The SymbolicData Benchmark Problems
Collection of Polynomial Systems

http://www.symbolicdata.org

Hans-Gert Grabe
Department of Computer Science
University of Leipzig, Germany
graebe@informatik.uni-leipzig.de

1 Introduction

1.1 Motivation

Authors of software or even packages or modules capable of special symbolic
computations are soon or later faced with the problem to test and evaluate
it. Whereas the ’copy and paste’ method is usually sufficient for this aim
during early development phases, reliable tests and screenings with large
sets of data require batch processing and special test beds.

Such test bed environment should prepare test data for input to the CA
software, start and monitor its run, and store and evaluate the output of
the computation.

Although such test beds are mostly not related to the tested symbolic
software (e.g., a Maple package) and often use even different technologies
(shell scripts and file redirection) — they are usually self-made (including
special input formats for the examples) and, often enough, developed anew
for each project.

To avoid this overhead it would be interesting to unify such efforts into a
common project that collects experience with test beds and allows for easy
reuse and modification of already existing code. The SymbolicData Project
was set out to meet these demands.

Since easy reusability is best achieved by code under Free Software con-
ditions and test beds are usually not written from scratch but reuse appro-
priate tools, we focussed on Free Software tools. At the moment our test bed

relies on Perl 5 and the GNU time function. A first release (mainly devel-
oped by O. Bachmann, Kaiserslautern, and the author) contains more than
40 Perl modules to handle, translate, sort, validate, and store different kinds
of data. These packages (with more than 15000 lines of code) are driven by
a standard interface program symbolicdata. They are available from our
Web site under the terms of the GNU Public License (GPL). Perl with its
scripting and pattern matching facilities turned out to be best suited for the
preparation of input data and starting and monitoring processes. The GNU
time function provides an independent timing tool with the possibility to
time out and interrupt processes.

A second (and historically even the first) motivation for the Symbolic-
Data Project arose from questions related to comparison and benchmarking
of symbolic software. Typical benchmark papers published so far report
about own test computations that often enough could not be repeated by
interested parties due to different reasons: the software is not available, huge
examples are not supplied or supplied only in printed (and often misprinted)
form, the authors refer to examples given in the literature in different (non
equivalent) forms etc.

Such problems could be avoided if there was a central electronic repos-
itory storing benchmark examples in reliable formats that could easily be
accessed by interested parties. Of course, this requires to give away own
test material under Free Software conditions to the community. The Symbo-
licData Project started (with kindly acknowledged support by the French
'UMS Medicis’ and the German 'Fachgruppe Computeralgebra’) such data
collections in the areas of polynomial system solving (to be reported below)
and geometry theorem proving.

1.2 The SymbolicData Project — Aims and Current State

The main track followed so far with the SymbolicData project was to develop
a test bed for symbolic software, to systematically collect existing special and
general benchmark data and to make them electronically available in a more
or less uniform way.

Note that symbolic computations often lead to voluminous data as in-
put, output or intermediate results. Therefore, to collect benchmark data
requires also to develop concepts and tools to generate, store, manipulate,
present and maintain it.

Hence the SymbolicData project started with two main goals:

1. To unify efforts of several people to develop Perl tools for the man-
agement of digital symbolic data from different areas of Computer
Algebra.

These tools, although not yet perfect, are useful and can be adapted
for special test and benchmark purposes at a local site. They are ready
for download and improvement.

2. To provide a central repository of digital benchmark data from differ-
ent areas of Computer Algebra.

This repository at http://www.symbolicdata.org (it is sponsored
by the German 'Fachgruppe Computeralgebra’) contains the data col-
lected so far and also provides access to the tools and documentation.

The project is organized as a free software project. The CVS repository
is equally open to people joining the SymbolicData Project Group, and we
enjoy your cooperation. Tools and data are freely available also as tar-files
(via HTML download from our Web site) under the terms of the GNU Public
License. The alpha release 0.4, available since March 2001, contains

e Tools to maintain digital symbolic data (below you will find a short
overview),

e Digital data collections from the areas of polynomial system solving
and geometry theorem proving,

e a well elaborated HTML documentation,

e and a small number of publications and presentations.

Due to the fact that the SymbolicData tools were used so far mainly for the
management of symbolic non computational information, the release 0.5,
available since January 2002, offers separately

e the SymbolicData tools with a minimal data collection (required to
build the documentation)

e and the full SymbolicData data collection.

