized method, see also [2, 4, 9, 10].

It is a surprising fact that tedious but mostly straightforward manipu-
lations of the algebraic counterparts of geometric statements allow to prove
many theorems in geometry with even ingenious “true geometric” proofs.
Supported by a Computer Algebra System (CAS) for the algebraic manipu-
lations part this approach obtains new power. The method is not automatic,
since one often needs a good feeling how to encode a problem efficiently, but
mechanized in the sense that one can develop a tool box to support this
encoding and some very standard tools to derive a (mathematically strong!)
proof from these encoded data.

Such a tool box is provided by the GeoProver packages [5] that are avail-
able for Reduce, Maple, MuPAD and Mathematica. A generalized syntax
that can be mapped to each of the target languages is used to store the
proof schemes in the SymbolicData GEO table.

2.1 Geometry Theorems of Constructive Type

Usually geometric constructions can be compiled from a small number of
elementary constructions, e.g., drawing a line through given points, con-
structing intersection points, circles with given parameters etc. In the same
way also the algebraic translation of geometric statements can be produced
cascading only a small number of elementary functions and data types.

We write P = Point(z,y) for a point with coordinates (z,y), g =
Line(g1, 92, g3) for the line

{(z,y) : 1z + 92y + 93 =0}
and ¢ = Circle(cy, c9,c3,¢q) for the circle
{(z,y) : et (#*+y°) + c2m + 3y + c4 = 0},

Note that the coordinates of lines and circles are homogeneous and defined
by the corresponding geometric objects only upto a scalar factor.

For example, to prove the centroid intersection theorem choose points

A :=Point(ui,ug); B :=Point(us,us); C :=Point(us,ug);

with generic (i.e., symbolic) coordinates, compute
Ay :=midpoint(B,(C); B;:=midpoint(A4,C); C;:=midpoint(A4, B);
and evaluate the statement

is_concurrent(pp_line(A, A;),pp-line(B, By),pp-line(C,C1)), (1)

where midpoint(X,Y') returns (a formula for) the midpoint of the line XY,
pp-line(X,Y) computes the homogeneous coordinates of the line through
X and Y and is_concurrent(a, b, ¢) returns a polynomial in the coordinates
of the lines a, b, ¢ (in fact, a determinantal expression) that vanishes iff these
lines meet at a common point. The return values of all these functions are
(sequences of) rational expressions in the coordinates of the formal input
parameters.

To prove a geometry theorem of this type means to compose the nested
rational expression (1) and to check if it simplifies to zero. If it does, it
will simplify to zero also for (almost) all special geometric configurations
obtained from the generic configuration plugging in special numerical values
for uy, ..., ug.

In general, we say that a geometric configuration is of constructive type',
if its generic configuration can be constructed step by step in such a way,
that the coordinates of each successive geometric object can be expressed
as rational functions of the coordinates of objects already available or al-
gebraically independent variables, and the conclusion can be expressed as
vanishing of a rational function in the coordinates of the available geometric
objects.

Such a theorem is generically true if and only if its configuration is not
contradictory and the conclusion expression simplifies to zero.

Note that due to Euclidean symmetry even for generic configurations
some of the coordinates can be chosen in a special way.

2.2 Geometry Theorems of Equational Type

Surprisingly many geometry theorems can be translated into statements of
constructive type. Problems cause geometric objects derived from non-linear
geometric conditions (angles, circles) since their coordinates usually cannot
be rationally expressed in the basic coordinates. Geometric configurations
with such objects require other proof techniques.

I This notion is different from [3].

For example, given generic points A = Point(aj,as), B = Point (b, by),
C = Point(cy, 2), a point P = Point(z1,x2) is on the bisector line of the
angle / ABC ifft / ABP = / PBC, or, in GeoProver notation, iff

12_angle(pp-line(A, B),pp-line(P, B)) =
12_angle(pp-line(P, B),pp-line(C, B))

In this formula 12_angle(g, h) denotes the tangens of the angle between the
lines g = Line(¢1, g2, 93) and h = Line(hq, ho, h3) that can be computed as

92 h1 — g1 ha
g1 h1 + g2 ha

This condition on P translates into a polynomial of (total) degree 4 in
the generic coordinates and quadratic in the coordinates of P. It describes
the condition for P to be on either the inner or the outer bisector of / ABC.
Note that in our algebraization of unordered geometry there is no way to
distinguish between the inner and outer bisectors.

