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Abstract

This paper continues our study of applications of factorized Gröbner basis computa-
tions in [8] and [9].

We describe a way to interweave factorized Gröbner bases and the ideas in [5] that
leads to a significant speed up in the computation of isolated primes for well splitting
examples.

Based on that observation we generalize the algorithm presented in [22] to the compu-
tation of primary decompositions for modules. It rests on an ideal separation argument.

We also discuss the practically important question how to extract a minimal primary
decomposition, neither addressed in [5] nor in [17]. For that purpose we outline a method
to detect necessary embedded primes in the output collection of our algorithm, similar to
[22, cor. 2.22].

The algorithms are partly implemented in version 2.2.1 of our REDUCE package CALI
[7].

1 Introduction

The computation of primary decompositions is a central goal and has attracted the attention
of specialists in constructive commutative algebra for a long time. It was a popular topic
illustrating and bringing together very different techniques and various approaches in “pre
computer” times, see e.g. [16].

A first thorough constructive approach to primary decomposition, collecting also the ideas
and observations on this topic known in the community before, is contained in the fundamental
work of A. Seidenberg in the 70’s and 80’s, see [18], [19], [20]. It heavily influenced the
first algorithmic attempts to compute primary decompositions using modern methods as e.g.
Gröbner bases in [13]. These attempts culminated in the fundamental paper [5] that collected
known pieces together, filled up the gaps and altogether presented the first general primary
decomposition algorithm, that could be (and was) implemented in a computer algebra system.

Several papers, published almost at the same time, proposed similar ideas or improvements
to the original algorithm as e.g. [14] or [11]. There are also papers generalizing the ideas of
[5] to a more general context as e.g. [23], [1] or [10]. The primary decomposition algorithm
of [5], originally formulated for ideals, may be extended also to (relative) submodules of a
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finitely generated free module, as explained in [17]. The only completely different approach
to primary decomposition, that may be applied to general examples, was presented in [4].

Regardless of the wide attention that this theoretical work attracted in the community,
up to now there are only a few implementations of the algorithm: As far as we know, the
AXIOM implementation of the authors of [5], an implementation in MAS by H. Kredel for
zero dimensional ideals, our implementation in the REDUCE package CALI [7] and the
implementation in the computer algebra system Risa/Asir [15] by the authors of [22]. Only
CALI offers primary decomposition also for modules.

It was the aim of this paper to collect the experience obtained during our implementation of
the above algorithm and to describe some new algorithmic ideas proved to be useful especially
for the computation of primary decompositions under the assumption that we know already
a list of isolated primes. During the preparation of this paper we became aware of analogous
considerations in [22], allowing several shortcuts compared to an earlier version of this paper.
Different from [22], where the authors consider only primary decomposition of ideals, results
are explained here in general for pairs of submodules N ⊂ M of a finitely generated free
module F .

After some preliminary work we first discuss, how factorization may be involved in an early
stage of the computation of isolated primes. It turns out empirically, that the same advantage,
observed for the factorized Gröbner basis algorithm in contrast to the ordinary one solving
polynomial systems of equations in [8] and [9] for well splitting examples, holds also for the
computation of isolated primes. Of course, this reflects the general observation, that usually
geometric properties of ideals (here: the computation of isolated primes) are computationally
more handy than algebraic ones (here: the computation of primary decompositions).

To extract finally the primary components we use as in [22] ideal separators with respect
to a list of isolated primes, computed in advance. We generalize this approach to a (relative)
module situation, too, i.e. separate the module N inside M into (almost) primary pieces. In
contrast to the original algorithm in [5] this and the extraction of the true primary pieces
needs no change to normal position.

In a third part we discuss the practically important question how to extract a minimal
primary decomposition, addressed neither in [5] nor in [17]. First [22] contains a method to
detect irrelevant primary components in a general primary decomposition. Their argument
uses a careful examination of the interdependencies between different branches of the decom-
position tree. We outline a “local” method, that allows to decide for a given prime in a list
of primes, containing all associated primes, whether it is associated or not.

We don’t repeat here a comparison between the old and new methods at CPU time
level but refer the reader to [22] for such a comparison but conclude with some examples to
demonstrate the proposed new method “at work”.

