
The SymbolicData Benchmark ProblemsCollection of Polynomial Systemshttp://www.symbolicdata.orgHans-Gert Gr�abeDepartment of Computer ScienceUniversity of Leipzig, Germanygraebe@informatik.uni-leipzig.de1 Introduction1.1 MotivationAuthors of software or even packages or modules capable of special symboliccomputations are soon or later faced with the problem to test and evaluateit. Whereas the 'copy and paste' method is usually su�cient for this aimduring early development phases, reliable tests and screenings with largesets of data require batch processing and special test beds.Such test bed environment should prepare test data for input to the CAsoftware, start and monitor its run, and store and evaluate the output ofthe computation.Although such test beds are mostly not related to the tested symbolicsoftware (e.g., a Maple package) { and often use even di�erent technologies(shell scripts and �le redirection) { they are usually self-made (includingspecial input formats for the examples) and, often enough, developed anewfor each project.To avoid this overhead it would be interesting to unify such e�orts into acommon project that collects experience with test beds and allows for easyreuse and modi�cation of already existing code. The SymbolicData Projectwas set out to meet these demands.Since easy reusability is best achieved by code under Free Software con-ditions and test beds are usually not written from scratch but reuse appro-priate tools, we focussed on Free Software tools. At the moment our test bed

relies on Perl 5 and the GNU time function. A �rst release (mainly devel-oped by O. Bachmann, Kaiserslautern, and the author) contains more than40 Perl modules to handle, translate, sort, validate, and store di�erent kindsof data. These packages (with more than 15 000 lines of code) are driven bya standard interface program symbolicdata. They are available from ourWeb site under the terms of the GNU Public License (GPL). Perl with itsscripting and pattern matching facilities turned out to be best suited for thepreparation of input data and starting and monitoring processes. The GNUtime function provides an independent timing tool with the possibility totime out and interrupt processes.A second (and historically even the �rst) motivation for the Symbolic-Data Project arose from questions related to comparison and benchmarkingof symbolic software. Typical benchmark papers published so far reportabout own test computations that often enough could not be repeated byinterested parties due to di�erent reasons: the software is not available, hugeexamples are not supplied or supplied only in printed (and often misprinted)form, the authors refer to examples given in the literature in di�erent (nonequivalent) forms etc.Such problems could be avoided if there was a central electronic repos-itory storing benchmark examples in reliable formats that could easily beaccessed by interested parties. Of course, this requires to give away owntest material under Free Software conditions to the community. The Symbo-licData Project started (with kindly acknowledged support by the French'UMS Medicis' and the German 'Fachgruppe Computeralgebra') such datacollections in the areas of polynomial system solving (to be reported below)and geometry theorem proving.1.2 The SymbolicData Project { Aims and Current StateThe main track followed so far with the SymbolicData project was to developa test bed for symbolic software, to systematically collect existing special andgeneral benchmark data and to make them electronically available in a moreor less uniform way.Note that symbolic computations often lead to voluminous data as in-put, output or intermediate results. Therefore, to collect benchmark datarequires also to develop concepts and tools to generate, store, manipulate,present and maintain it.

Hence the SymbolicData project started with two main goals:1. To unify e�orts of several people to develop Perl tools for the man-agement of digital symbolic data from di�erent areas of ComputerAlgebra.These tools, although not yet perfect, are useful and can be adaptedfor special test and benchmark purposes at a local site. They are readyfor download and improvement.2. To provide a central repository of digital benchmark data from di�er-ent areas of Computer Algebra.This repository at http://www.symbolicdata.org (it is sponsoredby the German 'Fachgruppe Computeralgebra') contains the data col-lected so far and also provides access to the tools and documentation.The project is organized as a free software project. The CVS repositoryis equally open to people joining the SymbolicData Project Group, and weenjoy your cooperation. Tools and data are freely available also as tar-�les(via HTML download from our Web site) under the terms of the GNU PublicLicense. The alpha release 0.4, available since March 2001, contains� Tools to maintain digital symbolic data (below you will �nd a shortoverview),� Digital data collections from the areas of polynomial system solvingand geometry theorem proving,� a well elaborated HTML documentation,� and a small number of publications and presentations.Due to the fact that the SymbolicData tools were used so far mainly for themanagement of symbolic non computational information, the release 0.5,available since January 2002, o�ers separately� the SymbolicData tools with a minimal data collection (required tobuild the documentation)� and the full SymbolicData data collection.This new o�er should be considered also by people who are interested to useour tools for local test or benchmark computations on their own data only.