To prove the bisector intersection theorem we “compute” the coordinates
of the intersection points P of the bisectors through A and B and show that
they belong to the bisectors through C. Due to Euclidean symmetry we can
choose special coordinates for A and B to simplify calculations.

A:=Point(0,0); B:=Point(1,0); C:=Point(ul,u?);
P:=Point (x1,x2);

polys:={ is_point_on_bisector(P,A,B,C),
is_point_on_bisector(P,C,A,B)};

{ — 2294+ 2ui 9+ 2291 — 229 UL X1 —UQ£E22 + ug — 2u9 +UQ.T]2,
2 To UL T1 — U .’1112 + u9 .’1}22}
polys is a system of two polynomial equations of degree 2 in (z1,z2) with
coefficients in Q(u1,ug). It has 4 solutions that correspond to the 4 intersec-

tion points of the bisector pairs through A and B. They can be computed,
e.g., with Maple:

solve(polys,{x1,x2});

90— 2%1 + 2u; %1
{maz%l,m:lﬂ“? i }

uy — %1

%1 = RootOf (4U2 A (—8u1? — 8uz? + 8uy) 73
+ (—411,1 us + 4ui?ug — dus + 411,23) 7%+ 4uy? 7 — 11,23)

The solution involves algebraic RootOf -expressions that require a powerful
algebraic engine to cope with.

Another approach uses direct reformulation of the geometry theorem as
a vanishing problem of the polynomial conclusion on the zero set of the
system of polynomials that describe the given geometric configuration.

For our example, we ask if the conclusion polynomial

con:=is_point_on_bisector(P,B,C,A);

21259 11+ 2u9 92Uy — 2 ug 112Ul —ug T2 +ug 12+ 2us T UL —
2u22:13] To—2To Ul T _U]2U2+2 U22$2—U23+2 o U]2—2 U]3$2+
2u93 11 — 2uy Ty U’

vanishes on the variety of zeroes of polys regarded as zero dimensional
polynomial system in Q(u1,u2)[z1,z2]. This follows if the normal form of
con with respect to a Grobner basis of polys vanishes. Hence the following
Maple computation verifies the theorem:

with(Groebner) :
TO:=plex(x1,x2): gb:=gbasis(polys,T0):
normalf (con,gb,T0);

0

In general, this kind of algebraization of geometry theorems yields a poly-
nomial ring S = k[v] with variables v = (v1,...,v,), a polynomial system
F C S that describes algebraic dependency relations in the given geometric
configuration, a subdivision v = x U u of the variables into dependent and
independent ones, and the conclusion polynomial g(x,u) € S.

A set of variables u is independent wrt. an ideal I = I(F') iff k[u] N1 =
(0), i.e., if u is algebraically independent on the variety Z(F') defined by
F. In most practical applications such a subdivision is obvious. A strong
verification can be derived from a Grobner basis of F wrt. an appropriate
term order.

Z(F) may be decomposed into irreducible components that correspond
to prime components P, of the ideal I = I(F') generated by F' over the ring
S = k[x, u]. Since P, contains I the variables u may become dependent wrt.
P,. Prime components where u remains independent are called generic, the
other components are called special. By definition, every special component
contains a non zero polynomial in the independent variables u. Multiplying

them all together yields a non degeneracy condition h = h(u) € k[u] on the
independent variables such that a zero ¢ € Z(F') with h(c) # 0 necessarily
belongs to one of the generic components. Hence they are the “essential”
components and we say that the geometry theorem is generically true, when
the conclusion polynomial g vanishes on all these generic components.