2 Preliminaries and Notations

2.1 Notations

Let k be a field, S = k[x1, . . . , xn] the polynomial ring over k in the variables (x1, . . . , xn) and
N ⊂ M two submodules of a finitely generated free S-module F . For practical applications
M is usually the free S-module itself and N its submodule, but the theory and also the
algorithms developed below work in this more general situation as well. A special role is
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played by ideals as submodules of S itself, for which the primary decomposition theorems are
surely better known than in the general situation.

We assume S to be equipped with a Noetherian term order as defined e.g. in [2, 5.3].
For F we fix a free basis e = (e1, . . . , ek) and assume N and M to be given by sets of
generators in their representation wrt. e as vectors with polynomial entries. For practical
applications we collect these vectors into a matrix, such that the rows of that matrix generate
the corresponding submodule of F . In this setting we assume F to be equipped with a
compatible module term order as defined in [3, 15.2] (We do not restrict ourselves to the
special module term orders considered in [17]). Moreover we assume the reader to be familiar
with the ideas of Gröbner bases for ideals and also for submodules of free modules; see the
same monographs. We will use the corresponding notions without further explanation.

2.2 Primes and Primary Components

Lets repeat for convenience the definitions and existence statements on primary decomposition
of submodules as given e.g. in [21, ch. 9]: N is said to be a primary submodule of M precisely
when M/N 6= 0 and every zero divisor of M/N is already nilpotent. In this case the ideal
P := Rad(AnnS(M/N)), the radical of the annihilator of M/N in S, is a prime ideal and we
say that N is a P -primary submodule of M . If N1, . . . , Nm are P -primary submodules of M ,
then so is ∩m

i=1 Ni. Hence P -primary submodules can be collected together.

For an arbitrary submodule a primary decomposition of N in M is a representation of N
as an intersection of finitely many primary submodules of M . Such a primary decomposition

N = N1 ∩N2 ∩ . . . ∩Nm

with Pi-primary modules Ni ⊂ M (i = 1, . . . ,m) is said to be minimal precisely when

(a) P1, . . . , Pm are pairwise distinct, and

(b) for all j = 1, . . . ,m we have

Nj 6⊃
⋂
i6=j

Ni.

The first uniqueness theorem states that for such a minimal primary decomposition the
set of primes {P1, . . . , Pm} is uniquely defined. These primes are called the associated primes
of M/N . We denote this set by Ass(M/N). Their union is exactly the set of zero divisors
of M/N . The support Supp(M/N) := {P ∈ Spec S : (M/N)P 6= 0} consists of all primes
containing one of the associated primes. The dimension dim(M/N) is the maximal possible
length of an ascending chain of primes in Supp(M/N).

The prime ideals in Ass(M/N) that are minimal with respect to inclusion are called the
isolated primes of M/N , the remaining associated prime ideals are the embedded primes
of M/N . Geometrically, the isolated primes correspond to the different components of
Supp(M/N) as a subset of the affine scheme Spec S. The embedded components are not
visible from the geometric point of view but represent more delicate algebraic properties and
cause the most trouble in applications.

The second uniqueness theorem states that not only the primes but also the primary com-
ponents corresponding to isolated primes, the isolated components of N in M , are uniquely
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defined. The other primary components, the embedded components of N in M , need not be
defined uniquely.

In [5] the authors propose a recursive approach to find a (not necessarily minimal) pri-
mary decomposition: In each step they compute some of the isolated components (of highest
dimension) and a certain “remainder” to be decomposed recursively. It is this remainder that
introduces non-uniqueness for the shape of embedded components and that may produce
components not necessary for a minimal primary decomposition. Computationally it is not
advisable to use the above definition to detect them. Until CALI v. 2.2. we used a mutual
inclusion test instead. Testing different primary decomposition packages Kazuhiro Yokoyama
and Shimoyama Takeshi pointed out to me, that there must be something wrong. Indeed, this
shortcut is clearly incorrect. Below we present a test to decide for a given prime P whether
it is in Ass(M/N). Since embedded primes are defined uniquely, this allows us to filter out
superfluous components in a primary decomposition.

2.3 Quotient Computations and Primary Decomposition

Let N ⊂ M be two S-modules as before. Below we use various quotient computations to
separate primary components of N in M . Here we collect the necessary technical prerequisites.