1.3 The SymbolicData ToolsThe SymbolicData tools developed so far are designed to meet three di�erentgoals:1. To systematically collect and maintain digital benchmark data arisingin various areas of Computer Algebra.The data is stored in a data base complying a XML-like syntax thateasily may be extended and adapted. The SymbolicData Tools to-gether with the
exibility of the Perl language allow to store, extract,combine, select, modify, present etc. data with various objectives in auni�ed way.The standard interface program symbolicdata can be used for themost common operations (insertion, validation, extension, update)without Perl knowledge. Due to the elaborated 'actions' concept itcan be extended with little experience in Perl programming. Someexamples are given below.2. To facilitate test or even trusted benchmark computations on the col-lected data.The SymbolicData project provides concepts and tools to extract datafrom the data base in a form readable by di�erent Computer AlgebraSoftware, to set up, start, time, interrupt, and monitor computationson these input data, and to collect, analyze, and evaluate output datafrom these computations.This requires more
exibility and hence additional programming ef-forts by the user. We already designed several tools for a benchmarkCompute environment, but this part of the project is yet under devel-opment.3. To provide tools to access, select, translate and present data in di�er-ent formats.This part of the project is rudimentary. SymbolicData temporary pro-vides a small HTML interface for test purposes and an interface toSQL-compliant databases.To contribute data to the repository or to join the SymbolicData groupplease consult our web site for more information.

2 The SymbolicData INTPS Collection2.1 How Data are OrganizedThe SymbolicData data collection is designed using a relational data basemodel and stored in a XML-like ASCII format. This allows for easy manip-ulation and translation of this data in di�erent formats.Due to
exibility reasons we decided not to use (at least at the moment)one of the various data base programs as main engine but implemented aPerl interface to access and manipulate data. Data records are stored as�les (sd-�les) and attached to the Perl interface in a transparent way asrecords of tag/value pairs (sd-records) using Perl 5 modular technology.Similar records share a common structure and are grouped into tables.Tables correspond to subdirectories of the Data directory tree. The maininformation about benchmark collections of polynomial systems is containedin the INTPS table. According to the relational data base model secondaryinformation about these records is scattered over several other tables (BIBfor bibliographical references, PROBLEMS for problem or problem class de-scriptions, GEO for geometry theorem proving background of relevant INTPSrecords etc.) and linked with the main record through a CRef attribute.A typical INTPS sd-�le, Trinks' example, see [3], is reproduced on thenext page. For a description of the di�erent attributes see below.2.2 Cross ReferencesYou may ask for more information about this example, e.g., bibliographicalreferences. Such relational information combines two records and, in a rela-tional data base model, it is usually stored in special relation tables that caneasily be searched for di�erent keys. We decided to put this cross referenceinformation into one of the main (primary) records and to provide tools toextract it as secondary data in SQL compliant form for import into relationtables of a classical data base engine with search and select facilities. Thisavoids to develop anew elaborated search and select facilities for the primary(XML based) data.For Trinks' example, relational bibliographical information is stored inBIB table records and uses the Trinks' example's Id as foreign key. Belowthe BIB record of [3] is reproduced.The main reason for the decision to declare the INTPS table as foreignis persistence in the sense that we do not need to change an INTPS recordeach time a new publication refers to it. For analogous reasons the BIB tableis declared as foreign in a CRef entry in some INTPS records that point to