If we compute in the ring Sy = k(u)[x] as we did in the above example,
i.e., consider the independent variables as parameters, exactly the generic
components of I remain visible. Hence if the normal form of g wrt. a Grobner
basis G of F' computed in Sy vanishes the geometry theorem is generically
true. More subtle examples can be analyzed with the Grobner factorizer or
more advanced techniques.

3 The GeoProver Packages

To really run mechanized geometry theorem proofs as described in the pre-
vious section requires a target CAS and several ingredients:

(1) The CAS should be capable of the required algebraic manipulations.

e need tools to translate geometric statements into their algebraic
2) W d tools to t late g tric stat ts into their algebrai
counterparts.

(3) We need a “proof writer” that combines these tools and tries to write
(realistic) proof schemes for given geometry theorems.

(4) The CAS should be able to analyze the algebraic situation (e.g., to
solve systems of equations, to compute Grobner bases and normal
forms etc.)

Topic (1) requires only facilities to compute with rational expressions
and is usually not the bottleneck for geometry theorem proving. For some
proofs topic (4) may be really challenging since it exploits the full compute
power of the algebraic engine of the target CAS.

On the other hand different proof schemes of the same problem can yield
algebraic formulations of very different run time also within the same CAS.

3.1 About the GeoProver

The GeoProver (formerly GEOMETRY) provides tools for topic (2). It is
a small package for mechanized (plane) geometry manipulations with non
degeneracy tracing, available for different CAS platforms (Maple, MuPAD,
Mathematica, and Reduce) that provides a set of functions to cope with

generic and special geometric configurations containing points, lines and
circles as introduced above.

We don’t give here a formal description of all these functions but refer
the interested reader to the sample calculations in the previous section and
the documentation [5] of the package. For some target systems there is also
a plot extension that allows to draw graphics from scenes, i.e., (of course
special) geometric configurations.

Altogether the package provides the casual user with a couple of proce-
dures that allow him /her to mechanize his / her own geometry proofs. A
first prototype grew out from a course of lectures for students of computer
science on this topic held by the author at the Univ. of Leipzig in fall 1996.
It was updated and completed to version 1.1 of a Reduce package after a
similar lecture in spring 1998. Later on in cooperation with Malte Witte,
at those times one of my students, the package was translated to the other
target systems.

For version 1.2 I prepared a scheme that uses the SymbolicData tools
to handle the versions for different platforms in a unique way. This generic
management of the source code uses many ideas approved during the com-
pilation of the SymbolicData GEO records. I come back to that topic below.

Note that for version 1.2 not only the package name changed (to avoid
name clashes with another Maple package called 'geometry’) but also the
names of the procedures were completely revised.

3.2 Writing Mechanized Geometry Proofs

In most cases topic (3) is straightforward, in particular if the geometric state-
ment is already highly constructive. But in some applications the “proof
writers” had to develop really ingenious and non trivial ideas to write re-
liable proofs that can be run automatically. For example, Wu proposed in
[11] the following constructive proof for the bisector intersection theorem:

e Start with the vertices A, B and the (future) intersection point P of
the bisectors through A and B.

e Draw the lines ¢ through AB, d through AP and e through BP.

e Draw lines u, v derived from ¢ by reflection wrt. to the axes d, e.

These lines will meet in a point C' such that d and e are the bisectors
of ABC through A and B.

e Compute is_point_on bisector(P, B,C, A), i.e., prove that P is also
on the third bisector.

Here is the proof scheme written down in the MuPAD version of the Geo-
Prover language.

A:=Point(0,0); B:=Point(1,0); P:=Point(ul,u2);
c:=pp_line(A,B); d:=pp_line(A,P); e:=pp_line(B,P);
u:=sym_line(c,d); v:=sym_line(c,e);
C:=intersection_point (u,v);
is_point_on_bisector(P,B,C,A);

Letter by letter the same proof scheme works also for Maple. Reduce (in
the default settings) does not distinguish between up-case and down-case
letters and reports e to be protected. Mathematica requires square brackets
and does not accept underscores as valid letters for function names. Generic
code handling has to clear all these obstacles. Our solution will be described
below.

S.-C. Chou is probably one of the most diligent “proof writers” who
collected in [3] more than 500 examples of geometric statements and appro-
priate algebraic translations.