This new offer should be considered also by people who are interested to use
our tools for local test or benchmark computations on their own data only.

1.3 The SymbolicData Tools

The SymbolicData tools developed so far are designed to meet three different
goals:

1. To systematically collect and maintain digital benchmark data arising
in various areas of Computer Algebra.

The data is stored in a data base complying a XML-like syntax that
easily may be extended and adapted. The SymbolicData Tools to-
gether with the flexibility of the Perl language allow to store, extract,
combine, select, modify, present etc. data with various objectives in a
unified way.

The standard interface program symbolicdata can be used for the
most common operations (insertion, validation, extension, update)
without Perl knowledge. Due to the elaborated ’actions’ concept it
can be extended with little experience in Perl programming. Some
examples are given below.

2. To facilitate test or even trusted benchmark computations on the col-
lected data.

The SymbolicData project provides concepts and tools to extract data
from the data base in a form readable by different Computer Algebra
Software, to set up, start, time, interrupt, and monitor computations
on these input data, and to collect, analyze, and evaluate output data
from these computations.

This requires more flexibility and hence additional programming ef-
forts by the user. We already designed several tools for a benchmark
Compute environment, but this part of the project is yet under devel-
opment.

3. To provide tools to access, select, translate and present data in differ-
ent formats.

This part of the project is rudimentary. SymbolicData temporary pro-
vides a small HTML interface for test purposes and an interface to
SQL-compliant databases.

To contribute data to the repository or to join the SymbolicData group
please consult our web site for more information.

2 The SymbolicData INTPS Collection

2.1 How Data are Organized

The SymbolicData data collection is designed using a relational data base
model and stored in a XML-like ASCII format. This allows for easy manip-
ulation and translation of this data in different formats.

Due to flexibility reasons we decided not to use (at least at the moment)
one of the various data base programs as main engine but implemented a
Perl interface to access and manipulate data. Data records are stored as
files (sd-files) and attached to the Perl interface in a transparent way as
records of tag/value pairs (sd-records) using Perl 5 modular technology.

Similar records share a common structure and are grouped into tables.
Tables correspond to subdirectories of the Data directory tree. The main
information about benchmark collections of polynomial systems is contained
in the INTPS table. According to the relational data base model secondary
information about these records is scattered over several other tables (BIB
for bibliographical references, PROBLEMS for problem or problem class de-
scriptions, GEO for geometry theorem proving background of relevant INTPS
records etc.) and linked with the main record through a CRef attribute.

A typical INTPS sd-file, Trinks’ example, see [3], is reproduced on the
next page. For a description of the different attributes see below.

2.2 Cross References

You may ask for more information about this example, e.g., bibliographical
references. Such relational information combines two records and, in a rela-
tional data base model, it is usually stored in special relation tables that can
easily be searched for different keys. We decided to put this cross reference
information into one of the main (primary) records and to provide tools to
extract it as secondary data in SQL compliant form for import into relation
tables of a classical data base engine with search and select facilities. This
avoids to develop anew elaborated search and select facilities for the primary
(XML based) data.

For Trinks’ example, relational bibliographical information is stored in
BIB table records and uses the Trinks’ example’s Id as foreign key. Below
the BIB record of [3] is reproduced.

The main reason for the decision to declare the INTPS table as foreign
is persistence in the sense that we do not need to change an INTPS record
each time a new publication refers to it. For analogous reasons the BIB table
is declared as foreign in a CRef entry in some INTPS records that point to

HHHHHHHE RS S S R R R T
Record ’INTPS/Trinks’

<Id> INTPS/Trinks </Id>
<Type> INTPS </Type>
<Key> Trinks </Key>
<basis>

[

35%p+40*z+25%t-27*s,
45%p+35*s-165%b-36,
—11%s*b+3*b"2+99%*w,
25*%pxs-165%b~2+15*w+30*z-18%*t,
15*p*t+20*z*s-9*w,
-11xb"3+wkp+2*z*t

]

</basis>

<vars> [w, p, z, t, s, b] </vars>
<dlist> [1, 1, 2, 2, 2, 3] </dlist>
<isHomog> O </isHomog>
<llist> [4, 4, 3, 5, 3, 3] </11list>
<degree> 10 </degree>
<Comment> diff = easy </Comment>
<Version> . </Version>
<PERSON> graebe </PERSON>
<Date> Mar 26 1999 </Date>

End of record ’INTPS/Trinks’
#Hd S S R R R R R S R

the primary source where the polynomial system was mentioned first time.
Note that it is not always as easy as here to make such a judicious decision.
Secondary data may be searched with an SQL compliant data base engine

for both the primary and the foreign keys.