Record 'INTPS/Trinks'<Id> INTPS/Trinks </Id><Type> INTPS </Type><Key> Trinks </Key><basis>[35*p+40*z+25*t-27*s,45*p+35*s-165*b-36,-11*s*b+3*b^2+99*w,25*p*s-165*b^2+15*w+30*z-18*t,15*p*t+20*z*s-9*w,-11*b^3+w*p+2*z*t]</basis><vars> [w, p, z, t, s, b] </vars><dlist> [1, 1, 2, 2, 2, 3] </dlist><isHomog> 0 </isHomog><llist> [4, 4, 3, 5, 3, 3] </llist><degree> 10 </degree><Comment> diff = easy </Comment><Version> ... </Version><PERSON> graebe </PERSON><Date> Mar 26 1999 </Date># End of record 'INTPS/Trinks'##the primary source where the polynomial system was mentioned �rst time.Note that it is not always as easy as here to make such a judicious decision.Secondary data may be searched with an SQL compliant data base enginefor both the primary and the foreign keys.2.3 The Structure of INTPS RecordsFollowing the XML philosophy the attributes of records (i.e., the XML tagnames) and their descriptions are not �xed within the SymbolicData toolsbut are part of the data. Due to lacking experience we did not use DTDand XSL style sheets at the moment to describe tag syntax and semanticsbut collected this information in special META records and developed Perltools to extract the descriptions from these META tables.

Record 'BIB/Boege_86a'<Id> BIB/Boege_86a </Id>...<bibentry>@Article{Boege_86a,author = {Boege, W. and Gebauer, R. and Kredel, H.},title = {Some examples for solving systems of algebraicequations by calculating {Gr\"obner} bases},journal = {J. Symb. Comp.},volume = {2},year = {1986},pages = {83 - 98},}</bibentry>...<CRef>[INTPS/Hairer_1 => Hairer 1,INTPS/Hairer_2 => Hairer 2,...INTPS/Rose => Rose,INTPS/Trinks => Trinks,INTPS/Trinks_1 => Small Trinks]</CRef>...# End of record 'BIB/Boege_86a'###This allows for great
exibility and careful design of data tables by users.Templates are easily created, extended or changed varying the correspondingMETA tables with your favorite text editor.Designing the structure of INTPS records we tried to specify a frameworkthat uni�es the di�erent benchmark collections of systems of polynomialsas, e.g., [2, 3, 4, 7, 8, 9]. Each such system of polynomials is de�ned througha �nite basis in a certain polynomial ring R[x] in a list of variables x over abase domain R. It occurs that most examples may be reduced to systems ofpolynomials with integer coe�cients or with coe�cients in R = Z[p] wherep is a list of parameters. We decided to focus on such systems.For uniformity reasons and to ease comparison, we require of a valid

INTPS record, that its basis polynomials are stored in expanded standardform using the +, *, and ^ operators, and that the monomials of a polyno-mial and the polynomials of the basis are ordered w.r.t. the degree reverselexicographical ordering. The SymbolicData Validate action can �x theseproperties of an INTPS record if you have Singular [6] installed on yourcomputer1.Further tags are de�ned to collect background information about thedi�erent polynomial systems. Background information may be of structuralor relational type. Structural information about a polynomial system con-cerns invariant properties of the basis and the ideal generated by it, e.g.,lists of the lengths and degrees of the basis polynomials, the dimension ordegree of the ideal, a prime or primary decomposition of the ideal, or certainparameters of such a description. Several optional tags, like llist, dlist,dim, degree, isoPrimes, isoPrimeDims, etc., and Perl routines are de�nedto collect or even generate such information.The mandatory and optional attributes of INTPS records are listed in thetable on the next page. Their structure and semantics is stored in a specialMETA table META/INTPS in the same XML-format as the records themselvesand thus may easily be extended or modi�ed if necessary. The META tablesare part of the Data directory tree and read in by the Perl tools duringinitialization.3 The SymbolicData Perl ToolsSymbolicData provides a great variety of tools to perform operations on thecollected data. These tools are of very di�erent nature and requirements:they range from the insertion and validation of single records, over the initi-ation, control and evaluation of test or benchmark computations on selectedlists of records, up to the transformation of parts or the entire data baseinto other representations like HTML or SQL.The operations are implemented in a hierarchy of Perl modules and canbe accessed in a unique way as actions invoked through the symbolicdataprogram that provides a standard interface and realizes command-line pars-ing, initialization of global variables and required modules, and execution ofthe actions inherited from the command line.It is easy to add new functionality to the program since actions arestored as a global hash $ACTIONS that may be extended by new entries.1There is a stub to use also other CAS for this purpose, but no implementation yet forother systems.