Let J = (f1, . . . , fk) ⊂ S be the ideal generated by f1, . . . , fk ∈ S. We write

N :M J := {m ∈ M : J ·m ⊂ N} and

N :M J∞ := {m ∈ M : ∃ k > 0 Jk ·m ⊂ N}

for the quotient resp. stable quotient of N by J (in M).

Lemma 1 Let N be a P -primary submodule of M and f ∈ S. Then

1. N :M (f)∞ = M if f ∈ P .

2. N :M (f)∞ = N if f 6∈ P .

More generally, for an arbitrary submodule N ⊂ M and its primary decomposition N = ∩Ni

into Pi-primary modules Ni we get

N :M (f)∞ =
⋂

{Ni : f 6∈ Pi}

and for the ideal J ⊂ S
N :M J∞ =

⋂
{Ni : J 6⊂ Pi}

Proof : The first assertion follows immediately from the fact, that the multiplication
map by f on M/N is either nilpotent (for f ∈ P ) or injective (for f 6∈ P ).

The other statements are easy consequences of the first one and general quotient proper-
ties. 2

Lemma 2 For S-modules N ⊂ M the inclusions

Ass(N) ⊂ Ass(M) ⊂ Ass(N) ∪Ass(M/N)

hold. In particular, for a polynomial s ∈ S we get Ass(M/(N :M (s))) ⊂ Ass(M/N), i.e. if
N is P -primary in M , then either N :M (s) = M or N :M (s) is P -primary in M , too.

4



Proof : For the first statement see e.g. [21, ex. 9.42]. The latter statement follows from
the exact sequence

0 −→ M/(N :M (s)) −→ M/N,

induced by the multiplication by s. 2

2.4 Factorized Gröbner Bases

In addition to the notation introduced so far let k̄ be the algebraic closure of k and B :=
{f1, . . . , fm} ⊂ S a set of polynomials.

Z(B) := {a ∈ k̄n : f(a) = 0 for all f ∈ B }

denotes the set of zeroes of B over k̄.

The Gröbner algorithm with factorization is a powerful tool to decompose the zero set of a
well splitting polynomial system into smaller components. It invokes factorization of reduced
S-polynomials during the calculation of Gröbner bases and splits the computation into as
many branches as (different) factors occur. Since the algorithm is part of almost all general
purpose Computer Algebra Systems, we will not describe it here and refer the reader to [8]
and [9] instead, where we discussed this algorithm in great detail and employed it successfully
to decompose a given set of polynomials into triangular systems.

For our considerations below let’s fix only its input/output specification:

The Algorithm FGB(B) :
Input : A set of polynomials B ⊂ S.
Output: A list of Gröbner bases {Bi : i = 1, . . . ,m} with Z(B) = ∪Z(Bi).

It turned out that in practical examples often, especially with respect to the lexicographic
term order, the list of bases produced by the Gröbner factorizer consists already of primes
and hence presents a decomposition of (B) into isolated primes. Of course, this cannot be
guaranteed. Below we use it in a first step and complete the computation in a second step
along the lines of [5].

2.5 Reduction to dimension zero

A general tool, used in several places of our algorithm, is the base change trick proposed
in [5]: Consider some of the variables as parameters to reduce the general problem to a
zero dimensional one. A systematic study of consequences that can be derived this way is
contained in [12]. Here we generalize these ideas to submodules of a finitely generated free
S-module F , extending the results of [17] into a more computational direction.

Recall first the notion of independent sets: For a given ideal I ⊂ S the set of variables
(xv, v ∈ V ) is an independent set iff I ∩ k[xv, v ∈ V ] = (0). See [2] for the definition and also
a guideline to the history of this notion. [6] contains another explanation of this notion, its
connection to strongly independent sets, and discusses algorithms for an effective computation
of strongly independent sets.

[6] generalizes this notion also to submodules of F . Here we need a further generalization
to a relative situation. Let N ⊂ M be as above. We say that (xv, v ∈ V ) is a relative
independent set for N ⊂ M iff it is an independent set for I = AnnS(M/N).
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Let (xv, v ∈ V ) be a maximal (wrt. inclusion) relative independent set for N ⊂ M .
Denote by S̃ := k(xv, v ∈ V )[xv, v 6∈ V ] the extension ring of S that we obtain localizing at
σ := k[xv, v ∈ V ]\{0}, and by F̃ , M̃ , Ñ , and Ĩ the extension modules and the extension ideal
obtained from F,M,N , and I by the flat base change S −→ S̃. Since localization commutes
with taking annihilators we get Ĩ = AnnS̃(M̃/Ñ) and thus dim M̃/Ñ = dim S̃/Ĩ = 0.