2.3 The Structure of INTPS Records

Following the XML philosophy the attributes of records (i.e., the XML tag
names) and their descriptions are not fixed within the SymbolicData tools
but are part of the data. Due to lacking experience we did not use DTD
and XSL style sheets at the moment to describe tag syntax and semantics
but collected this information in special META records and developed Perl

tools to extract the descriptions from these META tables.

HEHBHBHHEHEH AR B EHEHHEH BB HEHBEHBEH AR HAH G HEH B EH B R HEHBEH B R B S HRH RS H
Record ’BIB/Boege_86a’

<Id> BIB/Boege_86a </Id>

<bibentry>

@Article{Boege_86a,
author = {Boege, W. and Gebauer, R. and Kredel, H.},
title = {Some examples for solving systems of algebraic

equations by calculating {Gr\"obner} bases},

journal = {J. Symb. Comp.},
volume = {23},
year = {1986},
pages = {83 - 983},

}

</bibentry>

<CRef>

[

INTPS/Hairer_1 => Hairer 1,
INTPS/Hairer_2 => Hairer 2,

INTPS/Rose => Rose,
INTPS/Trinks => Trinks,
INTPS/Trinks_1 => Small Trinks

]
</CRef>

End of record ’BIB/Boege_86a’
s bbbl b b e B E e b S b e e B e e e e e e e B

This allows for great flexibility and careful design of data tables by users.
Templates are easily created, extended or changed varying the corresponding
META tables with your favorite text editor.

Designing the structure of INTPS records we tried to specify a framework
that unifies the different benchmark collections of systems of polynomials
as, e.g., [2, 3,4, 7, 8, 9]. Each such system of polynomials is defined through
a finite basis in a certain polynomial ring R[x] in a list of variables x over a
base domain R. It occurs that most examples may be reduced to systems of
polynomials with integer coefficients or with coefficients in R = Z[p] where
p is a list of parameters. We decided to focus on such systems.

For uniformity reasons and to ease comparison, we require of a valid

INTPS record, that its basis polynomials are stored in expanded standard
form using the +, *, and ~ operators, and that the monomials of a polyno-
mial and the polynomials of the basis are ordered w.r.t. the degree reverse
lexicographical ordering. The SymbolicData Validate action can fix these
properties of an INTPS record if you have SINGULAR [6] installed on your
Computerl.

Further tags are defined to collect background information about the
different polynomial systems. Background information may be of structural
or relational type. Structural information about a polynomial system con-
cerns invariant properties of the basis and the ideal generated by it, e.g.,
lists of the lengths and degrees of the basis polynomials, the dimension or
degree of the ideal, a prime or primary decomposition of the ideal, or certain
parameters of such a description. Several optional tags, like 11ist, dlist,
dim, degree, isoPrimes, isoPrimeDims, etc., and Perl routines are defined
to collect or even generate such information.

The mandatory and optional attributes of INTPS records are listed in the
table on the next page. Their structure and semantics is stored in a special
META table META/INTPS in the same XML-format as the records themselves
and thus may easily be extended or modified if necessary. The META tables
are part of the Data directory tree and read in by the Perl tools during
initialization.

3 The SymbolicData Perl Tools

SymbolicData provides a great variety of tools to perform operations on the
collected data. These tools are of very different nature and requirements:
they range from the insertion and validation of single records, over the initi-
ation, control and evaluation of test or benchmark computations on selected
lists of records, up to the transformation of parts or the entire data base
into other representations like HTML or SQL.

The operations are implemented in a hierarchy of Perl modules and can
be accessed in a unique way as actions invoked through the symbolicdata
program that provides a standard interface and realizes command-line pars-
ing, initialization of global variables and required modules, and execution of
the actions inherited from the command line.

It is easy to add new functionality to the program since actions are
stored as a global hash $ACTIONS that may be extended by new entries.

!There is a stub to use also other CAS for this purpose, but no implementation yet for
other systems.