During our work on the SymbolicData GEO collection we stored (and
partly modified and adapted) about 200 of them. We collected also solutions
of geometry problems from other sources, e.g., the IMO contests, see [7].
Much of this work was done by my “proof writers”, i.e., the students Malte
Witte and Ben Friedrich who compiled first electronic versions for many of
these examples.

4 GEO Records and GEO Code

4.1 About the SymbolicData Data Base Structure

We mentioned already in the introduction that records in the SymbolicData
data base are stored as ASCII files (sd-files) in a (flat) XML like syntax. A
typical example of such a record, the record Parallelogram_2 in the GEO
table, is given on page 11. It contains information and a mechanized proof
scheme for the following geometry theorem:

The intersection point of the diagonals of a parallelogram is the
midpoint of each of the diagonals.

The sd-files are tight to Perl hashes (sd-records) by the SymbolicData
tools in a transparent way. Hence additional Perl programming required for
benchmark activities (the SymbolicData Compute environment is still under

10

EE R
Record ’GEO0/Parallelogram_2’

<Id> GEO/Parallelogram_ 2 </Id>

<Type> GEO </Type>

<Key> Parallelogram_2 </Key>
<prooftype> constructive </prooftype>
<parameters> [ul, u2, u3] </parameters>
<coordinates>

$A:=Point[0,0]; $B:=Point[ul,0]; $D:=Point[u2,u3];

$C:=intersection_point[par_line[$D,pp_line[$A,$B]1],
par_line[$B,pp_line[$A,$D]1]1];

$P:=intersection_point[pp_line[$A,$C],pp_line[$B,$D]];

</coordinates>

<conclusion>

$result:=sqrdist[$A,$P]-sqrdist [$C, $P];

</conclusion>

<CRef>

PROBLEMS/Geometry/Parallelogram => problem description

</CRef>

<Comment>

Feb 10 2002 graebe: translated to GeoProver 1.2 syntax

</Comment>

<Version> ... </Version>
<PERSON> graebe </PERSON>
<Date> Nov 1 1999 </Date>

End of record ’GE0/Parallelogram_2’
R

The GEO record ‘Parallelogram_2’

development) can easily access the values of the different attributes of a
record. In section 6 we describe a benchmark computation on GEO records
that gives a real estimation of additional Perl programming efforts required
to set up such a computation. Note that since the detailed requirements of
such a computation are almost unknown to the SymbolicData developers it
is difficult (and probably even not worth) to design a reliable interface.

Similar records share a common structure and are collected into tables.
The SymbolicData geometry theorem proof schemes are collected in the GEO
table. The corresponding sd-files are physically stored in a subdirectory GEO
of the SymbolicData data directory ($SD_HOME/Data by default).

11

HEHBHBHHEHEH AR HEHAERBEHERHEHBEH R HEHBEH AR B H R B AR B H BB
Record ’META/Key’

<Id> META/Key </1d>

<Type> META </Type>

<Key> Key </Key>

<Syntax> KeyName </Syntax>
<description>

Identifying key of the record. Must be unique within its Type
</description>

<help>

Identifying key of the record. Must be unique within its Type
</help>

<htm> ignore </htm>

<level> 0 </level>

<order> 3 </order>

<Version> ... </Version>
<PERSON> graebe </PERSON>

<Date> Jul 6 2000 </Date>

End of record ’META/Key’
HHHHHHHHH SR R S S R ST

The META record ‘Key’

The common structure of the records within such a table is reflected in
a common XML tag structure (attributes) that is fixed in another table —
the corresponding META table. This allows for flexible extension not only
of data but also of data structures and tag syntax restrictions. We refer to
[1, 6] and the SymbolicData documentation for more details.

The content of a typical META record (the description of the attribute
Key) is shown on page 12. It is stored in the same format as a data
record and contains information about importance (level), output order
(order), HTML handling (htm), verbose and detailed descriptions (help
and description) of the attribute to be defined. Note that most of these
tags can be omitted since they have default values.