Id, Type and Key (m)Strings that identify the record within the data base (Id = Type+ Key is generated automatically).basis (m)A list of polynomials in expanded standard form with integer co-e�cients, de�ning an ideal I.vars (m) and parameters (o)Lists of variables. I is considered as an ideal in the polynomial ringR = k(param)[vars] where k denotes the basic coe�cient �eld.basedomain (o)The basic coe�cient �eld (default: Q).dlist, llist (o)Lists of total degrees and lengths of the basis elements. This givesrough invariants to identify records containing the same basis indi�erent variable notations.attributes, dim, isHomog, IsoPrimes, . . .More information about I if available.ChangeLog, Version, PERSON, DateInformation about the history of the record and the person whosupplied the information. There is a special table PERSON thatcollects more information about the people involved with Symbo-licData and keeps historical track of their activities.CRefA list of cross references to related records in other tables.Mandatory (m) and optional (o) attributes of INTPS recordsBelow we give some examples of user de�ned actions. Consult the Symbo-licData documentation and the source of the module ActionsSpec.pm formore details.The overall syntax of a symbolicdata call issymbolicdata [-r file] actions [options] [args]On start-up symbolicdata loads all basic modules, parses the command-line arguments up to the mandatory action argument(s), and loads the globalaction hash which speci�es all known (or, \registered") actions and theirproperties, e.g., the Perl modules required for the action, a description ofthe action etc. The action hash can be extended using the �rst (optional) -r

file argument, where file is the name of a Perl module which is loadedbefore the actions are parsed.Note that some parts even of the basic features are yet under develop-ment, e.g., the search and �nd facilities of SymbolicData.Di�erent operations on the data require di�erent degrees of
exibility.For example, starting test or benchmark computations on a special CASrequires translation of the data into the special input format of the testedsystem and hence some Perl programming. The SymbolicData actions con-cept is best suited to write such extensions almost from scratch into a �leand get them running withsymbolicdata -r file ...See the directory bin/scripts for sample extensions. We come back to thatquestion in the next section.A number of \standard" actions, mainly for insertion and validation ofnew records and extraction of SQL-compliant cross reference informationare directly available through the symbolicdata interface. Here is a (notcomplete) list of such actions:Manipulation of data base entries:Insert Insert sd-record into DataBaseValidate Validate sd-record(s)Update Update sd-record in DataBase from foreign sourceUnique Test for uniqueness of sd-record(s) w.r.t. DataBaseOut Print records to STDOUTPrint Print �elds of sd-record(s) to STDOUTCreation of new INTPS records:CreateINTPS Create a new INTPS record from a GEO record ofequational typeFlat Generate a new INTPS record with
at basis froman INTPS record with parametersHomog Generate a new INTPS record with homogenized ba-sis from an inhomogeneous INTPS recordEvaluation of information in BIB records:GetAllBibs extract BiBTeX entries from all BIB records to STD-OUTMakeBib Create a �le A.bib from A.aux and relevant BIBrecords

Extraction of CRef information:CreateSQL extract SQL table de�nitions to STDOUTUpdateSQL Print update information for SQL tables to STD-OUTActions can be driven by various options. Please consult the documen-tation for more details. E.g., to generate/update the SQL cross referenceinformation table for some of the INTPS records (with Key matching Sym*)issue the command (in the SymbolicData home directory)symbolicdata UpdateSQL -Table CRefTable Data/INTPS/Sym*.sdCRefTable is a prede�ned SQL table (also stored as sd-�le in the directoryData/SQL) to catch cross reference information. You get a listing likedelete from CRefTable where Id='INTPS/Sym1_211';insert into CRefTable values('INTPS/Sym1_211','PROBLEMS/Sym1','');delete from CRefTable where Id='INTPS/Sym1_311';insert into CRefTable values('INTPS/Sym1_311','PROBLEMS/Sym1','');...delete from CRefTable where Id='INTPS/Sym3_5';insert into CRefTable values('INTPS/Sym3_5','PROBLEMS/Sym3','');The result may be piped to a database program (we used Postgres95) toupdate the CRefTable created earlier with the commandsymbolicdata CreateSQL -Table CRefTablethat yields outputcreate table CRefTable (Id varchar(80) not null,Foreign_Id varchar(80) not null,Comment varchar(100));4 How to Run Local Benchmark ComputationsA �rst series of benchmark computations on INTPS records was designed andexecuted by Olaf Bachmann in the year 2000. He developed the ComputePerl module that realizes computations as an elaborated interplay betweencon�gurations of Computer Algebra Software (table CASCONFIG), machines(table MACHINE) and examples (table INTPS). See the paper [1] for moredetails about this concept.

