HANS-GERT GRABI

The aim of Lhis paper is lo prove Lhe exaclness of Bresinsky’s resolution [1] for monomial
curves in P? using Griabner bases. Furlher we construel a resolution for monomial Gorenslein
curves in A%

I, MONOMIAL CURVES IN P2

A monomial curve in P, ka field, is the projective closure of the
affine curve (i, {™, (™), n, <<n, <mn, and ged (%, By, m3) = 1. In [3]
an algorithm was developed to construct a minimal generating set for the
corresponding prime ideal P(ny, 0, n5) = P c S =k [z, @, @y, x5
For this purpose let

fi=ap —

Jo = a3 — apr afe, o, minimal, o, < « if f; # fa

1 2%u, o, minimal,

Jo = af — afm a3», o3 minimal, oy < o if f, # f;

be the generators of the defining ideal P’ of the affine curve. Two of them
may coincide up to sign. Following [1]or [3]set {i, jl = {2,3}. Then

Bty = Lpny + By,

Biw; = By + By By < By

produce a new relation
(35 + Bu) = (B — Ba) 7y + (85 + B)) 1y

If all the generators fi, f,, f; are distinet f, can be derived from f; and
[z by this procedure. Indeed, assume

P pTiet s | @i 2g ¥g—dga
Ja =& gl &y

is not fy(x, > oy, otherwise o, would not be minimal). Hence a; < oy +
-+ a35. Choose q such that 0 < o5+ @y, — ¢ a3 < 25, Then («, —
— Gy — g %y) My A (R — oy — G %g5) My o+ (o — g — any) Mg = 0.
The coefficients can’t have the same sign. But this contradicts the mini-
mality of either «; or «, or a,.

Hence if one starfs with two distinet generators, ec.g. f; and o
the above procedure produces new elements of P’. If we proceed as in
the Euclidean algorithm for the powers of x; successively and homogenize
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¢ resulting binoms we get a minimal generating set of P il we contlinne
il & homogenized hinom with pure z,-power arises. Thiy way |

- . . . . " —— ﬁ.(h
oduced using f, and a certain Jansa(?) < i,fori > 2 ‘

2. THE GROBXER BASE

~ Order monomials degreewise and monomials witly equal degree
Jcographicaily assuming I < &y < @3 For a polynomial f denote
M(f) the greatest monomial appearing as a summand in /, and M(1)=
CM(f) : f e I) the ideal of leading monomials of I. A sof of clements
Jor- - 9 € I is called a Grobner base if M(gy). ..., M(g,) generate
1), see [4] or [6]. In our case the basis f,, ..., f, constructed by the
.:w.;rsu above yields a Grobner base of P as will be shown later.
1ave

M(f) = ]
M(fy) = agr age
| for M(f.m) = 285 ads
and M(fy) = a%, .t“.:
llows  M(fy,,) = el PRI S n,

by

(it fy # f, and n > 2)

or viceversa, {z, ji — {2,3i

M(fs) = @5 with e = g, -+ Bas

of t.%m same kind (¢ < j) then v, > 1 8 <8 OF g < e Note
a(i) = a(k) for a(k) < i < k.

So M(f,) is either afizd or xyi 5 (1 <n) and if M(f) and M(f;)

3. THE RESOLUTION

A8 was shown in [5] or [6] a minimal resolution of N/IMT) ean be

I to a resolution of S/I. Moreover gy, . ..,g, is a Grobner base if and
if this lifting is possible. So le(’s construct a minimal resolution
[M (I). For this purpose one should take Taylor’s resolution and
mize it as described in [5]. Recall some basic facts and definitions.
Consider an ideal J — (3, . .., M,) generated by monomials. Let
be the set of all k-tuples of elements from -0k and Ind =
) Ind,. Set

M(I): =lem(M,: iel)

: I M(I) _
M P=(=1)y0n ) for e I e Ind
1 e MI — k) % 6

anda (L, k) = #{iel:q < K}

0 l@?nah .......}mr.w.gn.ﬁﬁlvr@\%._f%c

with f
(1) dey =3 M|~ Vers

kel L..‘.lu m..w

is a resolution for S/.7, see [7]. This resolution is not minimal in general.

To minimize it one has to delete dependent syzygies. They correspond
to basic elements with indices f and I - k (k ¢ I) with M(I) = M(I + k).
It all I 44, j# k(jel) have heen deleted earlier this procedure looks
very pleasant because no substitution arises, see [5]. BEm can be attained
in our situation as we will show in the sequel. More precisely we show that

Ind; = {(12), I} U {(a(k), k + 1), (kb +1): k=2,...,n — 2}

form a basis of the second syzygy module (I, to be defined later) while

Ind; = {(123)} U {(a(k), &, E+1): k=3,..., n—2}

for the third syzygy module of J. The proof is by induction on k.
Assume that all T<{1, ..., k},|I|>2 not listed above, have bzen deleted

:ribed in

without substitution as de

from the ba

&
M(faw) = @b @) M(fy) = att adh, M(fyyy) = aFHiaion,

5], Assume w. 1. o. g.