Let us describe the attributes of the GEO records in more detail. Sev-
eral attributes are predefined, i.e., inherited from a “master table”. Id, Key
and Type identify the record within its table resp. within the data base.
Changelog, Comment, Date, PERSON and Version contain information about
the history of the given record. In particular, the value of the attribute
PERSON is a reference to the table PERSON that collects information (affili-

12

ations, email addresses, etc.) of persons who contributed to SymbolicData.
This guarantees a fair authorship management of different contributions
along the GNU Public License conditions that apply to SymbolicData as a
whole.

The CRef attribute, also inherited from the master table, attaches cross
reference information to one of the records in the (primary) data base. In
relational data base models such cross references are usually stored in special
relation tables that can easily be searched for different keys. We decided to
put this cross reference information into one of the main (primary) records
and to provide tools to extract it as secondary data in SQL compliant form.
This avoids to develop anew elaborated search and select facilities for the
primary (XML based) data.

Cross references in the GEO table usually point to the PROBLEMS
table that contains descriptions of the geometry theorems to be proved.
Note that different GEO records can point to the same PROBLEMS record
since there may be different proof schemes for the same theorem. Other
cross references point to GEO records as foreign keys, e.g., from the INTPS
table of polynomial systems if the system is generated from the GEO record,
from the BIB table of bibliographical references, if a paper refers to the proof
scheme stored in the record, etc. We will not go into detail about this point
but concentrate on the main attributes of the GEO records.

4.2 The Main Attributes of the SymbolicData GEO Collection

GEO record proof schemes are divided (roughly) into two types according
to their prooftype attribute: constructive and equational.
The generic variables are provided as values of two attributes:

parameters a list u of independent parameters
vars a list x of dependent variables (equational proofs only)

For equational proofs the variable lists x and u are chosen in such a way that
u is a maximal independent set of variables for the given algebraic variety
over k[x,u] as defined above.

Since the proof schemes should translate into different target systems we
need a special language to write them down. The structure of this special
GEO code will be described below. We continue with the description of
the other attributes.

The following attributes (with GEO code values) are mandatory:

13

coordinates assignments that construct step by step the generic
geometric configuration of the proof scheme

conclusion the conclusion of the proof scheme (optional if proof
type is deduction)

This already completes the data required for a constructive proof scheme.
For equational proof schemes the following additional (optional) attributes
with GEO code values are defined:

polynomials a list of polynomial conditions describing algebraic de-
pendency relations in the given geometric configura-
tion

constraints a list of polynomial non degeneracy conditions

solution a way to solve the algebraic problem (given in ex-
tended GEO code syntax)

The proof idea can be sketched within the ProofIdea attribute as plain text
if not yet evident from the code.

4.3 The Generic GEO Code Syntax

The main reason to invent a generic GEO code language results from our
aim to run geometry theorem proof schemes on different target CAS. A
good but expensive idea would be to define an appropriate (context free)
programming language and to write cross compilers or to invent a reliable
(full) XML markup and to use style sheet translations. Since the syntaxes
of the target languages are very similar we can avoid these efforts and define
the generic language in such a way, that it can be cross compiled using only
regular patterns. Due to its elaborated pattern matching facilities Perl is
best suited to realize this approach.

Since proof schemes are composed by a sequence of assignments with
nested function calls as right hand sides referring to previously defined geo-
metric objects and rational expressions as arguments the GEO code language
should meet the following requirements:

(1) Due to different naming conventions of the target CAS it should be
possible to identify (and substitute) variable, symbol and function
names.

(2) It should easily be possible to map the generic GEO code to the syntax
of the target CAS without name clashes.

14

(3) It should provide a concept not only to translate the proof scheme, but
also to run and evaluate it on the target CAS. For equational proof
schemes this requires additional efforts to give a “generic” solution for
the algebraic part of the problem.