Since S is an integral domain, there are natural embeddings S ⊂ S̃ and F ⊂ F̃ and we
can define retractions Ĩ ∩ S, M̃ ∩ F , Ñ ∩M etc.

Lemma 3 Let N be an P -primary submodule of M ⊂ F . Then one of the following two
alternatives holds:

1. If P ∩ σ = ∅ then Ñ is a P̃ -primary submodule of M̃ and Ñ ∩M = N .

2. If P ∩ σ 6= ∅ then Ñ ∩M = M .

Proof : Since primarity commutes with localization we have only to prove the assertions
about the recontractions.

For the first part assume n
s = m ∈ Ñ ∩M with n ∈ N, s ∈ σ,m ∈ M . Hence n = m · s

and m ∈ N :M (s) = N since s 6∈ P is a non zero divisor on M/N .
For the second part take s ∈ σ ∩ P . Since s is nilpotent on M/N there is a power e � 0

such that se M ⊂ N and every m ∈ M may be represented as n
se for an appropriate n ∈ N .

2

For arbitrary submodules N of F there is a close connection between N and Ñ . With
respect to a special module term order on F , one can even read off a Gröbner basis of Ñ from
a Gröbner basis of N . For this purpose we define an inverse module term block order wrt. V
on F in the following way: Let <1 be an inverse block order wrt. V on S as defined in [2, p.
390]. Then module terms m ei and n ej are compared by the rule

m ei < nej :⇔ m <1 n or
m = n and i < j

(i.e. in the sense of [17] < is the TOP module term order on F induced by <1). Wrt. such
a module term order the extension of a Gröbner basis B of N to F̃ is a Gröbner basis of
Ñ and a minimal Gröbner basis of Ñ can be obtained picking up the elements with leading
terms, that are minimal with respect to the (module) division order on F̃ . This generalizes
well known properties of ideals, see [5] or [2].

For retractions the situation is slightly more difficult. If P ⊂ S is prime then either
P̃ ∩ S = P (if P ∩ σ = ∅) or P̃ ∩ S = S (otherwise). In general retractions can be found
by a stable quotient computation from a Gröbner basis over S̃. For this purpose define a
denominator-free basis B of the module J ⊂ F̃ as a set of polynomial vectors in F such that
they generate J regarded as elements of F̃ . Such a basis can be constructed from an arbitrary
basis of J clearing denominators. Denote by (B) the module generated by B in F .

Lemma 4 Let B be a denominator-free Gröbner basis of J ⊂ F̃ and c ∈ S the product of the
leading coefficients of the elements of B regarded as polynomial vectors in F̃ . Then

J ∩ F = (B) :F (c)∞.
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Proof : As explained e.g. in [9] one can compute denominator-free in F̃ using the well
known pseudo normal form algorithm PNF(p,B). For p ∈ F it returns a denominator-free
pseudo S̃-normal form p′ ∈ F ⊂ F̃ with respect to B, i.e. satisfying z · p ≡ p′ (mod J) for a
certain unit z ∈ S̃ that can be chosen to be a product of leading coefficients of the elements
in B.

Since c is invertible in S̃ we have only to show, that J ∩F ⊂ (B) :F (c)∞. But since B is a
Gröbner basis of J over S̃, for a (denominator-free) element p ∈ J ∩F we get PNF (p, B) = 0
and hence p ∈ (B) :F (c)∞. 2

For ideals this is a slight modification of [5, 3.8.] or [22, A.8], where c is the product of all
leading coefficients in a Gröbner basis over S instead of S̃, and was first proved in this form
in [12, 1.3]. See also [2, 8.94] or [9].

3 Isolated Primes

For the computation of isolated primes we follow the original ideas explained in [5] with
modifications proposed in [11], see also [2, ch. 8.7] for details. Since these sources are easy
accessible, below we restrict ourselves to outline modifications (and non-modifications) caused
by FGB.