Id, Type and Key (m)
Strings that identify the record within the data base (Id = Type
+ Key is generated automatically).

basis (m)
A list of polynomials in expanded standard form with integer co-
efficients, defining an ideal 1.

vars (m) and parameters (o)
Lists of variables. I is considered as an ideal in the polynomial ring
R = k(param)[vars| where k£ denotes the basic coefficient field.

basedomain (0)
The basic coefficient field (default: Q).

dlist, 11ist (o)
Lists of total degrees and lengths of the basis elements. This gives
rough invariants to identify records containing the same basis in
different variable notations.

attributes, dim, isHomog, IsoPrimes, ...
More information about I if available.

ChangelLog, Version, PERSON, Date
Information about the history of the record and the person who
supplied the information. There is a special table PERSON that
collects more information about the people involved with Symbo-
licData and keeps historical track of their activities.

CRef
A list of cross references to related records in other tables.

Mandatory (m) and optional (o) attributes of INTPS records

Below we give some examples of user defined actions. Consult the Symbo-
licData documentation and the source of the module ActionsSpec.pm for
more details.

The overall syntax of a symbolicdata call is

symbolicdata [-r file] actions [options] [args]

On start-up symbolicdata loads all basic modules, parses the command-
line arguments up to the mandatory action argument(s), and loads the global
action hash which specifies all known (or, “registered”) actions and their
properties, e.g., the Perl modules required for the action, a description of
the action etc. The action hash can be extended using the first (optional) -r

file argument, where file is the name of a Perl module which is loaded
before the actions are parsed.

Note that some parts even of the basic features are yet under develop-
ment, e.g., the search and find facilities of SymbolicData.

Different operations on the data require different degrees of flexibility.
For example, starting test or benchmark computations on a special CAS
requires translation of the data into the special input format of the tested
system and hence some Perl programming. The SymbolicData actions con-
cept is best suited to write such extensions almost from scratch into a file
and get them running with

symbolicdata -r file

See the directory bin/scripts for sample extensions. We come back to that
question in the next section.

A number of “standard” actions, mainly for insertion and validation of
new records and extraction of SQL-compliant cross reference information
are directly available through the symbolicdata interface. Here is a (not
complete) list of such actions:

Manipulation of data base entries:

Insert Insert sd-record into DataBase

Validate Validate sd-record(s)

Update Update sd-record in DataBase from foreign source
Unique Test for uniqueness of sd-record(s) w.r.t. DataBase
Out Print records to STDOUT

Print Print fields of sd-record(s) to STDOUT

Creation of new INTPS records:

CreateINTPS Create a new INTPS record from a GEO record of
equational type

Flat Generate a new INTPS record with flat basis from
an INTPS record with parameters
Homog Generate a new INTPS record with homogenized ba-

sis from an inhomogeneous INTPS record

Evaluation of information in BIB records:

GetAllBibs extract BiBTeX entries from all BIB records to STD-
ouT
MakeBib Create a file A.bib from A.aux and relevant BIB

records

Eztraction of CRef information:

CreateSQL extract SQL table definitions to STDOUT
UpdateSQL Print update information for SQL tables to STD-
ouT

Actions can be driven by various options. Please consult the documen-
tation for more details. E.g., to generate/update the SQL cross reference
information table for some of the INTPS records (with Key matching Symx)
issue the command (in the SymbolicData home directory)

symbolicdata UpdateSQL -Table CRefTable Data/INTPS/Sym#.sd

CRefTable is a predefined SQL table (also stored as sd-file in the directory
Data/SQL) to catch cross reference information. You get a listing like

delete from CRefTable where Id=’INTPS/Syml_2117;
insert into CRefTable values(’INTPS/Sym1_211’,’PROBLEMS/Syml’,’’);
delete from CRefTable where Id=’INTPS/Sym1_311’;
insert into CRefTable values(’INTPS/Sym1_311’,’PROBLEMS/Syml’,’’);

delete from CRefTable where Id=’INTPS/Sym3_57;
insert into CRefTable values(’INTPS/Sym3_5’,’PROBLEMS/Sym3’,’7);

The result may be piped to a database program (we used Postgres95) to
update the CRefTable created earlier with the command

symbolicdata CreateSQL -Table CRefTable
that yields output

create table CRefTable (

Id varchar (80) not null,
Foreign_Id varchar(80) not null,
Comment varchar (100));

4 How to Run Local Benchmark Computations

A first series of benchmark computations on INTPS records was designed and
executed by Olaf Bachmann in the year 2000. He developed the Compute
Perl module that realizes computations as an elaborated interplay between
configurations of Computer Algebra Software (table CASCONFIG), machines
(table MACHINE) and examples (table INTPS). See the paper [1] for more
details about this concept.