For (1) note that in this context the words ‘variable’ and ‘symbol’ are
used in a slightly different meaning compared to the previous paragraph:
the former are ‘symbols with values’ (e.g., names for points, lines, circles),
the latter ‘symbols without values’ (i.e., names for parameters and vari-
ables in the previous sense). It is a special peculiarity of symbolic com-
putations that these name spaces usually overlap. For geometry theorem
proof schemes this overlap can be avoided. We use Perl like syntax (i.e.,
\$ [a-zA-z] [a-zA-z0-9] * in Perl regexp notation) for variable names and
small letter / digit combinations (i.e., [a-z] [a-z0-9]* in Perl regexp nota-
tion — we don’t allow capital letters to avoid name clashes both in Reduce
and Mathematica) for symbol names.

Most CAS use parentheses both to group arithmetic expressions and in
function calls. Since this cannot be distinguished within a regular language
we use the Mathematica convention (i.e., brackets) for function call notation.

To compile lists (e.g., in the polynomials part) and to pick up numer-
ators and denominators (e.g., in the conclusion) the GEO code syntax
provides the additional function names List, Numerator and Denominator.

For (2) note that if the user follows a slightly more restrictive naming
convention for symbols they map one to one to each of the target CAS. Due
to the common origin almost the same applies to the GeoProver function
names and the syntax of rational expressions. Slightly more efforts are
required for variable names, since typical names for points (e.g., C, D, F)
are protected in some of the target CAS. Below you find the 3-line Perl
script (it is part of the SymbolicData tools) that translates the generic GEO
code to MuPAD.

sub MuPAD

{
local $_=shift;
tr/\\1/\(\)/;

s/List\[/geoList\[/gs; # since List is now a key word
s/\$(\w+)/_81/gs;

return $_;

15

For (3) we systematically assign the variable names $polys, $con and
$result to the list of polynomials, to the conclusion (in equational proof
schemes) and to the result (in particular to the conclusion in constructive
proof schemes) if applicable. This allows easily to monitor the results of the
computation. For constructive proof schemes the translated GEO code
with the GeoProver package for the given target CAS previously loaded —
should return 0 (or a list of zeroes if several conclusions are to be verified).

A generic solution for the algebraic part of equational proof schemes
is given (with the same notational conventions) as value of the attribute
solution. It uses the following additional “generic” functions:

geo_gbasis[polys,vars]
to compute a lexicographical wrt. vars Grobner basis of polys

geo_normalf [p,polys,vars]
to compute the normal form of the polynomial or list of polyno-

mials p wrt. the given polynomials polys (usually a lexicographical
wrt. vars Grobner basis)

geo_solve [polys,vars]
to find the zeroes of the list of polynomials polys wrt. vars

geo_solveconstrained[polys,vars,nondegs]
that works as geo_solve but take the list of polynomials nondegs

as non-degeneracy conditions
geo_eliminate [polys,vars,evars]
to eliminate the variables evars from the polynomials polys in the
variables vars
geo_eval[con,sol]
to substitute the output sol of geo_solve in the expression con

geo_normal [u]
to compute a rational normal form of u

geo_simplify [u]

to simplify u
There are small supplementary files with collections of function definitions
for each of the target CAS that map these generic functions to the respective

syntax or give a reliable solution using the algebraic tools provided by the
CAS.

16

5 Using the SymbolicData Tools for the GeoProver
Source Code Management

Several points around the GeoProver code management suggest to look for
a generic solution:

(1) Changes or extensions of the GeoProver have to be incorporated into
the package sources for each of the target CAS. This causes problems for
the version management and is a permanent source for code inconsistency.
Hence one may ask if some of these changes could be done once and in a
generic (and consistent) way.

(2) An efficient compilation of geometric configurations usually makes
good use of geometric “macros”, i.e., shortcuts for construction schemes of
standard tasks that are built up from a small number of elementary steps.

For example, the sentence “construct the circumcenter of the triangle
ABC” can be decoded as “construct the intersection point of the midpoint
perpendiculars of AB and AC”.

Such macros correspond to nested GEO code function calls

circumcenter[$A,$B,$C] =
intersection_point[midpoint_perpendicular[$A,$B],
midpoint_perpendicular[$A,$C]]

The code required to add such a function to the GeoProver packages for
each of the target CAS could easily be generated from this generic GEO code
statement. Of course, this requires much more efforts than the translation
of GEO code proof schemes since the target CAS greatly differ syntactically
and even conceptually in the way how functions and packages have to be

defined.