It M(f;) = afeadi(i <k) then M(i, k, k + 1) = M(i, k + 1). Hence there

is a one-to-one correspondence between I > (i, k

1) not containing

kand I -~ k. None of them has been deleted earlier, Hence all of E:MJ
1 3 : 3 * el ' e, i »
can be deleted as in [5] without substitution. If M(f;) = a}i 5 then by

construction @ < a (k). Assume i < a(k). Then M(i, a (k), k o D=
= M (i, k4 1) and I o (i, k4 1) can be deleted without .,.J.:vﬁ_w.ﬁ._:.i_.ﬂ
as above. The remaining basic elements arve (a(k), k - 1), (k, k + 1) and
(a(k), k, k -4 1). The other possible cases for M(f,x)y M(fi) and M(fy+;)

can be treated in the same manner.
It k-+1=nweget M, =

v &

cAssume M(foap)

=Y

£ ..,. Joaim-1)
x~a2|d,wm tn-1}y

m N b o — vl
L.‘__ﬂﬁcﬂz1_u = H.Hwalu..w._wzl—. ._._:—: [ &E:FH: Yain-1) < (n_1- It L.vhﬁﬁ.v .H-D»u...

we must have 4 < a(n — 1) and this way for i # a(n — 1) M1, a(n —

— 1), ») = M(i, n) = a¥'a;.

If M(f) = anaf then v; > v, > Yau_p hence M(i, a(n — 1), n)=

L

= M(i, n) = afurges

Thus all Is(n) except of I,: = (a(n — 1), n)

(and (n) of course) ean be deleted without substitution in this .\Fwa.. _‘H.,.w:w
other ecase H.ﬁﬁ.?lhv = .\,:,m\auu%ma..uu ha = T.ﬁ. — 1, ...:L an be treated in the

same manner. We proved the following
’ PR i :
(2) 0 — ,@H_im il %.:;n — Nlnd, = S =S/ -0

THEOREM. with d as in (1) is @ minimal resolution of S/.J.

The resolution givenin [17] “fulfills” the complex (2) with respect to

the basic straightening relations. Hence it is exact and Tl 1S

&

Grébner base for P’ as claimed, by [6]. Moreover the :c_:c.m,‘;:ﬁi forms
Fy,..., F, are a Grobner base for P, too. The homogenizing variable

I, appears as the deformation parameter of [5].



4. GORENSTEIN AFFINE MONOMIAL CURVES IN At

A monomial curve in A! is a curve with coordinate ring R = kim,
", &, )< kit], ged (ny, ng, Ny, %) = 1. The Gorenstein curves (ie.
£ — Gorenstein) among them are classified in [2] to be either complete
mtersections or generated by 5 elements. The former ones are resolved
by the Koszul complex. For the latter ones and S = % [ 1y By Xy D] We
have B = S§/P with P generated by i

.N.m = 3oy — ot

Jo = a3 — apape

f3 = a5 — xpgpie

Ji = 27 — afe pie

Js = @pmaie — xiex, ([2], Theorem 3), with
O<ap <o 1<4,j<4) ap= oy oy, 0 = 2, Lyny

% = %3 + g oy = oy 4 oyf(and the n, specitied, too), ([2], Theorem 5).
Take H = (1 <2 <3 <4) and the lexicographic order corres-

ponding to the grading deg ®; = n,. Then for the discrete RSL, ie. the
ring corresponding to the monomial ideal of leading forms of P, we get

M(24) = M(245), M(34) = M(134),
M(35) = M(135), M(12) = M(125).

Delete the corresponding basic elements as describad in [5].Substitution
will arise at the last stap only. Filling up the resolution obtained this
way we get

0 .I_;w.m.mv,@.al..&.v FdEE e g o RO )

B4 13 14 15 23 25 4b
1| a* ghe gm 0 0 0
EE 0 S 0 Js oy afe
3 |—ape —xje—xp —f, 0 0
4] 0 —a8r 0 0 xfu g
b l—xf* 0 —af* 0 —axfe —afe

_
14 — X Fay % a2
_ ¥ > The terms filled up are printed
15| agegie —gi in boldface. Tor f, the straigh-
tening part is filled up.
23| @ —1
25| —1, 0
45 | —x7? D

A further minimization deletes ey,
B’ A’
0 -8—->8—=58 8§ R —>0.
For A’ remove the column (23) in 4. B'is the transpose of the matrix

13 14 15 25 45

|
Hmm‘ f.\m ,? .I%_ Ty —H

The resolution is symmetric as expected for Gorenstein rings.
Referees’s remark. If one takes the columns of the matrix A in the
order 45, 13, 25, 15, 14 and one changes the sign of 45 and 15, then one
3 2 ? ? = )

'obtains a skew symmetric 5 x5 matrix @, whose skew symmetric 4 x 4

minors give 5 pfaffians which generate the ideal I. This way, the reso-

lution found in this paper is isomorphic to what we expeet in view of

D. A. Buchsbaum, D. Eisenbud, Algebra siruc'ures for finite free resotu-

tions and some structure theorems for tdeals of codimension 3, Amer. 1. of
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