Let I ⊂ S be an ideal (e.g. I = AnnS(M/N) from above). To compute its isolated primes
in [5] the authors propose the following rough scheme:

1. Find a maximal independent set (xv : v ∈ V ) of I, e.g. from a Gröbner basis of I.

2. (Re)compute a Gröbner basis B of I with respect to an inverse block order wrt. V .

3. Change to S̃, extract the minimal denominator-free Gröbner basis B′ ⊂ B and the
product of their leading coefficients c ∈ S.

4. Compute the zero dimensional isolated primes of Ĩ and their retractions to S. This
yields a list of primes P1, . . . , Pm such that

Z(I) =
m⋃

i=1

Z(Pi)
⋃

Z(I + (c))

5. Compute the isolated primes of the (in most cases lower dimensional) ideal I + (c)
recursively and pick only those not containing one of the Pi’s.

By our experience, for practical applications it is better not to change to dimension zero in
one step, but to “slice the problem” descending the dimension in each step by one as in (the
final version of) [5]. Since such a variant rests on exactly the same ideas as above, we do not
enter into details here.

How may FGB be invoked ? In the first step one can compute factorized Gröbner bases
to split the problem in advance into possibly more handy pieces. This is at the same time
the most important invocation of FGB, since afterwards pieces tend to be almost prime, thus
seldom allowing a deeper splitting. In the second step (Gröbner basis recomputation with
respect to an inverse block order) FGB cannot be applied, since for the result V must remain
independent. This is not guaranteed for ideals strongly containing I. In step 4, by lemma 4
the retract may be computed as a stable quotient. Done as described in [2, 6.38] FGB might
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be invoked during the elimination step, but this is of limited use since the result is known to
be prime in this case.

It remains to discuss the zero dimensional part of the above algorithm. So assume I ⊂ S
is a zero dimensional ideal. Following the rules of [5] or [2, ch. 8.6] we would proceed as
follows:

1. Compute, e.g. by Buchberger’s approach (cf. [2, 9.6]), the monic generators of I ∩ k[xi]
for i = 1, . . . , n. Adding their square-free parts to the set of generators of I we get a
basis for the radical

√
I.

2. Make a generic (or moderate, as suggested in [11]) change of coordinates to put
√

I into
normal position with respect to x1 ([2, 8.67]) and decompose the monic generator of√

I ∩k[x1] into (pairwise non-associated) factors p1, . . . , pm. Then {
√

I +(p1), . . . ,
√

I +
(pm)} are the isolated primes of I.

Again, the first step strongly suggests that factorization should be invoked. A modifi-
cation of FGB for the monic generators mentioned above thus will do some of the work of
step 2 in advance and split the ideal already before changing coordinates. For many practi-
cal applications this reduces the computational amount in the second step to its necessary
minimum.

Note that, due to a reduction argument for the embedding dimension, we may moreover
restrict ourselves in the first step to those variables not contained among the generators of
the initial ideal of I. This is especially useful for pure lexicographic term orders, since on
the one hand factorized Gröbner bases of zero dimensional ideals tend to be in Shape Lemma
form (cf. [2, 8.77] and our observations in [8]) and on the other hand monic generators for
such variables are usually hard to compute.

4 Primary Decomposition

Starting from a set of isolated primes one can use ideal separation to compute the corre-
sponding primary decomposition. Let’s illustrate this approach at first for modules without
embedded primes.

Proposition 1 Let N ⊂ M be as above and assume that Ass(M/N) = {P1, . . . , Pm} contains
no embedded primes. For i, j = 1, . . . ,m take fi ∈ S such that fi ∈ Pj if i 6= j, but fi 6∈ Pi.
Then

N =
⋂

(N :M (fi)∞)

is a (minimal) primary decomposition of N in M .

This is an immediate consequence of lemma 1.

Note that the construction of fi is easy: Lacking embedded primes we find for each j 6= i a
(base) polynomial pij in Pj not contained in Pi. Then fi :=

∏
j 6=i pij has the desired property.