There was no continuation of these efforts when Olaf left the project
team and this part remains experimental still now.

But it is easy to set up local benchmark computations also without an
elaborated environment if you have data available in electronic form and the
Perl scripting facilities at hand to create CAS input files and analyze output
files.

As an example we consider benchmark computations to test the solve
facility of MuPAD on zero dimensional ideals as described in [5]. To set
up such computations we create a file scripts/Compute.pl that defines a
new action SolveTest. This action is called via the symbolicdata interface
program as

symbolicdata -r "scripts/Compute.pl" SolveTest [sd-files]

symbolicdata parses the input line, expands the sd-file names and calls the
action on each of the sd-records. Hence the most difficult part of an action
definition is the call slot that contains a Perl function to be executed on
the corresponding sd-record.

In our example this Perl function creates an input file /tmp/ Key.in that
contains the MuPAD code of the example and starts a system call

mupad <$infile >$outfile 2>&1

via TimedSystem. TimedSystem is a special SymbolicData Perl function de-
fined in the module TimedSystem.pm that allows to time and trap a compu-
tation. It is based on the GNU time function. We refer to the SymbolicData
online documentation for more details.

Such an approach possibly does not meet your needs since it includes for
each example the come up time of the CA software. An alternative solution
uses the (system dependent) inner time function (e.g., MuPAD’s traperror
function) to time computations and is described below.

On the next page you find a listing of Compute.pl for the solution with
GNU time. Note that different keys of an actions hash entry may carry also
verbose (key ’verbose’) and usage information (key ’example’) and even a
detailed HTML description (key ’description’) about the action.

The function thecomputation extracts the relevant values from the sd-
record and arranges them as MuPAD input lines (the code between the
EOT’s). During execution of the action on that record this code is written to
a file /tmp/Key.in. Then MuPAD is started with a time bound of 100s. to
solve the problem. Upon success the output of the computation is written to
a file /tmp/ Key.out that can be analyzed either by hand or with additional
Perl functions.

$ACTIONS -> {SolveTest} =
{
verbose => "Benchmark computations with MuPAD and TimedSystem",
req => [’TimedSystem.pm’],
call => sub
{
my $r=shift;
create the infile
my $infile="/tmp/$r->{Keyl}.in";
open(FH,">$infile") or
die "Can’t open $infile for writing: $!\n";
print FH thecomputation($r);
close(FH);
set up the computation
my $outfile="/tmp/$r->{Key}.out";
my $maxtime=100;
my $syscall="mupad <$infile >$outfile 2>&1";
start the computation
my @1=TimedSystem($syscall,$maxtime,0,0);
evaluate the computation
if ($1[01<0)
{ print("$r->{Key} not finished within $maxtime sec.\n"); }
else
{ printf("$r->{Key}: user time %1.2f, system time %1.2f.\n",
$1[11, $1[21); }
return $r;
},
example => ’symbolicdata -r "$SD_HOME/bin/scripts/Compute.pl" ’
.7 SolveTest $SD_HOME/Data/INTPS/Syml_211.sd’,
Y

sub thecomputation
{
my $r=shift;
my $s=<<E0T;
PRETTYPRINT :=FALSE;
vars:=$r->{vars};
polys:=$r->{basis};
tt:=time((sol:=solve(polys,vars))); sol; nops(sol);
tt:=time((soll:=numeric::solve(polys,vars))); soll; nops(soll);
tt:=time((sol2:=map(sol,op\@allvalues))); sol2; nops(sol2);
quit;
EQOT
return $s;

}

The code itself is straightforward for slightly experienced Perl program-
mers and will not be discussed here.