There was no continuation of these e�orts when Olaf left the projectteam and this part remains experimental still now.But it is easy to set up local benchmark computations also without anelaborated environment if you have data available in electronic form and thePerl scripting facilities at hand to create CAS input �les and analyze output�les.As an example we consider benchmark computations to test the solvefacility of MuPAD on zero dimensional ideals as described in [5]. To setup such computations we create a �le scripts/Compute.pl that de�nes anew action SolveTest. This action is called via the symbolicdata interfaceprogram assymbolicdata -r "scripts/Compute.pl" SolveTest [sd-�les]symbolicdata parses the input line, expands the sd-�le names and calls theaction on each of the sd-records. Hence the most di�cult part of an actionde�nition is the call slot that contains a Perl function to be executed onthe corresponding sd-record.In our example this Perl function creates an input �le /tmp/Key.in thatcontains the MuPAD code of the example and starts a system callmupad <$infile >$outfile 2>&1via TimedSystem. TimedSystem is a special SymbolicData Perl function de-�ned in the module TimedSystem.pm that allows to time and trap a compu-tation. It is based on the GNU time function. We refer to the SymbolicDataonline documentation for more details.Such an approach possibly does not meet your needs since it includes foreach example the come up time of the CA software. An alternative solutionuses the (system dependent) inner time function (e.g., MuPAD's traperrorfunction) to time computations and is described below.On the next page you �nd a listing of Compute.pl for the solution withGNU time. Note that di�erent keys of an actions hash entry may carry alsoverbose (key 'verbose') and usage information (key 'example') and even adetailed HTML description (key 'description') about the action.The function thecomputation extracts the relevant values from the sd-record and arranges them as MuPAD input lines (the code between theEOT's). During execution of the action on that record this code is written toa �le /tmp/Key.in. Then MuPAD is started with a time bound of 100 s. tosolve the problem. Upon success the output of the computation is written toa �le /tmp/Key.out that can be analyzed either by hand or with additionalPerl functions.

$ACTIONS -> {SolveTest} ={verbose => "Benchmark computations with MuPAD and TimedSystem",req => ['TimedSystem.pm'],call => sub{ my $r=shift;# create the infilemy $infile="/tmp/$r->{Key}.in";open(FH,">$infile") ordie "Can't open $infile for writing: $!\n";print FH thecomputation($r);close(FH);# set up the computationmy $outfile="/tmp/$r->{Key}.out";my $maxtime=100;my $syscall="mupad <$infile >$outfile 2>&1";# start the computationmy @l=TimedSystem($syscall,$maxtime,0,0);# evaluate the computationif ($l[0]<0){ print("$r->{Key} not finished within $maxtime sec.\n"); }else{ printf("$r->{Key}: user time %1.2f, system time %1.2f.\n",$l[1], $l[2]); }return $r;},example => 'symbolicdata -r "$SD_HOME/bin/scripts/Compute.pl" '.' SolveTest $SD_HOME/Data/INTPS/Sym1_211.sd',};sub thecomputation{ my $r=shift;my $s=<<EOT;PRETTYPRINT:=FALSE;vars:=$r->{vars};polys:=$r->{basis};tt:=time((sol:=solve(polys,vars))); sol; nops(sol);tt:=time((sol1:=numeric::solve(polys,vars))); sol1; nops(sol1);tt:=time((sol2:=map(sol,op\@allvalues))); sol2; nops(sol2);quit;EOTreturn $s;}