We say that fi separates {Pj : j 6= i} from Pi.
Since zero dimensional ideals are unmixed, this applies especially to the situation, when

dim M/N = 0 and allows the computation of a primary decomposition for modules of (rela-
tive) dimension zero without a coordinate change to normal position (at least in that phase
of the computation).
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In general we can do the same construction for the isolated primes of M/N , but neither
N :M (fi)∞ must be primary nor the above equality must hold. Thm. 2.7 in [22] contains
the necessary improvements for ideals, that generalize to modules in the following way:

Proposition 2 Let N ⊂ M be two S-modules and assume that L := {P1, . . . , Pk} are the
isolated primes of M/N . Take as in the previous proposition fi ∈ S separating L \ {Pi} from
Pi, Ni := N :M (fi)∞ and integers ei such that fei

i Ni ⊂ N .
Then

1. Ni is a quasi Pi-primary module in M , i.e. has a unique isolated prime Pi (and possibly
embedded components).

2. The sets Ai := Ass(M/Ni) = {P ∈ Ass(M/N) : fi 6∈ P} are pairwise disjoint.

3. For J := (fe1
1 , . . . , fek

k ) we have

N = (∩Ni)
⋂

(N + J ·M).

This is a decomposition of N into quasi primary components Ni and a component N ′ :=
N + J ·M ⊂ M of lower (relative) dimension.

Proof : By definition, fi vanishes on all associated primes of M/N not embedded in or
equal to Pi (and may vanish on some of the remaining primes different from Pi). Since by
lemma 1 a stable quotient with respect to fi cuts off all such components, this verifies the
first assertion.

By construction P ∈ Ass(M/N) may not contain at most one of the separators. This
verifies also the second assertion.

Since N ⊂ N ′ ⊂ M and (M/N ′)P = 0 for all P ∈ L we conclude also immediately
dim(M/N ′) < dim(M/N).

The remaining assertion follows as in [22]: First notice, that Ni :M (fej

j ) = M for each
j 6= i. Indeed, since

Ni :M (fej

j ) ⊃ N :M (fej

j ) = Nj and Ni :M (fej

j ) ⊃ Ni

we conclude by lemma 2 Ass(M/(Ni :M (fej

j ))) ⊂ Ai ∩Aj = ∅.
Now, if n +

∑
f

ej

j mj ∈ ∩Ni with n ∈ N,mj ∈ M , we conclude f
ej

j mj ∈ Ni for j 6= i and
thus also fei

i mi ∈ Ni = N :M (fei
i ). Hence f2ei

i mi ∈ N,mi ∈ N :M (fi)∞ = N :M (fei
i ) and

finally fei
i mi ∈ N . 2

It remains to decompose the quasi primary components Ni. Here we apply reduction to
dimension zero once more. So lets assume that M/N has a unique isolated prime P . Choose
a maximal relative independent set (xv, v ∈ V ) for N ⊂ M and let Ñ , M̃ etc. be as in section
2.5 the extension modules of N,M etc. to S̃ := k(xv, v ∈ V )[xv, v 6∈ V ].

Lemma 5 Assume moreover that B is a Gröbner basis of N wrt. an inverse module term
block order wrt. V on F , B′ ⊂ B a denominator-free Gröbner basis for Ñ and c ∈ S the
product of the leading coefficients of the elements of B′ regarded as polynomial vectors in F̃ .
Then

N ′ := Ñ ∩M = N :M (c)∞
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is the (uniquely determined) P -primary component of N in M .
If e is an integer such that ce ·N ′ ⊂ N , then

N = N ′ ⋂(N + ce M)

is a decomposition of N into a P -primary component and another module of lower (relative)
dimension.

Proof : The first assertion follows immediately from the fact that dim M̃/Ñ = 0 and
that P is the unique isolated prime of M/N . The second one may be proved as in the last
proposition. 2

Lets collect our considerations into the following primary decomposition algorithm:

The Algorithm PrimeDecomposeA(N,M)

Input : N ⊂ M ⊂ F
Output : A primary decomposition of N in M .

1. Compute L := {P1, . . . , Pk}, the list of isolated primes of M/N as in section
3.

2. For i = 1, . . . , k compute polynomials fi ∈ S separating L \ {Pi} from Pi.

3. For i = 1, . . . , k compute the quasi primary components Ni := N :M (fi)∞

as stable quotients and integers ei such that fei
i Ni ⊂ N .

4. Return

(∪iPrimeDecomposeB(Ni,M, Pi))
⋃

PrimeDecomposeA(N ′ := N + (fe1
1 , . . . , fek

k ) M,M)

The Algorithm PrimeDecomposeB(N,M,P)

Input : N ⊂ M ⊂ F , such that M/N has a unique isolated
prime P .