For a solution using MuPAD’s traperror function instead of GNU time
use the SymbolicData tools to generate an appropriate input file, run it
separately with MuPAD and inspect the results. Here is the relevant Perl
code for a new action TrapTest:

$ACTIONS -> {TrapTest} =

{

verbose => "Benchmark computations with MuPAD and traperror",
argvcall => sub

{
shift; my $arg=ExpandArgv(shift);
my $1;
map push(@$l, Record->new($_)), (@$arg);
create the infile
my $infile="/tmp/mupad.in";
open(FH,">$infile") or
die "Can’t open $infile for writing: $!\n";
print FH inittext();
map { print FH trapcomputation($_); } (@$1);
print FH exittext();
close(FH);
print "Input file written to $infile\n";
},
example => ’symbolicdata -r "$SD_HOME/bin/scripts/Compute.pl" ’
> TrapTest $SD_HOME/Data/INTPS/S*.sd’,
}

The first lines collect the sd-records to be tested from their (expanded)
file names. Then we create the (single) input file /tmp/mupad. in containing
the different examples. This requires some additional code, mainly for the
function trapcomputation, reproduced on the next page.

Now start the test computation as

mupad </tmp/mupad.in >/tmp/mupad.out 2>&1

5 Extending the Data Base

In a similar fashion the data base may be extended to incorporate new exam-
ples even from new application areas. We document a first scratch extension
to examples from Integer Programming that arose from a conversation with
Raymond Hemmecke, who runs the Web site http://www.testsets.de.

sub inittext { return "PRETTYPRINT:=FALSE;\n"; }
sub exittext { return "quit;\n"; }

my $time=10;
sub trapcomputation
{
my $r=shift;
my $s=<<E0T;
// Example $r->{Key}
vars:=$r->{vars};
polys:=$r->{basis};
delete sol, soll, sol2;
traperror ((sol:=solve(polys,vars)),$time); sol;
traperror ((soll:=numeric::solve(polys,vars)),$time); soll;
traperror ((sol2:=map(sol,op\@allvalues)),$time); sol2;

EOT

return $s;

}

Auxiliary Perl code for the TrapTest action

Given an integer-valued matrix A with n columns one may ask the chal-
lenging questions to compute the Hilbert basis or the extremal rays of the
cone {z € Z": Az =0, z > 0}.

Hemmecke’s data collection contains files A.mat, A.hil, A.ray for each
example A with lists of integer-valued vectors, one per line. The integer
values are separated by white spaces. A first line gives the dimensions of
the matrix.

To insert records of the new application into the SymbolicData data base
we define a new table TESTSETS, i.e., create such subdirectories of Data and
Data/META. Beside standard attributes (Key, Type, PERSON, Date, ...)
already defined in the Data/META root directory each new record should have
a mandatory attribute mat for the matrix A and optional attributes hil and
ray for the Hilbert basis and the list of extremal rays. Values for the latter
attributes are optional since either their computation may be to challenging
or the output to heavy. For the latter case we create an (optional) attribute
file to store the location of the corresponding file at www.testsets.de. For
the moment matrices will be stored as lists of vectors in Hemmecke’s format
skipping the (redundant) dimension information. Instead we define another
mandatory attribute dim with the ambient space dimension as value.

To generate a new table with these attributes one has to create META
sd-records dim, mat, hil, ray, and file, i.e., files dim.sd, mat.sd, hil.sd,
ray.sd, and file.sd in the Data/META/TESTSETS directory. A typical such
META sd-file is reproduced below.

HEHHHEHHHHH B S HHERHH AR B R H AR AR R R A R R RS
Record ’META/TESTSETS/mat’

<Id> META/TESTSETS/mat </1d>

<Type> META </Type>

<Key> TESTSETS/mat </Key>
<Syntax> (-1\d|\s)* </Syntax>
<description> Generating set of vectors </description>
<level> 1 </level>
<Version> ... </Version>
<PERSON> graebe </PERSON>
<Date> Jan 18 2002 </Date>

End of record ’META/TESTSETS/mat’
H#HHHHHHHH G S S S R R S S T

META sd-files can be created with your favorite text editor starting
with a copy of a META sd-file from another directory as template. Level
one indicates mandatory tags, level greater one optional tags (default is 3).
The Syntax Meta attribute that defines a valid syntax of mat values is given
in Perl regexp notation. Take .* to pose no restrictions.