The code itself is straightforward for slightly experienced Perl program-mers and will not be discussed here.For a solution using MuPAD's traperror function instead of GNU timeuse the SymbolicData tools to generate an appropriate input �le, run itseparately with MuPAD and inspect the results. Here is the relevant Perlcode for a new action TrapTest:$ACTIONS -> {TrapTest} ={verbose => "Benchmark computations with MuPAD and traperror",argvcall => sub{ shift; my $arg=ExpandArgv(shift);my $l;map push(@$l, Record->new($_)), (@$arg);# create the infilemy $infile="/tmp/mupad.in";open(FH,">$infile") ordie "Can't open $infile for writing: $!\n";print FH inittext();map { print FH trapcomputation($_); } (@$l);print FH exittext();close(FH);print "Input file written to $infile\n";},example => 'symbolicdata -r "$SD_HOME/bin/scripts/Compute.pl" '. ' TrapTest $SD_HOME/Data/INTPS/S*.sd',}; The �rst lines collect the sd-records to be tested from their (expanded)�le names. Then we create the (single) input �le /tmp/mupad.in containingthe di�erent examples. This requires some additional code, mainly for thefunction trapcomputation, reproduced on the next page.Now start the test computation asmupad </tmp/mupad.in >/tmp/mupad.out 2>&15 Extending the Data BaseIn a similar fashion the data base may be extended to incorporate new exam-ples even from new application areas. We document a �rst scratch extensionto examples from Integer Programming that arose from a conversation withRaymond Hemmecke, who runs the Web site http://www.testsets.de.

sub inittext { return "PRETTYPRINT:=FALSE;\n"; }sub exittext { return "quit;\n"; }my $time=10;sub trapcomputation{ my $r=shift;my $s=<<EOT;// Example $r->{Key}vars:=$r->{vars};polys:=$r->{basis};delete sol, sol1, sol2;traperror((sol:=solve(polys,vars)),$time); sol;traperror((sol1:=numeric::solve(polys,vars)),$time); sol1;traperror((sol2:=map(sol,op\@allvalues)),$time); sol2;EOTreturn $s;} Auxiliary Perl code for the TrapTest actionGiven an integer-valued matrix A with n columns one may ask the chal-lenging questions to compute the Hilbert basis or the extremal rays of thecone fx 2 Zn : Ax = 0; x � 0g.Hemmecke's data collection contains �les A.mat, A.hil, A.ray for eachexample A with lists of integer-valued vectors, one per line. The integervalues are separated by white spaces. A �rst line gives the dimensions ofthe matrix.To insert records of the new application into the SymbolicData data basewe de�ne a new table TESTSETS, i.e., create such subdirectories of Data andData/META. Beside standard attributes (Key, Type, PERSON, Date, . . .)already de�ned in the Data/META root directory each new record should havea mandatory attribute mat for the matrix A and optional attributes hil andray for the Hilbert basis and the list of extremal rays. Values for the latterattributes are optional since either their computation may be to challengingor the output to heavy. For the latter case we create an (optional) attributefile to store the location of the corresponding �le at www.testsets.de. Forthe moment matrices will be stored as lists of vectors in Hemmecke's formatskipping the (redundant) dimension information. Instead we de�ne anothermandatory attribute dim with the ambient space dimension as value.

To generate a new table with these attributes one has to create METAsd-records dim, mat, hil, ray, and file, i.e., �les dim.sd, mat.sd, hil.sd,ray.sd, and file.sd in the Data/META/TESTSETS directory. A typical suchMETA sd-�le is reproduced below.## Record 'META/TESTSETS/mat'<Id> META/TESTSETS/mat </Id><Type> META </Type><Key> TESTSETS/mat </Key><Syntax> (-|\d|\s)* </Syntax><description> Generating set of vectors </description><level> 1 </level><Version> ... </Version><PERSON> graebe </PERSON><Date> Jan 18 2002 </Date># End of record 'META/TESTSETS/mat'##META sd-�les can be created with your favorite text editor startingwith a copy of a META sd-�le from another directory as template. Levelone indicates mandatory tags, level greater one optional tags (default is 3).The SyntaxMeta attribute that de�nes a valid syntax of mat values is givenin Perl regexp notation. Take .* to pose no restrictions.Now you can add new records to the TESTSETS table. This can be realizedby another action written from scratch:$ACTIONS -> {Create} ={verbose => "Create TESTSETS from *.mat files",argvcall => sub{ shift; my $arg=shift; # get remaining argsmap createNewRecord($_), grep(/\.mat$/, @{$arg});},example => 'symbolicdata -r "$SD_HOME/bin/scripts/testsets.pl" '. ' Create <files> ',}; It is part of a �le testsets.pl and creates new records from �les *.matand stores them in sd-�les in the temporary directory /tmp. Values for theother attributes can be added in later steps (actually, a slight extension of