Output : A primary decomposition of N in M .

1. Find a maximal relative independent set (xv, v ∈ V ) for N ⊂ M .

2. Compute a Gröbner basis B of N wrt. an inverse module term block order
wrt. V .

3. Change to S̃, extract a minimal Gröbner basis B′ ⊂ B of Ñ and compute
c ∈ S, the product of the leading coefficients of the elements of B′ regarded
as polynomial vectors in F̃ .

4. Compute N ′ := N :M (c)∞ and an integer e such that ceN ′ ⊂ N .

5. Return
{(N ′,M, P )}

⋃
PrimeDecomposeA(N + ce ·M,M)

To obtain a primary decomposition with pairwise different primes we may collect all compo-
nents in the output collection of PrimeDecomposeA with the same prime P and substitute
them by their intersection. Note that even such a decomposition may not be minimal.
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5 Minimal Primary Decomposition

To extract a minimal primary decomposition from an arbitrary one we employ the following
necessity check. Assume N = ∩Ni is a primary decomposition of N in M into Pi-primary
components Ni (we may assume the Pi to be pairwise distinct), but L = {P1, . . . , Pm} eventu-
ally contains superfluous primes. Fix Pi ∈ L and Ni as the corresponding primary component.

As above we find f ∈ S that separates {Pj 6⊂ Pi} from Pi. Hence by lemma 1 the
associated primes of the module

Mi := N :M (f)∞ =
⋂

{Pj⊂Pi}
Nj

are contained in Pi. Again by lemma 1 we conclude that another stable quotient by Pi cuts off
exactly Ni. Hence we can decide whether Ni is redundant in the decomposition of N testing
Mi and Mi :M P∞

i for equality. Altogether we proved the following

Proposition 3 Let {(Ni,M, Pi) : i = 1, . . . ,m} be as above a collection of Pi-primary mod-
ules Ni ⊂ M , such that N = ∩Ni is an eventually redundant primary decomposition of N in
M with pairwise different primes Pi.

Let f ∈ S separate {Pj 6⊂ Pi} from Pi and compute Mi := N :M (f)∞.
Then Pi 6∈ Ass(M/N) iff Mi = Mi :M P∞

i .

This proposition is in the spirit of [22, cor. 2.22]. It gives the possibility “locally” to check
primes whether they belong to Ass(M/N), i.e. not referring to the corresponding primary
components themselves. Hence one can do this check on the list of primes produced by
PrimeDecomposeA(N,M) before primary components corresponding to the same prime are
collected together.

[4, thm. 1.1] proposes another way to find the associated primes of M/N : A prime P ⊂ S
of codimension e is associated to M/N iff P is an isolated prime of Ann ExteS(M/N,S).

6 Some Examples

We conclude with some easy examples to demonstrate the algorithms “at work”. The following
computations were done with an experimental implementation of the above algorithms based
on our REDUCE package CALI [7] on an IBM RS/6000. The examples are taken from [16]
and were computed wrt. the pure lexicographic term order with x0 > x1 > . . ..

Ex. 1 ([16, 8.1.1]) : This is a monomial ideal in S = k[x0, x1, x2, x3] with two isolated and
one embedded component:

I = (x2
0 x1 , x0 x2

2 , x2
1 x2 , x3

2)

The isolated primes, computed by FGB, are P1 = (x0 , x2) and P2 = (x1 , x2). As ideal
separators we can take f1 = x1 and f2 = x0. This yields

I1 = I : (x1)∞ = (x2
0 , x2) with f2

1 I1 ⊂ I,
I2 = I : (x0)∞ = (x1 , x2

2) with f2
2 I2 ⊂ I

and finally
I = I1 ∩ I2 ∩ (I + (x2

0 , x2
1)).
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Here
I3 := I + (x2

0 , x2
1) = (x0 x2

2 , x3
2 , x2

0 , x2
1)

is already P3-primary with P3 = (x0 , x1 , x2).
To decide whether I3 is necessary for a minimal primary decomposition we compute

I : P∞
3 = (x1 x2 , x2

2 , x2
0 x1). Since I : P∞

3 6= I we conclude that P3 ∈ Ass S/I.

Ex. 2 ([16, 8.1.3]) : This is a monomial ideal in S = k[x0, x1, x2] with one isolated and
one embedded component:

I = (x1) · (x0 , x1 , x2) = (x2
1 , x1 x2 , x0 x1).