Now you can add new records to the TESTSETS table. This can be realized
by another action written from scratch:

$ACTIONS -> {Create} =

{

verbose => "Create TESTSETS from *.mat files",
argvcall => sub

{
shift; my $arg=shift; # get remaining args
map createNewRecord($_), grep(/\.mat$/, e{$argl});
},
example => ’symbolicdata -r "$SD_HOME/bin/scripts/testsets.pl" ’
’ Create <files> 7,

};

It is part of a file testsets.pl and creates new records from files * .mat
and stores them in sd-files in the temporary directory /tmp. Values for the
other attributes can be added in later steps (actually, a slight extension of

testsets.pl grasps also these values). createNewRecord is a user defined
Perl function that creates sd-files with the desired content in a temporary
directory.

In a second step these files are inserted into the SymbolicData data base
with the command

symbolicdata Insert -fix /tmp/*.sd

This will validate the new records, generate (as far as possible) and insert
missing tag values, format the output nicely and store it in the data base
according to the Id tag value. Hence the actual file name of the temporary
file does not matter. We use increasing numbers as file names:

my $i=0;

sub createNewRecord
{

local $/;

my $fn=shift;

my ($r,$a);

set Key and Type
($r->{Key}=$fn)="s/\.mat$//;
$r->{Type}="TESTSETS";

evaluate *.mat

open(FH,$fn) or die;

$_=<FH>;

my @l=split /\s*\n/ ; my $u=shift @1;
my Q@ll=split(/\s+/,$u);
$r->{dim}=shift @11;
$r->{mat}=join("\n", @1);

close FH;

output the result
$r=Record->new($r) ;
$r->0ut ("/tmp/" . $i++.".sd");

Record->new blesses $r to a sd-record and $r->0ut writes it to the
desired location. Missing attribute values (of Id, Date and PERSON) are
generated during insertion.

6 How to Locally Install the Tools and Data

You may download the tools, data and documentation of SymbolicData as
zipped Tar-files SD-tools.tgz and SD-data.tgz from our central repository
at http://www.symbolicdata.org.

To work with the tools of SymbolicData you must have Perl version 5
(or higher) installed on your system.

To install the SymbolicData software and data, run GNU tar

tar -xzf SD-tools.tgz
tar -xzf SD-data.tgz

This will create a directory SymbolicData with several subdirectories
containing the Perl tools, data, and documentation sources of the Symbolic-
Data project.

Set the environment variable SD_HOME to that directory, change to it and
run GNU make

make all

to create a new directory SD_HTML and generate the HTML documentation
from their sources at this location. This is also a first test for the Symbolic-
Data tools to be properly installed.

We refer to the SymbolicData/README file and the SymbolicData HTML
documentation for further details.

References

[1] O. Bachmann and H.-G. Griabe. The SymbolicData Project: Towards
an electronic repository of tools and data for benchmarks of computer
algebra software. Reports on Computer Algebra 27, Jan 2000. Centre
for Computer Algebra, University of Kaiserslautern.

See http://www.mathematik.uni-k1.de/"zca.

[2] D. Bini and B. Mourrain. Polynomial test suite, 1996.
See http://www-sop.inria.fr/saga/POL.

[3] W. Boege, R. Gebauer, and H. Kredel. Some examples for solving sys-
tems of algebraic equations by calculating Grobner bases. J. Symb.
Comp., 2:83 98, 1986.

[4]

S.R. Czapor and K.O. Geddes. On implementing Buchberger’s algorithm
for Grobner bases. In Proc. SYMSAC’86, pages 233 238. Waterloo,
Canada, 1986.

H.-G. Grabe. About the polynomial system solve facility of Axiom,
Macsyma, Maple, Mathematica, MuPAD, and Reduce. In M. Wester,
editor, Computer Algebra Systems: A Practical Guide, chapter 8, pages
121 - 151. Wiley, Chichester, 1999.

G.-M. Greuel, G. Pfister, and H. Schonemann. SINGULAR 2.0. A Com-
puter Algebra System for Polynomial Computations, Centre for Com-
puter Algebra, University of Kaiserslautern, 2001.
http://www.singular.uni-kl1.de.

PoSSo: Polynomial System Solving, 1993 — 1995.
See http://posso.dm.unipi.it.

D. Wang. Irreducible decomposition of algebraic varieties via character-
istic sets and Grobner bases. Computer Aided Geometric Design, 9:471
— 484, 1992.

D. Wang. Solving polynomial equations: characteristic sets and trian-
gular systems. Math. and Comp. in Simulation, 42:339 351, 1996.