(3) The different target CAS have very different, differing from version
to version and in most cases not yet thoroughly tuned policies for pack-
age documentation. This requires a flexible organization of the GeoProver
documentation that keeps the essential parts close to the sources.

Since the SymbolicData tools can be combined also with alternative data
bases I used them to manage a GeoProver code data base. It consists of

e inline parts for each of the target CAS with the (CAS-specific) “inline”
definitions of the most elementary functions,

e a SymbolicData Prover table that collects information about all Geo-
Prover export functions (one per record),

17

e additional Perl code (SymbolicData action definitions) to compile the
package code for the target CAS from these sources.

A typical record (of the function centroid) of the Prover table is given
below. At the moment it provides the function name (attribute Key), syn-
tactical information about the function call (attribute call), a generic GEO
code definition (attribute code — if it is absent this function is defined in the
inline part), a short (attribute verbose) and a more detailed description.

it i S R S S R S S R
Record ’Prover/centroid’

<Id> Prover/centroid </1d>

<Type> Prover </Type>

<Key> centroid </Key>

<call> centroid[$A: :Point,$B: :Point,$C: :Point]: :Point </call>
<verbose> centroid of the triangle </verbose>

<code>

intersection_point[median[$A,$B,$C] ,median[$B,$C,$A]]
</code>

<description>

Centroid of the triangle ABC.
</description>

<Date> Feb 9 2002 </Date>

End of record ’Prover/centroid’
#d S S R R S R S S

The record ‘Prover/centroid’ in the GeoProver code data base

Now the code base can be extended easily and in a consistent way with
new macros: Define a new Prover record and rebuild the sources for the
target systems. For example, to add a new function circumcenter the
record should essentially contain the following information:

<call> circumcenter[$A::Point,$B: :Point,$C::Point]::Point </call>
<verbose> circumcenter of the triangle </verbose>

<code>

intersection_point[

midpoint_perpendicular[$A,$B] ,midpoint_perpendicular[$A,$C]]
</code>

<description>

The circumcenter of the triangle ABC.

</description>

18

6 Benchmark Computations on GEO Records

We conclude this paper with some remarks about the efforts required to
really set up benchmark computations on the GEO records with the Symbo-
licData tools. We report on the computations for a beta test of MuPAD 2.5
since they reflect exemplary these efforts.

For a first screening we posed the following general conditions:

(1) We compile all examples into a single input file /tmp/mupad.in to
avoid multiple startup overhead.

(2) We cancel the computation of a given example with the traperror
MuPAD function if it spends too much computing time.

(3) We run the computation as batch process
mupad-2.5 </tmp/mupad.in >/tmp/mupad.out &

We use the SymbolicData tools to create the required input file. Note
that the tools are driven by the main program symbolicdata. It allows
to access the different tasks defined in the basic Perl modules through an
elaborated actions concept. Its synopsis is

symbolicdata [-req file]l actions [options] [args]

On start-up, symbolicdata loads all the basic Perl modules, initializes the
data base, parses the command-line arguments up to the mandatory action
argument(s), and loads the global action hash that specifies, in a well-
defined format, all known (or, “registered”) actions and their properties.
This action hash can easily be extended at run-time using the first (optional)
-req file argument, where file is the name of a Perl module containing
the new action definitions. It is loaded before the actions are parsed. For
more details we refer to [1, 6] and the SymbolicData documentation.

We use this extension concept for our goal, compose the required action
definition, save it to a file and call it with symbolicdata. You find the Perl
code for the new SymbolicData action MuPADTrapCode on page 22.

Some remarks on the code:

e The req slot of the action activates the SymbolicData Perl module
GEO/GEO.pm that contains functions to map GEO code to different
target CAS. See code part (1).

e The argvcall slot is a special action mode to process all arguments
at once. It requires to expand the arguments (i.e., sd-file names) and
to pick up the corresponding records. This is done in code part (3).