testsets.pl grasps also these values). createNewRecord is a user de�nedPerl function that creates sd-�les with the desired content in a temporarydirectory.In a second step these �les are inserted into the SymbolicData data basewith the commandsymbolicdata Insert -fix /tmp/*.sdThis will validate the new records, generate (as far as possible) and insertmissing tag values, format the output nicely and store it in the data baseaccording to the Id tag value. Hence the actual �le name of the temporary�le does not matter. We use increasing numbers as �le names:my $i=0;sub createNewRecord{ local $/;my $fn=shift;my ($r,$a);# set Key and Type($r->{Key}=$fn)=~s/\.mat$//;$r->{Type}="TESTSETS";# evaluate *.matopen(FH,$fn) or die;$_=<FH>;my @l=split /\s*\n/ ; my $u=shift @l;my @l1=split(/\s+/,$u);$r->{dim}=shift @l1;$r->{mat}=join("\n", @l);close FH;# output the result$r=Record->new($r);$r->Out("/tmp/".$i++.".sd");} Record->new blesses $r to a sd-record and $r->Out writes it to thedesired location. Missing attribute values (of Id, Date and PERSON) aregenerated during insertion.

6 How to Locally Install the Tools and DataYou may download the tools, data and documentation of SymbolicData aszipped Tar-�les SD-tools.tgz and SD-data.tgz from our central repositoryat http://www.symbolicdata.org.To work with the tools of SymbolicData you must have Perl version 5(or higher) installed on your system.To install the SymbolicData software and data, run GNU tartar -xzf SD-tools.tgztar -xzf SD-data.tgzThis will create a directory SymbolicData with several subdirectoriescontaining the Perl tools, data, and documentation sources of the Symbolic-Data project.Set the environment variable SD_HOME to that directory, change to it andrun GNU makemake allto create a new directory SD HTML and generate the HTML documentationfrom their sources at this location. This is also a �rst test for the Symbolic-Data tools to be properly installed.We refer to the SymbolicData/README �le and the SymbolicData HTMLdocumentation for further details.References[1] O. Bachmann and H.-G. Gr�abe. The SymbolicData Project: Towardsan electronic repository of tools and data for benchmarks of computeralgebra software. Reports on Computer Algebra 27, Jan 2000. Centrefor Computer Algebra, University of Kaiserslautern.See http://www.mathematik.uni-kl.de/~zca.[2] D. Bini and B. Mourrain. Polynomial test suite, 1996.See http://www-sop.inria.fr/saga/POL.[3] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving sys-tems of algebraic equations by calculating Gr�obner bases. J. Symb.Comp., 2:83 { 98, 1986.

[4] S.R. Czapor and K.O. Geddes. On implementing Buchberger's algorithmfor Gr�obner bases. In Proc. SYMSAC'86, pages 233 { 238. Waterloo,Canada, 1986.[5] H.-G. Gr�abe. About the polynomial system solve facility of Axiom,Macsyma, Maple, Mathematica, MuPAD, and Reduce. In M. Wester,editor, Computer Algebra Systems: A Practical Guide, chapter 8, pages121 { 151. Wiley, Chichester, 1999.[6] G.-M. Greuel, G. P�ster, and H. Sch�onemann. Singular 2.0. A Com-puter Algebra System for Polynomial Computations, Centre for Com-puter Algebra, University of Kaiserslautern, 2001.http://www.singular.uni-kl.de.[7] PoSSo: Polynomial System Solving, 1993 { 1995.See http://posso.dm.unipi.it.[8] D. Wang. Irreducible decomposition of algebraic varieties via character-istic sets and Gr�obner bases. Computer Aided Geometric Design, 9:471{ 484, 1992.[9] D. Wang. Solving polynomial equations: characteristic sets and trian-gular systems. Math. and Comp. in Simulation, 42:339 { 351, 1996.