The only isolated prime is P1 = (x1). Taking (x0 , x2) as maximal independent set and
S̃ = k(x0, x2)[x1] we obtain I1 = Ĩ ∩ S = I : (x0 x2)∞ = (x1) and

I = I1 ∩ (I + (x0 x2
2))

J := I + (x0 x2
2) = (x2

1 , x1 x2 , x0 x1 , x0 x2
2) decomposes as the ideal in ex. 1 into

J = (x1 , x2
2) ∩ (x0 , x1) ∩ (J + (x0 , x2

2)),

where J + (x0 , x2
2) = (x2

1 , x1 x2 , x0 , x2
2) is (x0, x1, x2)-primary. Altogether we obtain the

(not minimal) primary decomposition

I = (x1) ∩ (x1 , x2
2) ∩ (x0 , x1) ∩ (x2

1 , x1 x2 , x0 , x2
2).

To extract from the decomposition computed so far a minimal primary decomposition, we
have to apply our necessity check to the primes in L = {(x1 , x2), (x0 , x1), (x0 , x1 , x2)}.

For P2 = (x1 , x2) we first separate it from {(x0 , x1), (x0 , x1 , x2)} by f = x0. We obtain
I ′ = I : (x0)∞ = (x1), that has evidently no P2-primary component. Hence the P2-component
in the decomposition of I may be skipped. The same applies to P3 = (x0 , x1).

For P4 = (x0 , x1 , x2) there is nothing to separate. Since I : P∞
4 = (x1) 6= I we conclude

that this component cannot be skipped.
Altogether we obtain the minimal primary decomposition

I = (x1) ∩ (x2
1 , x1 x2 , x0 , x2

2).

Ex. 3 ([16, 8.5.2]) This is a presentation of Macaulay’s curve as a set theoretic intersection
of three surfaces

I = (x0 x3 − x1 x2 , x2
0 x2 − x3

1 , x1 x2
3 − x3

2)

FGB produces the only isolated prime P1 = I + (f) with f := x0 x2
2 − x2

1 x3. Since our term
order is already an inverse block order for the maximal independent set (x2 , x3), we extract
from the Gröbner basis

B = {x0 x1 x2
2 − x3

1 x3 , x0 x3
2 − x2

1 x2 x3 ,
x0 x3 − x1 x2 , x2

0 x2 − x3
1 , x1 x2

3 − x3
2}

12



of I ⊂ S the minimal Gröbner basis B′ = {x0 x3 − x1 x2 , x1 x2
3 − x3

2} of Ĩ and c = x3 ∈ S
as the (square free) product of the leading coefficients of B′ regarded as polynomials in S̃.
Since I : (c)∞ = P1 and c f ∈ I we conclude

I = P1 ∩ (I + (c)),

where J := I+(c) = (x3
2 , x1 x2 , x3 , x2

0 x2−x3
1) is P2-quasi primary with P2 := (x3 , x2 , x1).

For J only (x0) may serve as maximal independent set, so we have to compute a Gröbner
basis of J wrt. an appropriate inverse block order, where x0 is the lowest variable. As in the
computation for I we obtain

B = {x2
0 x2

2 , x3
2 , x1 x2 , x3 , −x2

0 x2 + x3
1},

B′ = {x2
0 x2

2 , x1 x2 , x3 , −x2
0 x2 + x3

1},
c = x0,
I2 := J : (c)∞ = (x2

2 , x1 x2 , x3 , −x2
0 x2 + x3

1)
as the P2-primary component and

J = I2 ∩ (J + (x2
0)).

Here K := J + (x2
0) = (x2

0 , x3
2 , x1 x2 , x3 , x3

1) is P3-primary with P3 = (x0 , x1 , x2 , x3).
Altogether we obtain the decomposition I = P1 ∩ I2 ∩K, where again I2 may be skipped.

Indeed, separating {P3} from P2 by a stable quotient by x0 we get

I ′ = I : (x0)∞ = (−x0 x2
2 + x2

1 x3 , −x0 x3
3 + x4

2 , −x0 x3 + x1 x2 ,
− x2

0 x2 + x3
1 , x1 x2

3 − x3
2)

and I ′ : P∞
2 = I ′.
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