19

e Code part (2) prints the MuPAD preamble (path setting and initial-
ization code for the MuPAD GeoProver package) to stdout.

e Code part (4) translates the GEO code of the proof scheme of the
record $r to the MuPAD syntax.

e Code part (5) is (almost) pure MuPAD code. It defines a function
geotest (anew for each record) with the MuPAD code of the proof
scheme for the given record that is called later on with traperror and
time to time or interrupt the computation.

The remaining code analyzes the output of the traperror call and the
content of the variable _result (the translation of $result to MuPAD
code) if the computation finished.

All MuPAD code is sent to stdout and should be redirected to the
desired file.

References

1]

0. Bachmann and H.-G. Grabe. The SymbolicData Project: Towards
an electronic repository of tools and data for benchmarks of computer
algebra software. Reports on Computer Algebra 27, Jan 2000. Centre
for Computer Algebra, University of Kaiserslautern.

See http://www.mathematik.uni-k1l.de/"zca.

S.-C. Chou. Proving elementary geometry theorems using Wu’s algo-
rithm. In Contemp. Math., volume 19, pages 243 286. AMS, Provi-
dence, Rhode Island, 1984.

S.-C. Chou. Mechanical geometry theorem proving. Reidel, Dortrecht,
1988.

S.-C. Chou. Automated reasoning in geometries using the characteristic
set method and Grobner basis method. In Proc. ISSAC-90, pages 255
260. ACM Press, 1990.

H.-G. Grabe. GEOPROVER - a small package for mechanized plane
geometry, 1998-2002. With versions for Reduce, Maple, MuPAD and
Mathematica.

See http://wuw.informatik.uni-leipzig.de/ compalg/software.

H.-G. Grabe. The SymbolicData benchmark problems collection of poly-
nomial systems. In Proceedings of ADG-02, Karlsruhe, 2002. to appear.

20

[7]

[10]

[11]

The International Mathematical Olympiads, since 1959.
See, e.g., http://www.kalva.demon.co.uk/imo.html.

The SymbolicData Project, 2000-2002.
See http://www.SymbolicData.org.

W.-T. Wu. Some recent advances in mechanical theorem proving of
geometry. In Contemp. Math., volume 19, pages 235 — 241. AMS, Prov-
idence, Rhode Island, 1984.

W.-T. Wu. On the decision problem and the mechanization of theorem-
proving in elementary geometry. In Contemp. Math., volume 19, pages
213 — 234. AMS, Providence, Rhode Island, 1984.

W.-T. Wu. Mechanical Theorem Proving in Geometries. Number 1
in Texts and Monographs in Symbolic Computation. Springer, Wien,
1994.

21

HHESHHHH G HH GBS H B HGHH R B GRS H SRS SRR R R T
$ACTIONS -> {MuPADTrapCode} =
{
req => ’GE0/GEQ.pm’, # (1)
argvcall => sub {

print Preamble::MuPAD()

."Pref::echo(FALSE) ;Pref: :prompt (FALSE) ;\n"; # (2)

my $maxtime=200;

shift; my $arg=ExpandArgv(shift);

my (@l,$r,Qu);

map push(@$1l, Record->new($_)), (@$arg); # (3)
for $r (@3%1)
{
@u=GED: :CreateSolution($r, ’MuPAD’); # (4)
print <<EQT; # (5)

//==> Example $r->{Key}
clear_ndg(Q):
geotest:=proc() begin
$ultl]
end_proc:
print (Unquoted, "##> $r->{Key} starting");
te:=traperror (print (time(geotest())),$maxtime) ;
if te=0 then
print (Unquoted, "##> $r->{Key} finished"); print(_result);
elif te=1320 then print(Unquoted,"##> $r->{Key} timed out");
else print(Unquoted,"##> $r->{Key} error");
print(prog: :error(te),lasterror())
end_if:
EOT
}
print "quit;\n";
},
};
HEHBHBHHEHEH AR BB HEHHEHBRHEHBEH AR R ARG R AR HAH G HEHHEH RS HEH B H B R A

Perl code for the MuPADTrapCode action

22

